首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A kinetic model of the cytochrome bf complex was developed on the assumption that the Q-cycle operates. The bf complex was considered as a membrane enzyme catalyzing the electron transfer from plastoquinol to plastocyanine, which is coupled with proton translocation from the chloroplast stroma to the thylakoid lumen. The dependence of the electron transfer rates on the value of the transmembrane electric potential was taken into account. The model was applied to describe the experimental data on the flash-induced turnover of cytochromes b, plastocyanine, and the kinetics of proton deposition in the thylakoid lumen. The estimation of model parameters was performed.  相似文献   

2.
1. ATP synthesis (monitored by luciferin-luciferase) can be elicited by a single turnover flash of saturating intensity in chromatophores from Rhodopseudomonas capsulata, Kb1. The ATP yield from the first to the fourth turnover is strongly influenced by the phosphate potential: at high phosphate potential (?11.5 kcal/mol) no ATP is formed in the first three turnovers while at lower phosphate potential (?8.2 kcal/mol) the yield in the first flash is already one half of the maximum, which is reached after 2–3 turnovers.2. The response to ionophores indicates that the driving force for ATP synthesis in the first 20 turnovers is mainly given by a membrane potential. The amplitude of the carotenoid band shift shows that during a train of flashes an increasing ΔΨ is built up, which reaches a stationary level after a few turnovers; at high phosphate potential, therefore, more turnovers of the same photosynthetic unit are required to overcome an energetic threshold.3. After several (six to seven) flashes the ATP yield becomes constant, independently from the phosphate potential; the yield varies, however, as a function of dark time (td) between flashes, with an optimum for td = 160–320 ms.4. The decay kinetics of the high energy state generated by a long (125 ms) flash have been studied directly measuring the ATP yield produced in post-illumination by one single turnover flash, under conditions of phosphate potential (?10 kcal/mol), which will not allow ATP formation by one single turnover. The high energy state decays within 20 s after the illumination. The decay rate is strongly accelerated by 10?8 M valinomycin.5. Under all the experimental conditions described, the amplitude of the carotenoid signal correlates univocally with the ATP yield per flash, demonstrating that this signal monitores accurately an energetic state of the membrane directly involved in ATP synthesis.6. Although values of the carotenoid signal much larger than the minimal threshold are present, relax slowly, and contribute to the energy input for phosphorylation, no ATP is formed unless electron flow is induced by a single turnover flash.7. The conclusions drawn are independent from the assumption that a ΔΨ between bulk phases is evaluable from the carotenoid signal.  相似文献   

3.
The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.  相似文献   

4.
I Vass  J Tso  G C Dismukes 《Biochemistry》1990,29(33):7767-7773
The mechanism of photosynthetic water oxidation in spinach was investigated with a newly developed inhibitor of the water-oxidizing complex, acetone hydrazone (AceH), (CH3)2CNNH2 [Tso, J., Petrouleas, V., & Dismukes, G.C. (1990) Biochemistry (preceding paper in this issue)], by using fluorescence induction and single-turnover flashes to monitor O2 yield and thermoluminescence intensity. AceH binds slowly (1-3 min) in the dark to the S1 (resting) oxidation state of the water-oxidizing complex in thylakoids and PSII membranes. Once bound, it causes a two-flash delay in the pattern of O2 release seen in a train of flashes. This is initiated by reduction of manganese in the S2 oxidation state of the complex in a fast reaction (less than 0.5 s). In thylakoid membranes which have been partially inhibited at low AceH concentrations (less than 2 mM) the inhibition can be reversed by a single flash and a subsequent dark period. This behavior can be explained by two sequential one-electron oxidation steps: S1.AceHhv----S2.AceH in equilibrium S1.AceH+hv----S2.AceH+----S1 + AceH2+ Dissociation of the unobserved radical intermediate, AceH+, from S1 is proposed to account for the recovery from inhibition after one flash. In contrast, recovery from inhibition after a single flash is not observed in detergent-isolated PSII membranes or in intact thylakoid membranes at higher AceH concentrations (greater than 2 mM), where the two-flash delay in O2 release is seen. This suggests either a concerted two-electron process, S2----S0, or tight binding of AceH+ to S1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In patch-clamp experiments on isolated chloroplasts of Peperomia metallica Lind. et Rodig. (Piperaceae), the replacement of 50 mM KCl in a medium with 50 mM NH4Cl strongly influenced the parameters of photocurrent known to reflect the generation of electric potential in thylakoids. The addition of NH+ 4to the medium modified the induction curves of the photocurrent as well as the currents induced by single-turnover flashes in preilluminated chloroplasts. Under the action of a prolonged light pulse (1 s), the steady-state current was much higher in the ammonium-containing medium than in the presence of K+. Preillumination of a dark-adapted chloroplast with a 1-s light pulse suppressed the current induced by a single-turnover flash (6 s) in the presence of K+ but caused an elevation (by 50–150%) of the flash-induced current and shortening of its relaxation time in the presence of NH+ 4. The origin of different induction kinetics for the photocurrent in K+ and NH+ 4 media is partly clear, because ammonium prevents generation of the pH gradient and, subsequently, eliminates the pH-dependent suppression of the electron transport rate. However, this does not explain the origin of NH+ 4-dependent photostimulation of the current generated by single-turnover flashes. This phenomenon arises from the thylakoid swelling caused by the accumulation of NH+ 4 in the lumen and from the respective changes in the network resistances. The network element most sensitive to thylakoid swelling is the lateral resistance of the lumen: it decreases upon enlargement of the cross-section area. Stimulation of the flash-induced current by preillumination in the presence of NH+ 4 was accompanied by accelerated relaxation of the current, indicating that the phenomena observed are caused by the reduction of network resistance involved in the discharge of the membrane capacity. Thus, the light-induced structural changes in the thylakoid system have a marked effect on the currents measured with the patch-clamp technique.  相似文献   

6.
Bruce Diner 《BBA》1974,368(3):371-385
1. Spinach chloroplasts, but not whole Chlorella cells, show an acceleration of the Photosystem II turnover time when excited by non-saturating flashes (exciting 25 % of centers) or when excited by saturating flashes for 85–95 % inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Following dark adaptation, the turnover is accelerated after a non-saturating flash, preceded by none or several saturating flashes, and primarily after a first saturating flash for 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibition. A rapid phase (t12 approx. 0.75 s) is observed for the deactivation of State S2 in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.2. These accelerated relaxations suggest that centers of Photosystem II are interconnected at the level of the primary electron transfer and compete for primary oxidizing equivalents in a saturating flash. The model in best agreement with the experimental data consists of a paired interconnection of centers.3. Under the conditions mentioned above, an accelerated turnover may be observed following a flash for centers in S0, S1 or S2 prior to the flash. This acceleration is interpreted in terms of a shift of the rate-limiting steps of Photosystem II turnover from the acceptor to the donor side.  相似文献   

7.
The membrane potential changes induced by short flashes and continuous light were investigated in isolated chloroplasts of Peperomia metallica suspended in H2O- or D2O media. The potential generated in H2O-suspended chloroplasts by a single turnover flash is approximately two times lower than the maximal level of potential induced by continuous light. The photoelectric response of D2O-suspended chloroplasts differs from that of H2O-suspended chloroplasts by an increased amplitude and a prolonged phase of the potential rise. Te dark decay of the potential proceeds 2-3 times slower in the D2O-suspended chloroplasts as compared to the H2O-suspended chloroplasts. The magnitude of the flash-induced potential is somewhat lower for the chloroplasts in D2O than for the chloroplasts in the H2O medium. The results obtained suggest that the substitution of H2O for D2O results in a decrease of the ionic conductance and an increase of stability of thylakoid membranes. It was shown that the rise of electrical potential under continuous illumination proceeds in two stages. The difference kinetics of membrane potential changes are observed under conditions of separate activity of two systems of photosynthesis.  相似文献   

8.
The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.  相似文献   

9.
Recent chlorophyll‐a fluorescence yield measurements, using single‐turnover saturating flashes (STSFs), have revealed the involvement of a rate‐limiting step in the reactions following the charge separation induced by the first flash. As also shown here, in diuron‐inhibited PSII core complexes isolated from Thermosynechococcus vulcanus the fluorescence maximum could only be reached by a train of STSFs. In order to elucidate the origin of the fluorescence yield increments in STSF series, we performed transient absorption measurements at 819 nm, reflecting the photooxidation and re‐reduction kinetics of the primary electron donor P680. Upon single flash excitation of the dark‐adapted sample, the decay kinetics could be described with lifetimes of 17 ns (~50%) and 167 ns (~30%), and a longer‐lived component (~20%). This kinetics are attributed to re‐reduction of P680?+ by the donor side of PSII. In contrast, upon second‐flash (with Δt between 5 μs and 100 ms) or repetitive excitation, the 819 nm absorption changes decayed with lifetimes of about 2 ns (~60%) and 10 ns (~30%), attributed to recombination of the primary radical pair P680?+Pheo?–, and a small longer‐lived component (~10%). These data confirm that only the first STSF is capable of generating stable charge separation – leading to the reduction of QA; and thus, the fluorescence yield increments elicited by the consecutive flashes must have a different physical origin. Our double‐flash experiments indicate that the rate‐limiting steps, detected by chlorophyll‐a fluorescence, are not correlated with the turnover of P680.  相似文献   

10.
Chlorophyll fluorescence is routinely taken as a quantifiable measure of the redox state of the primary quinone acceptor QA of PSII. The variable fluorescence in thylakoids increases in a single turnover flash (STF) from its low dark level F o towards a maximum F mSTF when QA becomes reduced. We found, using twin single turnover flashes (TTFs) that the fluorescence increase induced by the first twin-partner is followed by a 20–30% increase when the second partner is applied within 20–100 μs after the first one. The amplitude of the twin response shows a period-of-four oscillation associated with the 4-step oxidation of water in the Kok cycle (S states) and originates from two different trapped states with a life time of 0.2–0.4 and 2–5 ms, respectively. The oscillation is supplemented with a binary oscillation associated with the two-electron gate mechanism at the PSII acceptor side. The F(t) response in high frequency flash trains (1–4 kHz) shows (i) in the first 3–4 flashes a transient overshoot 20–30% above the F mSTF = 3*F o level reached in the 1st flash with a partial decline towards a dip D in the next 2–3 ms, independent of the flash frequency, and (ii) a frequency independent rise to F m = 5*F o in the 3–60 ms time range. The initial overshoot is interpreted to be due to electron trapping in the S0 fraction with QB-nonreducing centers and the dip to the subsequent recovery accompanying the reoxidation of the double reduced acceptor pair in these RCs after trapping. The rise after the overshoot is, in agreement with earlier findings, interpreted to indicate a photo-electrochemical control of the chlorophyll fluorescence yield of PSII. It is anticipated that the double exciton and electron trapping property of PSII is advantageous for the plant. It serves to alleviate the depression of electron transport in single reduced QB-nonreducing RCs, associated with electrochemically coupled proton transport, by an increased electron trapping efficiency in these centers.  相似文献   

11.
The response properties of jittery movement fibers (JMF) in the crayfish optic tract reacting to a non-moving temporally patterned light were analyzed. The JMFs usually show no response during the regular flickering of stationary light with a flash duration of less than 50 msec when the stimulus frequency is between 4 and 20 per second; however they do respond when the flickering stops if a certain number of flashes have been given. The response appears about 50 msec after the first missing flash, i.e., the latency of the response after the last flash of the train changed from 100 to 300 msec. Thus, the “off” response at the end of the flicker is entrained to the stimulus repetition interval and locked onto the time of the first missing flash. The response of a sustaining fiber to an identical stimulus has quite different features as illustrated in Fig. 2. Some of the fibers show responses to the beginning part of the flicker but not necessarily to each flash, and habituate after several flashes. When a single flash longer than 250 msec is given, the fiber shows an “off” response with about 50 msec latency, as it does to sustained light. Some fibers show a double burst of “off” discharge to single flashes; the first at 50 msec is followed after 120 msec by the second one. However, when the flash duration is between 250 and 50 msec, a single flash elicits little or no response. The latency of the “off” response is as much as 300 msec for short single flashes less than 50 msec. An “on” response to flashes of light is observed when the inter-stimulus interval is more than 5 sec. The responses to the beginning part of flicker train are not simply locked to the just preceding flash except the “on” response to the very first one, but they can be the long latency responses to the flash before that. This response is modified in latency by the succeeding flashes in flicker trains and becomes entrained to the missing flash. Four types of entrainment are classified on the basis of the change in latency from the missing flash with regard to the number of flashes in a train. In most cases, 10 flashes are sufficient to entrain the response to the first missing flash. Non-resposiveness, i.e., habituation, during a regular flicker, may be due to an active inhibitory process, initiated by each succeeding light pulse. The response to the missing flash, therefore results from a disinhibited modified response to the last flash. Some JMFs continue to respond to the flicker even after a considerable number of flashes but only when the repetition interval is about 120 msec corresponding well to the interval of the double burst “off” discharge, thus the JMF has a resonant frequency of about 8 Hz. The JMFs appear to be acting as an irregularity detector in temporal sequence.  相似文献   

12.
The kinetics and amplitude of the membrane potential changes associated with electron and proton transfers within the cytochrome b(6)/f (cyt b/f) complex (phase b) are measured in vivo in Chlamydomonas reinhardtii under anaerobic conditions. Upon saturating flash excitation, fast components in the membrane potential decay superimposed on phase b lead to an underestimation of the amplitude of this phase. In the FUD50 mutant strain, which lacks the ATP synthase, the decay of the membrane potential is slowed down compared to the wild type, and the kinetics and amplitude of phase b may be accurately determined. This amplitude corresponds to the transfer of at least 1.5 charges across the membrane per positive charge transferred to photosystem I, whatever the flash energy. This value largely exceeds that predicted by a Q-cycle process. Similar conclusions are reached using the wild type strain in the presence of 9 microM dicyclohexylcarbodiimide, which specifically inhibits the ATP synthase. It is concluded that a proton pumping process is operating in parallel with the Q-cycle, with a yield of approximately 0.5 proton pumped by cyt b/f complex turnover, irrespective of the flash energy.  相似文献   

13.
The sequence (a) priming flash, (b) dark interval, and (c) red light induces a long-lasting afterdepolarization (PDA) in Balanus photoreceptors. The inward flow of membrane current associated with the decay of PDA was independent of red test flashes, provided that PDA had plateaued at a particular intensity. The influence of wavelength and duration of the priming flash and their interaction with the dark interval were investigated. Increasing the duration of the priming flash produced a systematic increase in PDA duration. The dark interval plays a crucial role in PDA induction. The priming flash duration and the dark interval were reciprocally related, i.e, short flashes followed by long dark intervals induced as much PDA as long priming flashes followed by short dark intervals. The action spectrum for the priming flash was found to correspond to that of the primary photopigment (VP537).  相似文献   

14.
(1) A flash number dependency of flash-induced absorbance changes was observed with whole cells of Rhodospirillum rubrum and chromatophores of R. rubrum and Rhodopseudomonas sphaeroides wild type and the G1C mutant. The oscillatory behavior was dependent on the redox potential; it was observed under oxidizing conditions only. Absorbance difference spectra measured after each flash in the 275--500 nm wavelength region showed that a molecule of ubiquinone, R, is reduced to the semiquinone (R-) after odd-numbered flashes and reoxidized after even-numbered flashes. The amount of R reduced was approximately one molecule per reaction center. (2) The flash number dependency of the electrochromic shift of the carotenoid spectrum was studied with chromatophores of Rps. sphaeroides wild type and the G1C mutant. At higher values of the ambient redox potential a relatively slow phase with a rise time of 30 ms was observed after even-numbered flashes, in addition to the fast phase (completed within 0.2 ms) occurring after each flash. Evidence was obtained that the slow phase represents the formation of an additional membrane potential during a dark reaction that occurs after flashes with an even number. This reaction is inhibited by antimycin A, whereas the oscillations of the R/R- absorbance changes remain unaffected. At low potentials (E = 100 mV) no oscillations of the carotenoid shift were observed: a fast phase was followed by a slow phase (antimycin-sensitive) with a half-time of 3 ms after each flash. (3) The results are discussed in terms of a model for the cyclic electron flow as described by Prince and Dutton (Prince, R.C. and Dutton, P.L. (1976) Bacterial Photosynthesis Conference, Brussels, Belgium, September 6--9, Abstr. TB4) employing the so-called Q-cycle.  相似文献   

15.
Slow fluorescence transients in Chlamydomonas reinhardi arise after transitions from high light intensities to low light or dark conditions. Characteristics of the newly described transient phenomena include: (a) A slow biphasic decrease in fluorescence yield occurs in the dark, followed by an even slower, hour long, increase in fluorescence. (b) A similar, but faster, fluorescence yield decrease and subsequent increase also occurs during low intensity illumination periods separating high light intervals, or after transitions from high intensity to low intensity light. (c) Short (several seconds) flashes of light given during a dark period have no effect on the dark fluorescence decay, regardless of the flash frequency. Such flash regimes accurately monitor the dark decline of the M2 level by tracing the parallel decay of flash-generated P2 (Kautsky) peaks. However, flashes during a low light illumination period do influence the decay kinetics. Frequent flashes allow decay similar to that occurring in dark, but less frequent flashes inhibit the decrease in fluorescence yield.  相似文献   

16.
Two light-dependent conductances in Lima rhabdomeric photoreceptors   总被引:1,自引:1,他引:0       下载免费PDF全文
Light-dependent membrane currents were recorded from solitary Lima photoreceptors with the whole-cell clamp technique. Light stimulation from a holding voltage near the cell's resting potential evokes a transient inward current graded with light intensity, accompanied by an increase in membrane conductance. While the photocurrent elicited by dim flashes decays smoothly, at higher stimulus intensities two kinetically distinct components become visible. Superfusion with TEA or intracellular perfusion with Cs do not eliminate this phenomenon, indicating that it is not due to the activation of the Ca-sensitive K channels that are present in these cells. The relative amplitude of the late component vs. the early peak of the light response is significantly more pronounced at -60 mV than at -40 mV. At low light intensities the reversal potential of the photocurrent is around 0 mV, but with brighter lights no single reversal potential is found; rather, a biphasic response with an inward and an outward component can be seen within a certain range of membrane voltages. Light adaptation through repetitive stimulation with bright flashes diminishes the amplitude of the early but not the late phase of the photocurrent. These observations can be accounted for by postulating two separate light-dependent conductances with different ionic selectivity, kinetics, and light sensitivity. The light response is also shown to interact with some of the voltage-sensitive conductances: activation of the Ca current by a brief conditioning prepulse is capable of attenuating the photocurrent evoked by a subsequent test flash. Thus, Ca channels in these cells may not only shape the photoresponse, but also participate in the process of light adaptation.  相似文献   

17.
1. In chromatophores from Rps. sphaeroides, the stimulation by ADP and Pi of the electric potential decay indicated by the carotenoid shift is greater than the stimulation of the decay of pH change indicated by the colour change of added cresol red under similar conditions. This difference is attributed to H+ consumption during the synthesis of ATP. The ratio of H+ translocated across the membrane to ATP synthesized was estimated to be approximately 1.7 H+/ATP. 2. The stimulation of the electrical potential decay by ADP and Pi was found to be a constant fraction (10%) of the total decay when the flash intensity was varied. No 'critical' or 'threshold' potential was observed. 3. The stimulated electrical potential decay after a second flash, given within a few seconds of the first, was related to the amplitude of the electrical potential produced by the second flash (10%) but neither to the dark time between the flashes, nor to the total extent of the electrical potential above the dark level. These results are consistent with two hypotheses (a) the chromatophores are a mixed population of vesicles, only a small fraction (10%) of which possess an active ATP synthesizing system (b) the activity of the ATP synthesizing system, though driven by a proton motive force, is controlled by electron transport processess. If alternative (a) is correct then the overall single turnover flash yield of 1 ATP per 1470 bacteriochlorophyll measured in (1) would mean that the yield of the active vesicles is approximately 10 ATP per 1470 bacteriochlorophyll or 30 ATP per vesicle. 4. The stimulation of the electrical potential decay by ADP and Pi is approximately 40% less in antimycin-treated chromatophores. It is shown that this is probably a consequence of antimycin-inhibited H+-release on the inside of the chromatophore vesicles following a flash.  相似文献   

18.
Kinetics of the Photocurrent of Retinal Rods   总被引:19,自引:1,他引:18  
The shapes of the photocurrent responses of rat rods, recorded with microelectrodes from the receptor layer of small pieces of isolated retinas, have been investigated as a function of temperature and of stimulus energy. Between 27 and 37°C the responses to short flashes can be described formally as the output of a chain of at least four linear low-pass filters with time constants in the range 50-100 msec. The output of the filter chain is then distorted by a nonlinear amplitude-limiting process with a hyperbolic saturation characteristic. Flashes producing ~30 photons absorbed per rod yield responses of half-maximal size independently of temperature. The maximum response amplitude is that just sufficient to cancel the dark current. The rate of rise of a response is proportional to flash energy up to the level of 105 photons absorbed per rod, where hyperbolic rate saturation ensues. The responses continue to increase in duration with even more intense flashes until, at the level of 107 photons absorbed per rod, they last longer than 50 min. The time-courses of the photocurrent and of the excitatory disturbance in the rod system are very similar. The stimulus intensity at which amplitude saturation of the photocurrent responses begins is near that where psychophysical “rod saturation” is seen. An analysis of these properties leads to the following conclusions about the mechanism of rod excitation. (a) The kinetics of the photocurrent bear no simple relation to the formation or decay of any of the spectroscopic intermediates so far detected during the photolysis of rhodopsin. (b) The forms of both the amplitude- and rate-limiting processes are not compatible with organization of rhodopsin into “photoreceptive units” containing more than 300 chromophores. Even at high stimulus intensities most rhodopsin chromophores remain connected to the excitatory apparatus of rods. (c) The maximum rate of rise of the photocurrent is too fast to be consistent with the infolded disks of a rod outer segment being attached to the overlying plasma membrane. Most of the disks behave electrically as if isolated within the cell. (d) Control of the photocurrent at the outer segment membrane is not achieved by segregation of the charge carriers of the current within the rod disks. Instead, it is likely to depend on control of the plasma membrane permeability by an agent released from the disks.  相似文献   

19.
In vertebrate rod outer segments phototransduction is suggested to be modulated by intracellular Ca. We aimed at verifying this hypothesis by recording saturated photosignals in the rat retina after single and double flashes of light and determining the time t(c) to the beginning of the signal recovery. The time course of Ca(i) after a flash was calculated from a change of the spatial Ca(2+) concentration profile recorded in the space between the rods. After single flashes t(c) increased linearly with the logarithm of flash intensity, confirming the assumption that t(c) is determined by deactivation of a single species X* in the phototransduction cascade. The photoresponse was shortened up to 45% if the test flash was preceded by a conditioning preflash. The shortening depended on the reduction of Ca(i) induced by the preflash. The data suggest that the phototransduction gain determining the amount of activated X* is regulated by a Ca(i)-dependent mechanism in a short time period (<800 ms) after the test flash. Lowering of Ca(i) by a preflash reduced the gain up to 20% compared to its value in a dark-adapted rod. The relation between phototransduction gain and Ca(i) revealed a K(1/2) value close to the dark level of Ca(i).  相似文献   

20.
ATP concentrations were measured in isolated intact spinach chloroplasts under various light and dark conditions. The following results were obtained: (1) Even in darkened chloroplasts and in the absence of exogenous substrates, ATP levels in the chloroplast stroma were significant. They decreased on addition of glycerate, phosphoglycerate or dihydroxyacetone phosphate. When dihydroxyacetone phosphate and oxaloacetate were added together, ATP levels increased in darkened chloroplasts owing to substrate level phosphorylation. (2) Under illumination with saturating single turnover flashes, oxygen evolution in the presence of phosphoglycerate, whose reduction requires ATP, was no lower on a unit flash basis at the low flash frequency of 2 Hz than at higher frequencies. Quenching of 9-aminoacridine fluorescence, which indicates the formation of a proton gradient in intact chloroplasts, decreased with decreasing flash frequencies, until there was no significant fluorescence quenching at a flash frequency of about 2 Hz. In contrast to intact chloroplasts, broken chloroplasts did not phosphorylate much ADP at the low flash frequency of 2 Hz. (3) Flashing at extremely low frequencies (0.2 Hz) caused ATP hydrolysis rather than ATP synthesis in intact chloroplasts. At higher flash frequencies, synthesis replaced hydrolysis. Still, even at high frequencies (10 Hz), the first flashes of a series of flashes given after a long dark time always decreased chloroplast ATP levels.From these results, it is concluded that the enzyme, which mediates ATP synthesis in the light, is inactive in darkened intact chloroplasts. Its light activation can be separated from the formation of the high energy condition, which results in ATP synthesis. After its activation, the enzyme catalyzes a reversible reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号