首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unfolding and refolding of heterooctameric phosphofructokinase-1 from Saccharomyces cerevisiae were investigated by application of kinetic, hydrodynamic, and spectroscopic methods and by use of guanidinium chloride (GdmCl) as denaturant. Inactivation of the enzyme starts at about 0.3 M GdmCl and undergoes a sharp unfolding transition in a narrow range of the denaturant concentration. The inactivation is accompanied by a dissociation of the enzyme into dimers (at 0.6 M GdmCl), which could be detected by changes of the circular dichroism and intrinsic fluorescence. Protein aggregates were observed from 0.7 to 1.5 M GdmCl that unfold at higher denaturant concentrations. Refolding of chemically denatured phosphofructokinase proceeds as a stepwise process via the generation of elements of secondary structure, the formation of assembly-competent monomers that associate to heterodimers and the assembly of dimers to heterotetramers and heterooctamers. The assembly reactions seem to be rate-limiting. Recovery of the enzyme activity (maximum 65%) competes with an nonproductive aggregation of the subunits. alpha-Cyclodextrin functions as an artificial chaperone by preventing aggregation of the subunits, whereas ATP is suggested to support the generation of heterodimers that are competent to a further assembly.  相似文献   

2.
The purpose of the present investigation was to study the pH dependence of both the immobilization process and the enzyme activity of a feruloyl esterase (FoFaeC from Fusarium oxysporum) immobilized in mesoporous silica. This was done by interpreting experimental results with theoretical molecular modeling of the enzyme structure. Modeling of the 3D structure of the enzyme together with calculations of the electrostatic surface potential showed that changes in the electrostatic potential of the protein surface were correlated with the pH dependence of the immobilization process. High immobilization yields were associated with an increase in pH. The transesterification activity of both immobilized and free enzyme was studied at different values of pH and the optimal pH of the immobilized enzyme was found to be one unit lower than that for the free enzyme. The surface charge distribution around the binding pocket was identified as being a crucial factor for the accessibility of the active site of the immobilized enzyme, indicating that the orientation of the enzyme inside the pores is pH dependent. Interestingly, it was observed that the immobilization pH affects the specific activity, irrespective of the changes in reaction pH. This was identified as a pH memory effect for the immobilized enzyme. On the other hand, a change in product selectivity of the immobilized enzyme was also observed when the transesterification reaction was run in MOPS buffer instead of citrate phosphate buffer. Molecular docking studies revealed that the MOPS buffer molecule can bind to the enzyme binding pocket, and can therefore be assumed to modulate the product selectivity of the immobilized enzyme toward transesterification.  相似文献   

3.
The present study explores the efficiency of Talaromyces thermophilus β-xylosidase, in the production of xylose and xylooligosaccharides. The β-xylosidase was immobilized by different methods namely ionic binding, entrapment and covalent coupling and using various carriers. Chitosan, pre-treated with glutaraldehyde, was selected as the best support material for β-xylosidase immobilization; it gave the highest immobilization and activity yields (94%, 87%, respectively) of initial activity, and also provided the highest stability, retaining 94% of its initial activity even after being recycled 25 times. Shifts in the optimal temperature and pH were observed for the immobilized β-xylosidase when compared to the free enzyme. The maximal activity obtained for the immobilized enzyme was achieved at pH 8.0 and 53 °C, whereas that for the free enzyme was obtained at pH 7.0 and 50 °C. The immobilized enzyme was more thermostable than the free β-xylosidase. We observed an increase of the Km values of the free enzyme from 2.37 to 3.42 mM at the immobilized state. Native and immobilized β-xylosidase were found to be stimulated by Ca2+, Mn2+ and Co2+ and to be inhibited by Zn2+, Cu2+, Hg2+, Fe2+, EDTA and SDS. Immobilized enzyme was found to catalyze the reverse hydrolysis reaction, forming xylooligosaccharides in the presence of a high concentration of xylose. In order to examine the synergistic action of xylanase and β-xylosidase of T. thermophilus, these two enzymes were co-immobilized on chitosan. A continuous hydrolysis of 3% Oat spelt xylan at 50 °C was performed and better hydrolysis yields and higher amount of xylose was obtained.  相似文献   

4.
The production of agar-oligosaccharides from agarose by free and immobilized agarase, obtained from a Pseudomonas aeruginosa AG LSL-11 was investigated and the activity, longevity and the operational stability of immobilized enzyme was compared with that of the free enzyme. The agar hydrolyzed products of free enzyme and immobilized enzyme were neoagarobiose, neoagarotetraose and neoagarohexaose as evidenced by LC-MS analysis. The immobilization of agarase was confirmed by SEM and also by the enzymatic transformation of agarose into agaroligosaccharides. The free agarase showed maximum activity at 40°C, whereas it’s immobilized counterpart showed maximum activity at 45oC, however, the optimum pH for both systems remained unchanged (pH 8.0). The relative activities of free agarase at pH 9.0 and 10.0 were 90 and 74%, respectively, whereas, the corresponding activities of the immobilized system were determined to be 97 and 90%. The stabilities of free agarase at pH 9.0 and 10.0 were 80 and 60% respectively, but for the immobilized system the respective residual activities were estimated to be 97 and 85%. Immobilized agarase appears to be more tolerant to high temperatures in terms of its activity and stability as it is compared to that of the free enzyme which retained 74 and 50.84% of relative activity at 55 and 60°C while, free agarase retained only 40 and 16.79% of its original activity. Furthermore, the immobilized agarase could be reused in batches efficiently for eight cycles, and could be stored for 3 months at 4°C as wet beads and for more than 6 months as dry beads.  相似文献   

5.
In the present work, indigenously prepared rigid superporous (pore size of approximately 3 microm) cross-linked cellulose matrix (CELBEADS) has been used as a support for the immobilization of Bacillus licheniformis alpha-amylase (BLA). Optimum pH and temperature, and Michaelis-Menten constants were determined for both free and immobilized BLA. Immobilized BLA was observed to produce a different saccharide profile than free BLA at any value of dextrose equivalent. It was observed that pH, temperature, and initial starch concentration has a significant effect on the saccharide profile of starch hydrolysate produced using immobilized BLA in the batch mode, whereas the ratio of concentration of enzyme units to initial starch concentration has no influence on the same. Hence immobilized BLA can be used as an additional tool for production of maltodextrins with different saccharide profiles. Immobilized BLA has better thermostability than free BLA. Immobilized BLA was found to retain full activity even after eight batches of hydrolysis, each of 8h duration at 55 degrees C and 90 mg/mL initial starch concentration. A semiempirical model has been used for the prediction of saccharide composition of starch hydrolysate with respect to time.  相似文献   

6.
Summary The whole cell ofHumicola spp. ATCC 20620 with rifamycin oxidase activity was immobilized by copolymerization with acrylamide. The whole cell was defatted by treatment with acetone to reduce the diffusional resistance through the cell membrane. The recovery of enzyme activity after the immobilization step was about 50%. The acetone-defatted cell showed the maximum activity at pH 7.5 for both free and the immobilized forms. No appreciable activity loss could be detected when stored at 4 °C and pH 7.8 for one month, while the half life at 40 °C and pH 8 was decreased to about 8 days. The apparent Km values of rifamycin oxidase for the free and immobilized acetonedefatted cells were 0.3mM and 0.6mM, respectively. The enzyme demonstrated substrate inhibition, but the degree of substrate inhibition was different between two forms of the enzyme preparation. A complete substrate inhibition was observed for the immobilized cell, whereas the enzyme activity was partially inhibited at high substrate concentration in the acetone-defatted cells.  相似文献   

7.
Thermophilic catechol 2,3-dioxygenase (EC 1.13.11.2) from Bacillus stearothermophilus has been immobilized on highly activated glyoxyl agarose beads. The enzyme could be fully immobilized at 4 degrees C and pH 10.05 with a high retention of activity (around 80%). Enzyme immobilized under these conditions showed little increase in thermostability compared with the soluble enzyme, but further incubation of immobilized enzyme at 25 degrees C and pH 10.05 for 3 h before borohydride reduction resulted in conjugates exhibiting a 100-fold increase in stability (c.f. the free enzyme). The stability of catechol 2,3-dioxygenase immobilized under these conditions was essentially independent of protein concentration whereas free enzyme was rapidly inactivated at low protein concentrations. An apparent stabilization factor of over 700-fold was recorded in the comparison of free and immobilized catechol 2,3-dioxygenases at protein concentrations of 10 μg/ml. Immobilization increased the 'optimum temperature' for activity by 20 degrees C, retained activity at substrate concentrations where the soluble enzyme was fully inactivated and enhanced the resistance to inactivation during catalysis. These results suggest that the immobilization of the enzyme under controlled conditions with the generation of multiple covalent links between the enzyme and matrix both stabilized the quaternary structure of the protein and increased the rigidity of the subunit structures.  相似文献   

8.
The present work is focused on efficient immobilization of polygalacturonase on polyethylene matrix, followed by its application in apple juice clarification. Immobilization of polygalacturonase on activated polyethylene and its use in apple juice clarification was not reported so far. Aspergillus niger Van Tieghem (MTCC 3323) produced polygalacturonase when grown in modified Riviere's medium containing pectin as single carbon source by fed-batch culture. The enzyme was precipitated with ethanol and purified by gel filtration chromatography (Sephacryl S-100) and immobilized onto glutaraldehyde-activated polyethylene. The method is very simple and time saving for enzyme immobilization. Various characteristics of immobilized enzyme such as optimum reaction temperature and pH, temperature and pH stability, binding kinetics, efficiency of binding, reusability and metal ion effect on immobilized enzymes were evaluated in comparison to the free enzyme. Both the free and immobilized enzyme showed maximum activity at a temperature of 45 degrees C and pH 4.8. Maximum binding efficiency was 38%. The immobilized enzyme was reusable for 3 cycles with 50% loss of activity after the third cycle. Twenty-four U of immobilized enzyme at 45 degrees C and 1 h incubation time increased the transmittance of the apple juice by about 55% at 650 nm. The immobilized enzyme can be of industrial advantage in terms of sturdiness, availability, inertness, low price, reusability and temperature stability.  相似文献   

9.
In the present study adenosine deaminase (ADA) was immobilized onto two different polymeric materials, agarose and casein. The factors affecting the amount of enzyme attachment onto the polymeric supports such as incubation time were investigated. The maximum amount of enzyme immobilized onto different polymeric supports occurred at incubation pH value 7.5 and ADA concentration 42 units/g and the incubation time needed for the maximum amount of enzyme attachment to the polymeric supports was found to be 8 h. Some phsicochemical properties of the free and immobilized ADA such as operational stability, optimum temperature and thermal stability, pH optimum and stability, storage stability, and the effect of gamma-radiation were studied. The operational stability of the free and immobilized enzyme showed that the enzyme immobilized by a cross-linking technique using gultaric dialdehyde showed poor durability and the relative activity decreased sharply due to the leakage after repeated washing, while the enzymes immobilized by covalent bonds to the carriers showed a slight decrease in most cases in the relative activity (around 20%) after being used 10 times. Storage for 4-6 months, showed that the free enzyme lost its activity, while the immobilized enzyme showed the opposite behavior. Subjecting the immobilized enzyme to a dose of gamma radiation of 0.5-10 Mrad showed complete loss in the activity of the free enzyme at a dose of 5 Mrad, while the immobilized enzymes showed relatively high resistance to gamma radiation up to a dose of 5 Mrad.  相似文献   

10.
Poly(N-vinylimidazole), PVIm, gels were prepared by γ-irradiation polymerization of N-vinylimidazole in aqueous solutions. These affinity gels with a water swelling ratio of 1800% for plain polymeric gel and between 30 and 80% for Cu(II) and Co(II)-chelated gels at pH 6.0 in phosphate buffer were used in glucose oxidase (GOx) adsorption–desorption studies. Different amounts of Cu(II) and Co(II) ions (maximum 3.64 mmol/g dry gel for Cu(II) and 1.72 mmol/g dry gel for Co(II)) were loaded onto the gels by changing the initial concentration of Cu(II) and Co(II) ions, and pH. GOx adsorption on these gels from aqueous solutions containing different amount of GOx at different pH was investigated in batch reactors. Immobilized glucose oxidase activity onto the poly(N-vinylimidazole), and Cu(II) and Co(II)-chelated poly(N-vinylimidazole) were investigated with changing pH and the initial glucose oxidase concentration. Maximum activity of immobilized glucose oxidase onto the PVIm, Cu(II) and Co(II)-chelated PVIm gels was investigated and pH dependence was observed to be at pH 6.5 for free enzyme, pH 7.0 for PVIm, pH 7.5 for Cu(II) and Co(II)-chelated PVIm gels, respectively. The stability of the immobilized enzyme is very high for all gels and the residual activity was higher than 93% in the first 10 days.  相似文献   

11.
We have investigated methods of stabilizing prolidase by chemical modification and covalent coupling to various supports, for use in protein hydrolysis and possible use in enzyme replacement therapy. Purified acetone powder of calf brain prolidase was further purified by gel filtration on Sephadex G-200 and chromatography on DEAE-Sephadex A25. Polyacrylamide gel electrophoresis showed that the number of bands was reduced from 11 to 2. Since yields were low, the purified (NH4)2SO4 fraction was used in all experiments. Thiolation of the enzyme reduced the amount of protein coupled to AH-or CH-Sepharose 4B. Activities were highest when the protein was linked through its carboxyl groups. The coupled enzyme showed much greater thermal stability than its free counterpart. Of the bound preparations, the thiolated was less stable than the untreated. Untreated and thiolated enzymes bound to either matrix showed higher activity at low pH and less at high pH than the free material. Thiolation shifted the pH maximum from 6.8 to 7.5. The free thiolated enzyme and that bound to activated SH-Sepharose 4B showed greater thermal stability and a broader pH range of optimal activity than the bound untreated enzyme. These results show that prolidase can be immobilized by coupling to an insoluble matrix through various types of covalent bonds with retention of activity and increased stability.  相似文献   

12.
近年来溶胶-凝胶法固定脂肪酶已成为研究热点。选用TMOS、MTMS、ETMS和PTMS 4种硅烷试剂对黑曲霉脂肪酶进行了固定化研究。固定化的最佳配方为ETMS/TMOS=5:1、水与硅烷试剂分子比为8;固定化脂肪酶的固定率为80.2%、相对活性为136.3%;以乳化橄榄油作为底物,在50℃和pH4.0的条件下,固定化脂肪酶与游离脂肪酶Km分别为1.899×10-4M和2.789×10-4M;最适反应pH均为pH4.0,固定化脂肪酶在pH4.0~pH5.5之间其活性能保持95%以上;固定化脂肪酶最适反应温度为60℃,较游离脂肪酶提高了10℃;固定化脂肪酶的酸碱稳定性和热稳定性较非固定化酶有显著的提高。固定化脂肪酶的使用寿命和保存稳定性良好,使用12次后仍能够保留71.7%活性,在室温避光条件下保存180天后仍可保留79.2%活性。  相似文献   

13.
Xanthine dehydrogenase (EC 1.2.1.37) was isolated from chicken livers and immobilized by adsorption to a Sepharose derivative, prepared by reaction of n-octylamine with CNBr-activated Sepharose 4B. Using a crude preparation of enzyme for immobilization it was observed that relatively more activity was adsorbed than protein, but the yield of immobilized activity increased as a purer enzyme preparation was used. As more activity and protein were bound, relatively less immobilized activity was recovered. This effect was probably due to blocking of active xanthine dehydrogenase by protein impurities. The kinetics of free and immobilized xanthine dehydrogenase were studied in the pH range 7.5-9.1. The Km and V values estimated for free xanthine dehydrogenase increase as the pH increase; the K'm and V values for the immobilized enzyme go through a minimum at pH 8.1. By varying the amount of enzyme activity bound per unit volume of gel, it was shown that K'm is larger than Km are result of substrate diffusion limitation in the pores of the support material. Both free and immobilized xanthine dehydrogenase showed substrate activation at low concentrations (up to 2 microM xanthine). Immobilized xanthine dehydrogenase was more stable than the free enzyme during storage in the temperature range of 4-50 degrees C. The operational stability of immobilized xanthine dehydrogenase at 30 degrees C was two orders of magnitude smaller than the storage stability, t 1/2 was 9 and 800 hr, respectively. The operational stability was, however, better than than of immobilized milk xanthine oxidase (t 1/2 = 1 hr). In addition, the amount of product formed per unit initial activity in one half-life, was higher for immobilized xanthine dehydrogenase than for immobilized xanthine oxidase. Unless immobilized milk xanthine oxidase can be considerable stabilized, immobilized chicken liver xanthine dehydrogenase is more promising for application in organic synthesis.  相似文献   

14.
Tannase enzyme from Aspergillus oryzae was immobilized on various carriers by different methods. The immobilized enzyme on chitosan with a bifunctional agent (glutaraldehyde) had the highest activity. The catalytic properties and stability of the immobilized tannase were compared with the corresponding free enzyme. The bound enzyme retained 20·3% of the original specific activity exhibited by the free enzyme. The optimum pH of the immobilized enzyme was shifted to a more acidic range compared with the free enzyme. The optimum temperature of the reaction was determined to be 40 °C for the free enzyme and 55 °C for the immobilized form. The stability at low pH, as well as thermal stability, were significantly improved by the immobilization process. The immobilized enzyme exhibited mass transfer limitation as reflected by a higher apparent Km value and a lower energy of activation. The immobilized enzyme retained about 85% of the initial catalytic activity, even after being used 17 times.  相似文献   

15.
Extracellular laccases produced by three different wood-rotting fungi, Cerrena unicolor, Heterobasidion annosum and Trametes versicolor, were immobilized via covalent bonds formation on DEAE-Granocel 500, CM-Granocel 500, and acrylic carriers. Out of the tested carriers, only the DEAE-Granocel 500, which was activated by divinyl sulphone appeared to be a suitable matrix for the expression of enzymic activity. Only one laccase of all the tested enzymes produced by C. unicolor showed the best binding to the carrier and a satisfactory enzymic activity. The immobilized laccase exhibited the highest enzymic activity at pH 5.2 and it was more resistant to thermal denaturation than the native enzyme. At 90 °C, it retained 75% activity compared to the free enzyme. It was also more stable during storage at 4 °C: after 4 months the immobilized laccase retained 98% of initial activity. Immobilized C. unicolor laccase was active in 10–60% concentration of methanol, acetone, isopropanol or acetonitrile. The best enzymic activity was observed in 20% solution of acetonitrile in buffer.  相似文献   

16.
A continuous production of fructooligosaccharides from sucrose was investigated by fructosyltransferase immobilized on a high porous resin, Diaion HPA 25. The optimum pH (5.5) and temperature (55°C) of the enzyme for activity was unaltered by immobilization, and the immobilized enzyme became less sensitive to the pH change. The optimal operation conditions of the immobilized enzyme column for maximizing the productivity were as follows: 600 g/L of sucrose feed concentration, flow rate of superficial space velocity 2.7 h?1. When the enzyme column was run at 50°C, about 8% loss of the initial activity of immobilized enzyme was observed after 30 days of continuous operation, during which high productivity of 1174 g/L·h was achieved. The kinds of products obtained using the immobilized enzyme were almost the same as those using soluble enzymes or free cells.  相似文献   

17.
In this research the characteristics of free (partially purified) and immobilized (mould pellets of Absidia griseola) -galactosidase have been investigated. Inhibition studies of the enzyme showed that p-nitrophenol and sucrose do not have any inhibitory effect on the enzyme, but that galactose is a competitive inhibitor. In the immobilized form, inhibition was lower than in the free enzyme and the level of inhibition decreased as the temperature increased. The activity and stability of free and immobilized enzyme were investigated with respect to temperature, and the results showed that the optimal temperature range of the free enzyme was 45–50 °C, while the immobilized enzyme had an optimum at 55–60 °C. The optimum pH for the free enzyme was 6.0 and the value was decreased to 5.0 by immobilizing. The experimental effectiveness factors were found to be represented as a single function of the modified Thiele modulus, including parameters such as pellet size, enzyme concentration in the pellets and substrate concentration. Both experimental and theoretical data concerning effectiveness factors are nearly the same.  相似文献   

18.
Glucoamylase and pullulanase were immobilized on reconstituted bovine-hide collagen membranes using the covalent azide linkage method. A pretanning step was incorporated into the immobilization procedure to enable the support matrix to resist proteolytic activity while accommodating an operating temperature of 50 degrees C. The immobilized glucoamylase and pullulanase activities were 0.91 and 0.022 mg dextrose equivalent (DE) min(-1) cm(-2) of membrane, respectively. Immobilized glucoamylase had a half-life of 50 days while the immobilized pullulanase had a half-life of 7 days. This is a considerably improved stability over that reported by other researchers. The enzymes were studied in their free and immobilized forms on a variety of starch substrates including waxy maize, a material which contains 80% alpha-1-6-glucosidic linkages. Substrate concentrations ranged from 1% to a typical commercial concentration of 30%. Conversion efficiencies of 90-92% DE were obtained with free and immobilized glucoamylase preparations. Conversion enhancements of 4-5 mg of DE above this level were obtained by the use of pullulanase in its free or immobilized forms. Close examination of free pullulanase stability as a function of pH indicated improved thermal stability at higher pH values. At 50 degrees C and pH 5.0, the free enzyme was inactivated after 24 h. At pH 7.0, the enzyme still possessed one-half its activity after 72 h. Studies were conducted in both batch and continuous total recycle reactors. All experiments were conducted at 50 degrees C. Experiments conducted with coimmobilized enzymes proved quite promising. Levels of conversion equivalent to those obtained with the individually immobilized enzymes were realized.  相似文献   

19.
A change of the reaction rate was observed for the lipasecatalysed hydrolysis of ricebran oil in a batch stirred tank reactor using immobilized lipase enzyme as compared to free enzyme. The reactor rate was observed to be controlled mainly by factors like temperature, pH, initial enzyme concentration, initial substrate concentration and initial products concentration.  相似文献   

20.
The conformations of sulfur-free and sulfur-containing rhodanese were followed with and without the detergent lauryl maltoside after guanidinium chloride (GdmCl) addition to 5 M to study the apparent irreversibility of denaturation. Without lauryl maltoside, sulfur-containing rhodanese denatured in a transition giving, at approximately 2.3 M GdmCl, 50% of the total denaturation induced change observed by activity, CD, or intrinsic fluorescence. Sulfur-free rhodanese gave more complex behavior by intrinsic fluorescence and CD. CD showed loss of secondary structure in a broad, complex, and apparently biphasic transition extending from 0.5 to 3 M GdmCl. The interpretation of the transition was complicated by time-dependent aggregation due to noncovalent interactions. Results with the apolar fluorescence probe 2-anilinonaphthalene-8-sulfonic acid, implicated apolar exposure in aggregation. Sulfhydryl reactivity indicated that low GdmCl concentrations induced intermediates affecting the active site conformation. Lauryl maltoside prevented aggregation with no effect on activity or any conformational parameter of native enzyme. Transitions induced by GdmCl were still observed and consistent with several phases. Even in lauryl maltoside, an increase in apolar exposure was detected by 2-anilinonaphthalene-8-sulfonic acid, and by protein adsorption to octyl-Sepharose well below the major unfolding transitions. These results are interpreted with a model in which apolar interdomain interactions are disrupted, thereby increasing active site accessibility, before the intradomain interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号