首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The explosion of protein sequence information requires that current strategies for function assignment evolve to complement experimental approaches with computationally based function prediction. This necessitates the development of strategies based on the identification of sequence markers in the form of specificity determinants and a more informed definition of orthologues. Herein, we have undertaken the function assignment of the unknown haloalkanoate dehalogenase superfamily member BT2127 (Uniprot accession code Q8A5 V9) from Bacteroides thetaiotaomicron using an integrated bioinformatics-structure-mechanism approach. The substrate specificity profile and steady-state rate constants of BT2127 (with a k(cat)/K(m) value for pyrophosphate of ~1 × 10(5) M(-1) s(-1)), together with the gene context, support the assigned in vivo function as an inorganic pyrophosphatase. The X-ray structural analysis of wild-type BT2127 and several variants generated by site-directed mutagenesis shows that substrate discrimination is based, in part, on active site space restrictions imposed by the cap domain (specifically by residues Tyr76 and Glu47). Structure-guided site-directed mutagenesis coupled with kinetic analysis of the mutant enzymes identified the residues required for catalysis, substrate binding, and domain-domain association. On the basis of this structure-function analysis, the catalytic residues Asp11, Asp13, Thr113, and Lys147 as well the metal binding residues Asp171, Asn172, and Glu47 were used as markers to confirm BT2127 orthologues identified via sequence searches. This bioinformatic analysis demonstrated that the biological range of BT2127 orthologue is restricted to the phylum Bacteroidetes/Chlorobi. The key structural determinants in the divergence of BT2127 and its closest homologue, β-phosphoglucomutase, control the leaving group size (phosphate vs glucose phosphate) and the position of the Asp acid/base in the open versus closed conformations. HADSF pyrophosphatases represent a third mechanistic and fold type for bacterial pyrophosphatases.  相似文献   

2.
Phosphonates constitute a class of natural products that mimic the properties of the more common organophosphate ester metabolite yet are not readily degraded owing to the direct linkage of the phosphorus atom to the carbon atom. Phosphonate hydrolases have evolved to allow bacteria to utilize environmental phosphonates as a source of carbon and phosphorus. The work reported in this paper examines one such enzyme, phosphonoacetate hydrolase. By using a bioinformatic approach, we circumscribed the biological range of phosphonoacetate hydrolase to a select group of bacterial species from different classes of Proteobacteria. In addition, using gene context, we identified a novel 2-aminoethylphosphonate degradation pathway in which phosphonoacetate hydrolase is a participant. The X-ray structure of phosphonoformate-bound phosphonoacetate hydrolase was determined to reveal that this enzyme is most closely related to nucleotide pyrophosphatase/diesterase, a promiscuous two-zinc ion metalloenzyme of the alkaline phosphatase enzyme superfamily. The X-ray structure and metal ion specificity tests showed that phosphonoacetate hydrolase is also a two-zinc ion metalloenzyme. By using site-directed mutagenesis and (32)P-labeling strategies, the catalytic nucleophile was shown to be Thr64. A structure-guided, site-directed mutation-based inquiry of the catalytic contributions of active site residues identified Lys126 and Lys128 as the most likely candidates for stabilization of the aci-carboxylate dianion leaving group. A catalytic mechanism is proposed which combines Lys12/Lys128 leaving group stabilization with zinc ion activation of the Thr64 nucleophile and the substrate phosphoryl group.  相似文献   

3.
Hot dog fold proteins sharing the characteristic "hot dog" fold are known to involve certain coenzyme A binding enzymes with various oligomeric states. In order to elucidate the oligomerization-function relationship of the hot dog fold proteins, crystal structures of the phenylacetate degradation protein PaaI from Thermus thermophilus HB8 (TtPaaI), a tetrameric acyl-CoA thioesterase with the hot dog fold, have been determined and compared with those of other family members. In the liganded crystal forms with coenzyme A derivatives, only two of four intersubunit catalytic pockets of the TtPaaI tetramer are occupied by the ligands. A detailed structural comparison between several liganded and unliganded forms reveals that a subtle rigid-body rearrangement of subunits within 2 degrees upon binding of the first two ligand molecules can induce a strict negative cooperativity to prevent further binding at the remaining two pockets, indicating that the so-called "half-of-the-sites reactivity" of oligomeric enzymes is visualized for the first time. Considering kinetic and mutational analyses together, a possible reaction mechanism of TtPaaI is proposed; one tetramer binds only two acyl-CoA molecules with a novel asymmetric induced-fit mechanism and carries out the hydrolysis according to a base-catalyzed reaction through activation of a water molecule by Asp48. From a structural comparison with other family members, it is concluded that a subgroup of the hot dog fold protein family, referred to as "asymmetric hot dog thioesterases" including medium chain acyl-CoA thioesterase II from Escherichia coli and human thioesterase III, might share the same oligomerization mode and the asymmetric induced-fit mechanism as observed in TtPaaI.  相似文献   

4.
Thioesterase superfamily member 1 (Them1; synonyms acyl-CoA thioesterase 11 and StarD14) is highly expressed in brown adipose tissue and limits energy expenditure in mice. Them1 is a putative fatty acyl-CoA thioesterase that comprises tandem hot dog-fold thioesterase domains and a lipid-binding C-terminal steroidogenic acute regulatory protein-related lipid transfer (START) domain. To better define its role in metabolic regulation, this study examined the biochemical and enzymatic properties of Them1. Purified recombinant Them1 dimerized in solution to form an active fatty acyl-CoA thioesterase. Dimerization was induced by fatty acyl-CoAs, coenzyme A (CoASH), ATP, and ADP. Them1 hydrolyzed a range of fatty acyl-CoAs but exhibited a relative preference for long-chain molecular species. Thioesterase activity varied inversely with temperature, was stimulated by ATP, and was inhibited by ADP and CoASH. Whereas the thioesterase domains of Them1 alone were sufficient to yield active recombinant protein, the START domain was required for optimal enzyme activity. An analysis of subcellular fractions from mouse brown adipose tissue and liver revealed that Them1 contributes principally to the fatty acyl-CoA thioesterase activity of microsomes and nuclei. These findings suggest that under biological conditions, Them1 functions as a lipid-regulated fatty acyl-CoA thioesterase that could be targeted for the management of metabolic disorders.  相似文献   

5.
The 4-hydroxybenzoyl-CoA (4-HB-CoA) thioesterase from Pseudomonas sp. strain CBS3 catalyzes the final step of the 4-chlorobenzoate degradation pathway, which is the hydrolysis of 4-HB-CoA to coenzyme A (CoA) and 4-hydroxybenzoate (4-HB). In previous work, X-ray structural analysis of the substrate-bound thioesterase provided evidence of the role of an active site Asp17 in nucleophilic catalysis [Thoden, J. B., Holden, H. M., Zhuang, Z., and Dunaway-Mariano, D. (2002) X-ray crystallographic analyses of inhibitor and substrate complexes of wild-type and mutant 4-hydroxybenzoyl-CoA thioesterase. J. Biol. Chem. 277, 27468-27476]. In the study presented here, kinetic techniques were used to test the catalytic mechanism that was suggested by the X-ray structural data. The time course for the multiple-turnover reaction of 50 μM [(14)C]-4-HB-CoA catalyzed by 10 μM thioesterase supported a two-step pathway in which the second step is rate-limiting. Steady-state product inhibition studies revealed that binding of CoA (K(is) = 250 ± 70 μM; K(ii) = 900 ± 300 μM) and 4-HB (K(is) = 1.2 ± 0.2 mM) is weak, suggesting that product release is not rate-limiting. A substantial D(2)O solvent kinetic isotope effect (3.8) on the steady-state k(cat) value (18 s(-1)) provided evidence that a chemical step involving proton transfer is the rate-limiting step. Taken together, the kinetic results support a two-chemical pathway. The microscopic rate constants governing the formation and consumption of the putative aspartyl 17-(4-hydroxybenzoyl)anhydride intermediate were determined by simulation-based fitting of a kinetic model to time courses for the substrate binding reaction (5.0 μM 4-HB-CoA and 0.54 μM thioesterase), single-turnover reaction (5 μM [(14)C]-4-HB-CoA catalyzed by 50 μM thioesterase), steady-state reaction (5.2 μM 4-HB-CoA catalyzed by 0.003 μM thioesterase), and transient-state multiple-turnover reaction (50 μM [(14)C]-4-HB-CoA catalyzed by 10 μM thioesterase). Together with the results obtained from solvent (18)O labeling experiments, the findings are interpreted as evidence of the formation of an aspartyl 17-(4-hydroxybenzoyl)anhydride intermediate that undergoes rate-limiting hydrolytic cleavage at the hydroxybenzoyl carbonyl carbon atom.  相似文献   

6.
The structure and biochemical function of the hot dog-fold thioesterase PaaI operative in the aerobic phenylacetate degradation pathway are examined. PaaI showed modest activity with phenylacetyl-coenzyme A, suggestive of a role in coenzyme A release from this pathway intermediate in the event of limiting downstream pathway enzymes. Minimal activity was observed with aliphatic acyl-coenzyme A thioesters, which ruled out PaaI function in the lower phenylacetate pathway. PaaI was most active with ring-hydroxylated phenylacetyl-coenzyme A thioesters. The x-ray crystal structure of the Escherichia coli thioesterase is reported and analyzed to define the structural basis of substrate recognition and catalysis. The contributions of catalytic and substrate binding residues, thus, identified were examined through steady-state kinetic analysis of site-directed mutant proteins.  相似文献   

7.
Copley SD  Novak WR  Babbitt PC 《Biochemistry》2004,43(44):13981-13995
The thioredoxin fold is found in proteins that serve a wide variety of functions. Among these are peroxiredoxins, which catalyze the reduction of hydrogen peroxide and alkyl peroxides. Although the common structural fold shared by thioredoxins and peroxiredoxins suggests the possibility that they have evolved from a common progenitor, it has been difficult to examine this hypothesis in depth because pairwise sequence identities between proteins in these two superfamilies are statistically insignificant. Using the Shotgun program, we have found that sequences of reductases involved in maturation of cytochromes in certain bacteria bridge the sequences of thioredoxins and peroxiredoxins. Analysis of motifs found in a divergent set of thioredoxins, cytochrome maturation proteins, and peroxiredoxins provides further support for an evolutionary relationship between these proteins. Within the conserved motifs are specific residues that are characteristic of individual protein classes, and therefore are likely to be involved in the specific functions of those classes. We have used this information, in combination with existing structural and functional information, to gain new insight into the structure-function relationships in these proteins and to construct a model for the emergence of peroxiredoxins from a thioredoxin-like ancestor.  相似文献   

8.
The crystal structure of glycerol-3-phosphate cytidylyltransferase from B. subtilis (TagD) is about to be solved. Here, we report a testable structure prediction based on the identification by sequence analysis of a superfamily of functionally diverse but structurally similar nucleotide-binding enzymes. We predict that TagD is a member of this family. The most conserved region in this superfamily resembles the ATP-binding HiGH motif of class I aminoacyI-tRNA synthetases. The predicted secondary structure of cytidylyltransferase and its homologues is compatible with the α/β topography of the class I aminoacyl-tRNA synthetases. The hypothesis of similarity of fold is strengthened by sequence-structure alignment and 3D model building using the known structure of tyrosyl tRNA synthetase as template. The proposed 3D model of TagD is plausible both structurally, with a well packed hydrophobic core, and functionally, as the most conserved residues cluster around the putative nucleotide binding site. If correct, the model would imply a very ancient evolutionary link between class I tRNA synthetases and the novel cytidylyltransferase superfamily. © 1995 Wiley-Liss, Inc.  相似文献   

9.
10.
11.
12.
Nucleoside phosphorylases are essential for the salvage and catabolism of nucleotides in bacteria and other organisms, and members of this enzyme superfamily have been of interest for the development of antimicrobial and cancer therapies. The nucleotide phosphorylase superfamily 1 encompasses a number of different enzymes which share a general superfold and catalytic mechanism, while they differ in the nature of the nucleophiles used and in the nature of characteristic active site residues. Recently, one subfamily, the uridine phosphorylases, has been subdivided into two types which differ with respect to the mechanism of transition state stabilization, as dictated by differences in critical amino acid residues. Little is known about the phylogenetic distribution and relationship of the two different types, as well as the relationship to other NP-1 superfamily members. Here comparative genomic analysis illustrates that UP-1s and UP-2s fall into monophyletic groups and are biased with respect to species representation. UP-1 evolved in Gram negative bacteria, while Gram positive species tend to predominantly contain UP-2. PNP (a sister clade to all UPs) contains both Gram positive and Gram negative species. The findings imply that the nucleoside phosphorylase superfamily 1 evolved through a series of three important duplications, leading to the separate, monophyletic enzyme families, coupled to individual lateral transfer events. Extensive horizontal transfer explains the occurrence of unexpected uridine phosphorylases in some genomes. This study provides a basis for understanding the evolution of uridine and purine nucleoside phosphorylases with respect to DNA/RNA metabolism and with potential utility in the design of antimicrobial and anti-tumor drugs.  相似文献   

13.
TrmJ proteins from the SPOUT methyltransferase superfamily are tRNA Xm32 modification enzymes that occur in bacteria and archaea. Unlike archaeal TrmJ, bacterial TrmJ require full-length tRNA molecules as substrates. It remains unknown how bacterial TrmJs recognize substrate tRNAs and specifically catalyze a 2′-O modification at ribose 32. Herein, we demonstrate that all six Escherichia coli (Ec) tRNAs with 2′-O-methylated nucleosides at position 32 are substrates of EcTrmJ, and we show that the elbow region of tRNA, but not the amino acid acceptor stem, is needed for the methylation reaction. Our crystallographic study reveals that full-length EcTrmJ forms an unusual dimer in the asymmetric unit, with both the catalytic SPOUT domain and C-terminal extension forming separate dimeric associations. Based on these findings, we used electrophoretic mobility shift assay, isothermal titration calorimetry and enzymatic methods to identify amino acids within EcTrmJ that are involved in tRNA binding. We found that tRNA recognition by EcTrmJ involves the cooperative influences of conserved residues from both the SPOUT and extensional domains, and that this process is regulated by the flexible hinge region that connects these two domains.  相似文献   

14.

Background  

The Hotdog fold was initially identified in the structure of Escherichia coli FabA and subsequently in 4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. strain CBS. Since that time structural determinations have shown a number of other apparently unrelated proteins also share the Hotdog fold.  相似文献   

15.
Comparative analysis of the sequences of enzymes encoded in a variety of prokaryotic and eukaryotic genomes reveals convergence and divergence at several levels. Functional convergence can be inferred when structurally distinct and hence non-homologous enzymes show the ability to catalyze the same biochemical reaction. In contrast, as a result of functional diversification, many structurally similar enzyme molecules act on substantially distinct substrates and catalyze diverse biochemical reactions. Here, we present updates on the ATP-grasp, alkaline phosphatase, cupin, HD hydrolase, and N-terminal nucleophile (Ntn) hydrolase enzyme superfamilies and discuss the patterns of sequence and structural conservation and diversity within these superfamilies. Typically, enzymes within a superfamily possess common sequence motifs and key active site residues, as well as (predicted) reaction mechanisms. These observations suggest that the strained conformation (the entatic state) of the active site, which is responsible for the substrate binding and formation of the transition complex, tends to be conserved within enzyme superfamilies. The subsequent fate of the transition complex is not necessarily conserved and depends on the details of the structures of the enzyme and the substrate. This variability of reaction outcomes limits the ability of sequence analysis to predict the exact enzymatic activities of newly sequenced gene products. Nevertheless, sequence-based (super)family assignments and generic functional predictions, even if imprecise, provide valuable leads for experimental studies and remain the best approach to the functional annotation of uncharacterized proteins from new genomes.  相似文献   

16.
AdoMet radical enzymes are involved in processes such as cofactor biosynthesis, anaerobic metabolism, and natural product biosynthesis. These enzymes utilize the reductive cleavage of S-adenosylmethionine (AdoMet) to afford l-methionine and a transient 5'-deoxyadenosyl radical, which subsequently generates a substrate radical species. By harnessing radical reactivity, the AdoMet radical enzyme superfamily is responsible for an incredible diversity of chemical transformations. Structural analysis reveals that family members adopt a full or partial Triose-phosphate Isomerase Mutase (TIM) barrel protein fold, containing core motifs responsible for binding a catalytic [4Fe-4S] cluster and AdoMet. Here we evaluate over twenty structures of AdoMet radical enzymes and classify them into two categories: 'traditional' and 'ThiC-like' (named for the structure of 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase (ThiC)). In light of new structural data, we reexamine the 'traditional' structural motifs responsible for binding the [4Fe-4S] cluster and AdoMet, and compare and contrast these motifs with the ThiC case. We also review how structural data combine with biochemical, spectroscopic, and computational data to help us understand key features of this enzyme superfamily, such as the energetics, the triggering, and the molecular mechanisms of AdoMet reductive cleavage. This article is part of a Special Issue entitled: Radical SAM Enzymes and Radical Enzymology.  相似文献   

17.
Phosphonatase functions in the 2-aminoethylphosphonate (AEP) degradation pathway of bacteria, catalyzing the hydrolysis of the C-P bond in phosphonoacetaldehyde (Pald) via formation of a bi-covalent Lys53ethylenamine/Asp12 aspartylphosphate intermediate. Because phosphonatase is a member of the haloacid dehalogenase superfamily, a family predominantly comprised of phosphatases, the question arises as to how this new catalytic activity evolved. The source of general acid-base catalysis for Schiff-base formation and aspartylphosphate hydrolysis was probed using pH-rate profile analysis of active-site mutants and X-ray crystallographic analysis of modified forms of the enzyme. The 2.9 A X-ray crystal structure of the mutant Lys53Arg complexed with Mg2+ and phosphate shows that the equilibrium between the open and the closed conformation is disrupted, favoring the open conformation. Thus, proton dissociation from the cap domain Lys53 is required for cap domain-core domain closure. The likely recipient of the Lys53 proton is a water-His56 pair that serves to relay the proton to the carbonyl oxygen of the phosphonoacetaldehyde (Pald) substrate upon addition of the Lys53. The pH-rate profile analysis of active-site mutants was carried out to test this proposal. The proximal core domain residues Cys22 and Tyr128 were ruled out, and the role of cap domain His56 was supported by the results. The X-ray crystallographic structure of wild-type phosphonatase reduced with NaBH4 in the presence of Pald was determined at 2.4A resolution to reveal N epsilon-ethyl-Lys53 juxtaposed with a sulfate ligand bound in the phosphate site. The position of the C2 of the N-ethyl group in this structure is consistent with the hypothesis that the cap domain N epsilon-ethylenamine-Lys53 functions as a general base in the hydrolysis of the aspartylphosphate bi-covalent enzyme intermediate. Because the enzyme residues proposed to play a key role in P-C bond cleavage are localized on the cap domain, this domain appears to have evolved to support the diversification of the HAD phosphatase core domain for catalysis of hydrolytic P-C bond cleavage.  相似文献   

18.
A broad range of peroxides generated in subcellular compartments, including chloroplasts, are detoxified with peroxidases called peroxiredoxins (Prx). The Prx are ubiquitously distributed in all organisms including bacteria, fungi, animals and also in cyanobacteria and plants. Recently, the Prx have emerged as new molecules in antioxidant defense in plants. Here, the members which belong to Prx gene family in Arabidopsis and rice are been identified. Overall, the Prx members constitute a small family with 10 and 11 genes in Arabidopsis and rice respectively. The prx genes from rice are assigned to their functional groups based on homology search against Arabidopsis protein database. Deciphering the Prx functions in rice will add novel information to the mechanism of antioxidant defense in plants. Further, the Prx also forms the part of redox signaling cascade. Here, the Prx gene family has been described for rice.Key words: antioxidant defense, chloroplast, gene family, oxidative stress, reactive oxygen speciesThe formation of free radicals and reactive oxygen species (ROS) occur in several enzymatic and non-enzymatic reactions during cellular metabolism. The accumulation of these reactive and deleterious intermediates is suppressed by antioxidant defense mechanism comprised of low molecular weight antioxidants and enzymes. In photosynthetic organisms, the defense against the damage from free radicals and oxidative stress is crucial. For instance, the ROS production occurs in photosystem II with generation of singlet oxygen (1O2) and hydrogen peroxide (H2O2),1,2 photosystem I from superoxide anion radicals (O2),3 and during photorespiration with generation of H2O2.4 ROS production may exceed under environmental stress conditions like excess light, low temperature and drought.5The antioxidant defense mechanism is activated by antioxidant metabolities and enzymes which detoxify ROS and lipid peroxides. The detoxification of ROS can occur in various cellular compartments such as chloroplasts, mitochondria, peroxisomes and cytosol.6 The enzymes like ascorbate peroxidase, catalase, glutathione peroxidase and superoxide dismutase are prominent antioxidant enzymes.6 The peroxiredoxins (Prx) emerged as new components in the antioxidant defense network of barley.7,8 Later, Prx were studied in other plants.914Prx can be classified into four different functional groups, PrxQ, 1-Cys Prx, 2-Cys Prx and Type-2 Prx.15,16 They are members of the thioredoxin fold superfamily.17,18 In this study, the prx genes found in Arabidopsis and rice genomes are been identified. The Arabidopsis genome encodes 10 prx genes classified into four functional categories, 1-Cys Prx, 2-Cys Prx, PrxQ and Type-2 Prx.13 Of these, one each of 1-Cys Prx and PrxQ, two of 2-Cys Prx (2-Cys PrxA and 2-Cys PrxB) and six Type-2 Prx (PrxA–F) are identified13 (
LocusAnnotationSynonymA*B*C*
AT1G481301-Cysteine peroxiredoxin 1 (ATPER1)1-Cys Prx21624081.36.603
AT1G60740Peroxiredoxin type 2Type-2 PrxD16217471.95.2297
AT1G65970Thioredoxin-dependent peroxidase 2 (TPX2)Type-2 PrxC16217413.95.2297
AT1G65980Thioredoxin-dependent peroxidase 1 (TPX1)Type-2 PrxB16217427.84.9977
AT1G65990Type 2 peroxiredoxin-relatedType-2 PrxA55362653.66.4368
AT3G06050Peroxiredoxin IIF (PRXIIF)Type-2 PrxF20121445.29.3905
AT3G116302-Cys Peroxiredoxin A (2CPA, 2-Cys PrxA)2-Cys PrxA26629091.77.5686
AT3G26060ATPRX Q, periredoxin QPrxQ21623677.810.0565
AT3G52960Peroxiredoxin type 2Type-2 PrxE23424684.09.572
AT5G062902-Cysteine Peroxiredoxin B (2CPB, 2-Cys PrxB)2-Cys PrxB27329779.55.414
Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.In rice (rice.plantbiology.msu.edu/), there are 11 genomic loci which encode for Prx proteins (and33). Interestingly, a new prx gene (LOC_Os07g15670) annotated as “peroxiredoxin, putative, expressed” is identified making the tally of prx genes to eleven in rice as compared to ten in Arabidopsis (and22). The BLAST search has identified its counterpart in Arabidopsis which has been annotated as “antioxidant/oxidoreductase” (AT1G21350) in the TAIR database (www.arabidopsis.org). The rice LOC_Os07g15670 and Arabidopsis AT1G21350 share protein homology %68/78 for 236 amino acids (ChromosomeLocus IdPutative function/AnnotationA*B*C*1LOC_Os01g16152peroxiredoxin, putative, expressed19920873.68.22091LOC_Os01g24740peroxiredoxin-2E-1, chloroplast precursor, putative10711591.56.79061LOC_Os01g48420peroxiredoxin, putative, expressed16317290.85.68282LOC_Os02g09940peroxiredoxin, putative, expressed22623179.56.5352LOC_Os02g33450peroxiredoxin, putative, expressed26228096.95.77094LOC_Os04g339702-Cys peroxiredoxin BAS1, chloroplast precursor, putative, expressed12213410.24.37056LOC_Os06g09610peroxiredoxin, putative, expressed2662892610.50976LOC_Os06g42000peroxiredoxin, putative, expressed23323688.39.20597LOC_Os07g15670peroxiredoxin, putative, expressed25327684.69.85457LOC_Os07g44440peroxiredoxin, putative, expressed22124232.65.36187LOC_Os07g44430peroxiredoxin, putative25627785.36.8544Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.

Table 3

Identification of rice homologs of peroxiredoxins in A. thaliana
Locus Id (Os*)Homolog (At*)NomenclatureIdentitity/Similarity (%)No. of aa* compared
LOC_Os01g16152AT3G06050Type-2 PrxF73/84201
LOC_Os01g24740AT1G65980Type-2 PrxB42/5977
LOC_Os01g48420AT1G65970Type-2 PrxC74/86162
LOC_Os02g09940AT1G60740Type-2 PrxD56/72166
LOC_Os02g33450AT5G062902-Cys Prx B74/82272
LOC_Os04g33970AT3G116302-Cys PrxA92/9688
LOC_Os06g09610AT3G26060PrxQ78/89159
LOC_Os06g42000AT3G52960Type-2 PrxE61/74240
LOC_Os07g15670AT1G21350Antioxidant68/78236
LOC_Os07g44440AT1G65990Type-2 PrxA27/4483
LOC_Os07g44430AT1G481301-Cys Prx69/83221
Open in a separate window*Os, Oryza sativa L.; At, Arabidopsis thaliana L.; aa, amino acids.The protein alignment study of Prx members in rice with the canonical Prx2-B and Prx2-E of Arabidopsis is shown in Figure 1. The Type-2 Prx proteins are characterized by the presence of catalytic cysteine (Cys) residues (Fig. 1). The alignment of rice Prx proteins shows that the Cys residue is well conserved in members like LOC_Os02g09940 (Type-2 PrxD), LOC_Os06g42000 (Type-2 Prx E), LOC_Os01g48420 (Type-2 Prx C), LOC_Os01g16152 (Type-2 Prx F), LOC_Os02g33450 (2-Cys Prx B), LOC_Os07g44440 (Type-2 Prx A), LOC_Os07g44430 (1-Cys Prx) and LOC_Os06g09610 (PrxQ) (Fig. 1). However, LOC_Os01g24740 (Type-2 PrxB) and LOC_Os04g33970 (2-Cys PrxA) which contain a chloroplast precursor do not have the catalytic Cys residues (Fig. 1). The newly identified LOC_Os07g15670 and AT1G21350 with annotations “peroxiredoxin, putative, expressed” and “antioxidant/oxidoreductase” respectively do not have catalytic Cys residues as well (Fig. 1).Open in a separate windowFigure 1Amino acid alignment of peroxiredoxins (Prx) in rice. The rice proteins are aligned with the canonical Arabidopsis Prx2-B and Prx2-E. The conserved cysteine residues are indicated by arrows on top of the alignment. Note the sequence conservation between the newly identified LOC_Os07g15670 and AT1G21350. The rice locus Ids are identified on left and amino acid positions on right. The alignment was made with ClustalX.Taken together, the results demonstrate that like Arabidopsis, the Prx constitute a small gene family in rice. However, the functional role of Prx in rice is not clearly understood.  相似文献   

19.
Benzoyl-coenzyme A thioesterase of Azoarcus evansii: properties and function     
Ismail W 《Archives of microbiology》2008,190(4):451-460
The aerobic benzoate metabolism in Azoarcus evansii follows an unusual route. The intermediates of the pathway are processed as coenzyme A (CoA) thioesters and the cleavage of the aromatic ring is non-oxygenolytic. The enzymes of this pathway are encoded by the box gene cluster which harbors a gene, orf1, coding for a putative thioesterase. Benzoyl-CoA thioesterase activity (20 nmol min−1 mg−1 protein) was present in cells grown aerobically on benzoate, but was lacking in cells grown on other aromatic or aliphatic substrates under oxic or anoxic conditions. The gene was cloned and overexpressed in Escherichia coli to produce a C-terminal His-tag fusion protein. The recombinant enzyme was a homotetramer of 16 kDa subunits. It catalyzed not only the hydrolysis of benzoyl-CoA, but also of 2,3-dihydro-2,3-dihydroxybenzoyl-CoA, the second intermediate in the pathway. The enzyme exhibited higher activity with mono-substituted derivatives of benzoyl-CoA, showing highest activity with 4-hydroxybenzoyl-CoA. Di-substituted derivatives of benzoyl-CoA, phenylacetyl-CoA, and aliphatic CoA thioesters were not hydrolyzed but some acted as inhibitors. The thioesterase appears to protect the cell from CoA pool depletion. It may constitute the prototype of a new subfamily within the hotdog fold enzyme superfamily.  相似文献   

20.
Induced-fit upon ligand binding revealed by crystal structures of the hot-dog fold thioesterase in dynemicin biosynthesis     
Liew CW  Sharff A  Kotaka M  Kong R  Sun H  Qureshi I  Bricogne G  Liang ZX  Lescar J 《Journal of molecular biology》2010,404(2):291-306
Dynemicins are structurally related 10-membered enediyne natural products isolated from Micromonospora chernisa with potent antitumor and antibiotic activity. The early biosynthetic steps of the enediyne moiety of dynemicins are catalyzed by an iterative polyketide synthase (DynE8) and a thioesterase (DynE7). Recent studies indicate that the function of DynE7 is to off-load the linear biosynthetic intermediate assembled on DynE8. Here, we report crystal structures of DynE7 in its free form at 2.7 Å resolution and of DynE7 in complex with the DynE8-produced all-trans pentadecen-2-one at 2.1 Å resolution. These crystal structures reveal that upon ligand binding, significant conformational changes throughout the substrate-binding tunnel result in an expanded tunnel that traverses an entire monomer of the tetrameric DynE7 protein. The enlarged inner segment of the channel binds the carbonyl-conjugated polyene mainly through hydrophobic interactions, whereas the putative catalytic residues are located in the outer segment of the channel. The crystallographic information reinforces an unusual catalytic mechanism that involves a strictly conserved arginine residue for this subfamily of hot-dog fold thioesterases, distinct from the typical mechanism for hot-dog fold thioesterases that utilizes an acidic residue for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号