首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A synthesis of roseoflavin (RoF) by Streptomyces davawensis from 8-amino- (AF) and 8-methylamino-8-demethyl-D-riboflavin (MAF) was demonstrated. The lines of evidence are: 1) the RoF formation was increased by addition of AF or MAF to the culture, 2) [2-14C]RoF was formed by addition of [2-14C]AF or [2-14C]MAF to the culture, and the location of the 14C atom at the 2-position was demonstrated by identifying [14C]urea in the hydrolysate of the RoF, 3) [N-methyl-14C]RoF was formed by addition of [methyl-14C]methionine to the culture containing AF or MAF, and the location of the 14C atom was confirmed by the photochemical conversion of the RoF to MAF, the specific radioactivity of which was about half that of the original RoF, and by localization of the 14C atom in 1,2-dihydro-6-methyl-7-dimethylamino-2-keto-1-ribityl-3-quinoxalinecarbo xylic acid (QC), which was formed from the RoF by hydrolysis.  相似文献   

2.
1. Supplementation of cultures of Eremothecium ashbyii with ribitol leads to a twofold increase in riboflavin formation compared with unsupplemented cultures or those supplemented with ribose or ribulose phosphate. Addition of unlabelled ribitol decreases the incorporation of [1-(14)C]ribose into riboflavin, indicating that free ribitol is preferred to ribose for incorporation into riboflavin. 2. The enzymes ribitol kinase, d-ribose reductase, d-ribose 5'-phosphatase and GMP nucleosidase were demonstrated in the cell-free extracts. Ribitol induces the formation of ribitol kinase. The enzyme is activated in vitro by the flavinogenic purines, guanine and xanthine. d-Ribose reductase shows a specific requirement for NADPH and forms free ribitol from ribose. 3. The activities of ribitol kinase, ribose 5'-phosphatase and GMP nucleosidase reach their maximal values before riboflavin formation reaches a maximum. 4. [U-(14)C]GMP is taken up intact by the culture of E. ashbyii and is incorporated into riboflavin as well as into a blue fluorescent compound. The radioactivity from this compound is incorporated into riboflavin by the cell-free extract of E. ashbyii.  相似文献   

3.
Riboflavin Homeostasis in the Central Nervous System   总被引:4,自引:2,他引:2  
Abstract: The mechanisms by which riboflavin, which is not synthesized in mammals, enters and leaves brain, CSF, and choroid plexus were investigated by injecting [14C]riboflavin intravenously or intraventricularly. Tracer amounts of [14C]riboflavin with or without FMN were infused intravenously at a constant rate into normal, starved, or probenecid-pretreated rabbits. At 3 h, [14C]riboflavin readily entered choroid plexus and brain, and, to a much lesser extent, CSF. Over 85% of the [14C]riboflavin in brain and choroid plexus was present as [14C]FMN and [14C]FAD. The addition of 0.2 mmol/kg FMN to the infusate markedly depressed the relative entry of [14C]riboflavin into brain, choroid plexus, and, less so, CSF, whereas starvation increased the relative entry of [14C]riboflavin into brain and choroid plexus. After intraventricular injection (2 h), most of the [14C]riboflavin was extremely rapidly cleared from CSF into blood. Some of the [14C]riboflavin entered brain, where over 85% of the 14C was present as [14C]FMN plus [14C]FAD. The addition of 1.23μmol FAD (which was rapidly hydrolyzed to riboflavin) to the injectate decreased the clearance of [14C]riboflavin from CSF and the phosphorylation of [14C]riboflavin in brain. Probenecid in the injectate also decreased the clearance of [14C]riboflavin from CSF. These results show that the control of entry and exit of riboflavin is the mechanism, at least in part, by which total riboflavin levels in brain cells and CSF are regulated. Penetration of riboflavin through the blood-brain barrier, saturable efflux of riboflavin from CSF, and saturable entry of riboflavin into brain cells are three distinct parts of the homeostatic system for total riboflavin in the central nervous system.  相似文献   

4.
Bicarbonate is a recycling substrate for cyanase   总被引:1,自引:0,他引:1  
Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to ammonia and bicarbonate. Previous studies provided evidence that carbamate is an initial product and that the kinetic mechanism is rapid equilibrium random (bicarbonate serving as substrate as opposed to activator); the following mechanism was proposed (Anderson, P. M. (1980) Biochemistry 19, 2282-2888; Anderson, P. M., and Little, R. M. (1986) Biochemistry 25, 1621-1626). (formula; see text) Direct evidence for this mechanism was obtained in this study by 1) determining whether CO2 or HCO3- serves as substrate and is formed as product, 2) identifying the products formed from [14C]HCO3- and [14C] OCN-, 3) identifying the products formed from [13C] HCO3- and [12C]OCN- in the presence of [18O]H2O, and 4) determining whether 18O from [18O]HCO3- is incorporated into CO2 derived from OCN-. Bicarbonate (not CO2) is the substrate. Carbon dioxide (not HCO3-) is produced in stoichiometric amounts from both HCO3- and OCN-. 18O from [18O]H2O is not incorporated into CO2 formed from either HCO3- or OCN-. Oxygen-18 from [18O]HCO3- is incorporated into CO2 derived from OCN-. These results support the above mechanism, indicating that decomposition of cyanate catalyzed by cyanase is not a hydrolysis reaction and that bicarbonate functions as a recycling substrate.  相似文献   

5.
In vitro, the transport of [14C]riboflavin into and from the isolated choroid plexus, the anatomical locus of the blood-cerebrospinal fluid barrier, was studied. With concentrations of [14C]riboflavin of 0.7 microM (or greater) in the incubation medium, the choroid plexus accumulated [14C]riboflavin against a large concentration gradient by a process that did not depend on binding or intracellular metabolism of the [14C]riboflavin. The [14C]riboflavin accumulation process in isolated choroid plexus could be described by Michaelis-Menten transport kinetics (kt = 78 microM and Ymax = 1.65 mmol kg-1 (15 min)-1) and was inhibited by other flavins and probenecid but not by ribose, weak bases, or other B vitamins. The accumulation process was markedly depressed by iodoacetate and low temperatures. With a concentration of 0.08 microM [14C]riboflavin in the incubation medium, 28% of the [14C]riboflavin within the choroid plexus was converted to [14C]FAD or [14C]FMN intracellularly. Unlike the active transport of [14C]riboflavin into choroid plexus, accumulated [14C]riboflavin departed choroid plexus by a process independent of intracellular concentration or temperature. The efflux of [14C]riboflavin from choroid plexus could be described by first oder kinetics with a rate constant of -0.08 min-1.  相似文献   

6.
The xylene ring of riboflavin originates by dismutation of the precursor, 6,7-dimethyl-8-ribityllumazine. The formation of the latter compound requires a 4-carbon unit as the precursor of carbon atoms 6 alpha, 6, 7, and 7 alpha of the pyrazine ring. The formation of riboflavin from GTP and ribose phosphate by cell extract from Candida guilliermondii has been observed by Logvinenko et al. (Logvinenko, E. M., Shavlovsky, G. M., Zakal'sky, A. E., and Zakhodylo, I. V. (1982) Biokhimiya 47, 931-936). We have studied this enzyme reaction in closer detail using carbohydrate phosphates as substrates and synthetic 5-amino-6-ribitylamino-2,4-(1H,3H)-pyrimidinedione or its 5'-phosphate as cosubstrates. Several pentose phosphates and pentulose phosphates can serve as substrate for the formation of riboflavin with similar efficiency. The reaction requires Mg2+. Various samples of ribulose phosphate labeled with 14C or 13C have been prepared and used as enzyme substrates. Radioactivity was efficiently incorporated into riboflavin from [1-14C]ribulose phosphate, [3,5-14C]ribulose phosphate, and [5-14C]ribulose phosphate, but not from [4-14C]ribulose phosphate. Label from [1-13C]ribose 5-phosphate was incorporated into C6 and C8 alpha of riboflavin. [2,3,5-13C]Ribose 5-phosphate yielded riboflavin containing two contiguously labeled segments of three carbon atoms, namely 5a, 9a, 9 and 8, 7, 7 alpha. 5-Amino-6-[1'-14C] ribitylamino-2,4 (1H,3H)-pyrimidinedione transferred radioactivity exclusively to the ribityl side chain of riboflavin in the enzymatic reaction. It follows that the 4-carbon unit used for the biosynthesis of 6,7-dimethyl-8-ribityllumazine consists of the pentose carbon atoms 1, 2, 3, and 5 in agreement with earlier in vivo studies.  相似文献   

7.
Streptomyces davawensis synthesizes the antibiotic roseoflavin, one of the few known natural riboflavin analogs, and is roseoflavin resistant. It is thought that the endogenous flavokinase (EC 2.7.1.26)/flavin adenine dinucleotide (FAD) synthetase (EC 2.7.7.2) activities of roseoflavin-sensitive organisms are responsible for the antibiotic effect of roseoflavin, producing the inactive cofactors roseoflavin-5'-monophosphate (RoFMN) and roseoflavin adenine dinucleotide (RoFAD) from roseoflavin. To confirm this, the FAD-dependent Sus scrofa D-amino acid oxidase (EC 1.4.3.3) was tested with RoFAD as a cofactor and found to be inactive. It was hypothesized that a flavokinase/FAD synthetase (RibC) highly specific for riboflavin may be present in S. davawensis, which would not allow the formation of toxic RoFMN/RoFAD. The gene ribC from S. davawensis was cloned. RibC from S. davawensis was overproduced in Escherichia coli and purified. Analysis of the flavokinase activity of RibC revealed that the S. davawensis enzyme is not riboflavin specific (roseoflavin, kcat/Km = 1.7 10(-2) microM(-1) s(-1); riboflavin, kcat/Km = 7.5 10(-3) microM(-1) s(-1)). Similar results were obtained for RibC from the roseoflavin-sensitive bacterium Bacillus subtilis (roseoflavin, kcat/Km = 1.3 10(-2) microM(-1) s(-1); riboflavin, kcat/Km = 1.3 10(-2) microM(-1) s(-1)). Both RibC enzymes synthesized RoFAD and RoFMN. The functional expression of S. davawensis ribC did not confer roseoflavin resistance to a ribC-defective B. subtilis strain.  相似文献   

8.
The pathways for degradation of phosphatidylinositol (PI) were investigated in sonicated suspensions prepared from confluent cultures of bovine pulmonary artery endothelial cells. The time courses of formation of 3H-labeled and 14C-labeled metabolites of phosphatidyl-[3H]inositol ([3H]Ins-PI) and 1-stearoyl-2-[14C] arachidonoyl-PI were determined at 37 degrees C and pH 7.5 in the presence of 2 mM EDTA with or without a 2 mM excess of Ca2+. The rates of formation of lysophosphatidyl-[3H]inositol ([3H]Ins-lyso-PI) and 1-lyso-2-[14C] arachidonoyl-PI were similar in the presence and absence of Ca2+, and the absolute amounts of the two radiolabeled lyso-PI products formed were nearly identical. This indicated that lyso-PI was formed by phospholipase A1, and phospholipase A2 was not measurable. In the presence of EDTA, [14C]arachidonic acid release from 1-stearoyl-2-[14C]arachidonoyl-PI paralleled release of glycerophospho-[3H]inositol ([3H]GPI) from [3H]Ins-PI. Formation of [3H]GPI was inhibited by treatment with the specific sulfhydryl reagent, 2,2'-dithiodipyridine, and this was accompanied by an increase in [3H]Ins-lyso-PI. In the presence of Ca2+, [14C] arachidonic acid release from 1-stearoyl-2-[14C]arachidonoyl-PI was increased 2-fold and was associated with Ca2+-dependent phospholipase C activity. Under these conditions, [3H]inositol monophosphate production exceeded formation of [14C]arachidonic acid-labeled phospholipase C products, diacylglycerol plus monoacylglycerol, by an amount that was equal to the amount of [14C]arachidonic acid formed in excess of [3H]GPI. Low concentrations of phenylmethanesulfonyl fluoride (15-125 microM) inhibited Ca2+-dependent [14C]arachidonic acid release, and the decrease in [14C] arachidonic acid formed was matched by an equivalent increase in 14C label in diacylglycerol plus monoacyclglycerol. These data supported the existence of two pathways for arachidonic acid release from PI in endothelial cells; a phospholipase A1-lysophospholipase pathway that was Ca2+-independent and a phospholipase C-diacylglycerol lipase pathway that was Ca2+-dependent. The mean percentage of arachidonic acid released from PI via the phospholipase C-diacylglycerol lipase pathway in the presence of Ca2+ was 65 +/- 8%. The mean percentage of nonpolar phospholipase C products of PI metabolized via the diacylglycerol lipase pathway to free arachidonic acid was 28 +/- 3%.  相似文献   

9.
1. The range of fatty acids formed by preparations of ultrasonically ruptured avocado mesocarp plastids was dependent on the substrate. Whereas [1-14C]palmitate and [14C]oleate were the major products obtained from [-14C]acetate and [1-14C]acetyl-CoA, the principal product from [2-14C]malonyl-CoA was [14-C]stearate. 2. Ultracentrifugation of the ruptured plastids at 105000g gave a supernatant that formed mainly stearate from [2-14C]malonyl-CoA and to a lesser extent from [1-14C]acetate. The incorporation of [1-14C]acetate into stearate by this fraction was inhibited by avidin. 3. The 105000g precipitate of the disrupted plastids incorporated [1-14C]acetate into a mixture of fatty acids that contained largely [14C]plamitate and [14C]oleate. The formation of [14C]palmitate and [14C]oleate by disrupted plastids was unaffected by avidin. 4. The soluble fatty acid synthetase was precipitated from the 105000g supernatant in the 35-65%-saturated-(NH4)2SO4 fraction and showed an absolute requirement for acyl-carrier protein. 5. Both fractions synthesized fatty acids de novo.  相似文献   

10.
Reaction of urethane with nucleic acids in vivo   总被引:1,自引:0,他引:1       下载免费PDF全文
1. [1-(14)C]Ethyl carbamate, ethyl [carboxy-(14)C]carbamate, [1-(14)C]ethanol and sodium hydrogen [(14)C]carbonate were injected intraperitoneally into C57 mice, and nucleic acids and proteins were separated from the liver and lungs with phenol as described by Kirby (1956). 2. Chromatographic analysis of the hydrolytic products of the urethane-labelled RNA showed the presence of a single radioactive compound differing in behaviour from the major pyrimidine nucleotides and purines. 3. The products from RNA labelled by [1-(14)C]ethyl carbamate or ethyl [carboxy-(14)C]carbamate appeared chromatographically identical but could not be detected in the RNA of mice given [1-(14)C]ethanol or sodium hydrogen [(14)C]-carbonate. 4. The labelled product appeared to be the ethyl ester of cytosine-5-carboxylic acid formed by the reaction of urethane with RNA in vivo. 5. A direct reaction between labelled urethane or the labelled metabolite of urethane, [1-(3)H]-ethyl N-hydroxycarbamate, and RNA was not detected.  相似文献   

11.
Pathways of acetone's metabolism in the rat   总被引:2,自引:0,他引:2  
Distributions of 14C were different from those of 13C in glucoses formed by livers of rats in diabetic ketosis and perfused with [2-14C]acetone and [2-13C]lactate. There was 32-73% of the 14C and 8-12% of the 13C in carbons 3 and 4 of the glucoses with the remaining 14C and 13C distributed about equally in the other carbons. Incorporations of 14C from [2-14C]acetone (14-39%) also exceeded those from [2-14C]pyruvate (8-10%) into carbons 3 and 4 of glucoses formed by hepatocytes from rats fed acetone or fasted. [2-14C]Acetone and [2-14C]pyruvate were infused into rats that were fed, fasted, given acetone in their drinking water, or in diabetic ketosis. Thirty-seven to 52% of the 14C in the glucoses formed was in their carbons 3 and 4 when the acetone was infused and 8 to 14% when the pyruvate was infused. [1,3-14C]Hydroxybutyrate was formed by the rats in diabetic ketosis given [2-14C]acetone. It is concluded that acetone is metabolized in rats to a large extent by a pathway in which lactate or its metabolic equivalent is not an intermediate and that pathway is via acetyl-CoA. via acetyl-CoA.  相似文献   

12.
Contributions of omega-oxidation to overall fatty acid oxidation in slices from livers of ketotic alloxan diabetic rats and of fasted monkeys are estimated. Estimates are made from a comparison of the distribution of 14C in glucose formed by the slices from omega-14C-labeled compared to 2-14C-labeled fatty acids of even numbers of carbon atoms and from [1-14C]acetate compared to [2-14C]acetate. These estimates are based on the fact that 1) the dicarboxylic acid formed via omega-oxidation of a omega-14C-labeled fatty acid will yield [1-14C]acetate and [1-14C]succinate on subsequent beta-oxidation, if beta-oxidation is assumed to proceed to completion; 2) only [2-14C]acetate will be formed if the fatty acid is metabolized solely via beta-oxidation; and 3) 14C from [1-14C]acetate and [1-14C]succinate is incorporated into carbons 3 and 4 of glucose and 14C from [2-14C]acetate is incorporated into all six carbons of glucose. From the distributions found, the contribution of omega-oxidation to the initial oxidation of palmitate by liver slices is estimated to between 8% and 11%, and the oxidation of laurate between 17% and 21%. Distributions of 14C in glucose formed from 14C-labeled palmitate infused into fasted and diabetic rats do not permit quantitative estimation of the contribution of omega-oxidation to fatty acid oxidation in vivo. However, the distributions found also indicate that, of the fatty acid metabolized by the whole animal in the environment of glucose formation, at most, only a minor portion is initially oxidized via omega-oxidation. As such, omega-oxidation cannot contribute more than a small extent to the formation of glucose.  相似文献   

13.
Fatty Acid Oxidation and Ketogenesis by Astrocytes in Primary Culture   总被引:3,自引:2,他引:1  
The oxidation of the fatty acids octanoate and palmitate to CO2 and the ketone bodies acetoacetate and D-(-)-3-hydroxybutyrate was examined in astrocytes that were prepared from cortex of 2-day-old rat brain and grown in primary culture to confluence. Accumulation of acetoacetate (by mass) in the culture medium of astrocytes incubated with octanoate (0.3-0.5 mM) was 50-90 nmol C2 units h-1 mg of protein-1. A similar rate was obtained using radiolabeled tracer methodology with [1-14C]octanoate as labeled substrate. The results from the radiolabeled tracer studies using [1-14C]- and [7-14C]octanoate and [1-14C]-, [13-14C]-, and [15-14C]palmitate indicated that a substantial proportion of the omega-terminal four-carbon unit of these fatty acids bypassed the beta-ketothiolase step of the beta-oxidation pathway and the 3-hydroxy-3-methylglutaryl (HMG)-CoA cycle of the classic ketogenic pathway. The [14C]acetoacetate formed from the 1-14C-labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. By contrast, the [14C]acetoacetate formed from (omega-1)-labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1, whereas that formed from the (omega-3)-labeled fatty acid contained 20% of the label at carbon 3 and 80% at carbon 1. These results indicate that acetoacetate is primarily formed either by the action of 3-oxo-acid-CoA transferase (EC 2.8.3.5) or acetoacetyl-CoA deacylase (EC 3.1.2.11) or both on acetoacetyl-CoA and not by the action of the mitochondrial HMG-CoA cycle involving HMG-CoA lyase (EC 4.1.3.4), which was readily detected, and HMG-CoA synthase (EC 4.1.3.5), which was barely measurable.  相似文献   

14.
l-Threonic acid is a natural constituent in leaves of Pelargonium crispum (L.) L'Hér (lemon geranium) and Rumex x acutus L. (sorrel). In both species, l-[(14)C]threonate is formed after feeding l-[U-(14)C]ascorbic acid to detached leaves. R. acutus leaves labeled with l-[4-(3)H]- or l-[6-(3)H]ascorbic acid produce l-[(3)H]threonate, in the first case internally labeled and in the second case confined to the hydroxymethyl group. These results are consistent with the formation of l-threonate from carbons three through six of l-ascorbic acid. Detached leaves of P. crispum oxidize l-[U-(14)C] threonate to l-[(14)C]tartrate whereas leaves of R. acutus produce negligible tartrate and the bulk of the (14)C appears in (14)CO(2), [(14)C]sucrose, and other products of carbohydrate metabolism. R. acutus leaves that are labeled with l-[U-(14)C]threonate release (14)CO(2) at linear rate until a limiting value of 25% of the total [U-(14)C]threonate is metabolized. A small quantity of [(14)C]glycerate is also produced which suggests a process involving decarboxylation of l-[U-(14)C]threonate.  相似文献   

15.
The extent of mitochondrial and peroxisomal contribution to beta-oxidation of 18-, 20- and 24-carbon n-3 and n-6 polyunsaturated fatty acids (PUFAs) in intact rat hepatocytes is not fully clear. In this study, we analyzed radiolabeled acid soluble oxidation products by HPLC to identify mitochondrial and peroxisomal oxidation of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs. Mitochondrial fatty acid oxidation produced high levels of ketone bodies, tricarboxylic acid cycle intermediates and CO(2), while peroxisomal beta-oxidation released acetate. Inhibition of mitochondrial fatty acid oxidation with 2-tetradecylglycidic acid (TDGA), high amounts of [14C]acetate from oxidation of 24:5n-3, 18- and 20-carbon PUFAs were observed. In the absence of TDGA, high amounts of [14C]-labeled mitochondrial oxidation products were formed from oxidation of 24:5n-3, 18- and 20-carbon PUFAs. With 18:1n-9, high amounts of mitochondrial oxidation products were formed in the absence of TDGA, and TDGA strongly suppressed the oxidation of this fatty acid. Data of this study indicated that a shift in the partitioning from mitochondrial to peroxisomal oxidation differed for each individual fatty acid and is a specific property of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs.[14C]22:6n-3 was detected with [3-14C]24:5n-3, but not with [1-14C]24:5n-3 as the substrate, while [14C]16:0 was detected with [1-14C]24:5n-3, but not with [3-14C]24:5n-3 as the substrate. Furthermore, the amounts of 14CO(2) were similar when cells were incubated with [3-14C]24:5n-3 versus [1-14C]24:5n-3. These findings indicated that the proportion of 24:5n-3 oxidized in mitochondria was high, and that 24:5n-3 and 24:6n-3 were mostly beta-oxidized only one cycle in peroxisomes.  相似文献   

16.
This report describes studies designed to evaluate possible inhibitory effects of diaminoantifolates on folate-dependent biosynthetic enzymes in intact L1210 leukemia cells. A novel approach is described which involves an assessment of the metabolism of and biosynthetic flux of the one-carbon moiety from (6S)5-formyltetrahydrofolate in folate-depleted cells. Pretreatment with methotrexate (10 microM), resulting in the formation of methotrexate polyglutamates, or continuous incubation with trimetrexate (1 microM) inhibited growth of folate-depleted L1210 cells in the presence of folic acid or 5-formyltetrahydrolate. In both control and drug-treated cells, double-labeled (6S)-5-[14C]formyl[3H]tetrahydrofolate was rapidly metabolized with the loss of the [14C]formyl group. Under all conditions, the predominant metabolite was 10-formyl[3H]tetrahydrofolate, detectable both intracellularly and extracellularly. In drug-treated cells, there was a remarkably small decrease in the level of 10-formyl[3H]tetrahydrofolate (approximately 30%) and a 10-fold rise in the level of [3H]dihydrofolate to less than 20% of the total folate pool. The incorporation of [14C]formyl group from 5-[14C]formyltetrahydrofolate into thymidylate, serine, and methionine was unaffected by the presence of 1 microM trimetrexate, consistent with the generation of sufficient 5,10-[14C]methylenetetrahydrofolate to drive these reactions. Similarly, the presence of methotrexate polyglutamates had no effect at the level of amino acid synthesis; however, carbon transfer into thymidylate was markedly inhibited. Even though 10-formyltetrahydrofolate was readily formed from 5-formyltetrahydrofolate in this model, the net incorporation of 14C from 5-[14C]formyltetrahydrofolate into purine nucleotides was inhibited by both methotrexate and trimetrexate treatments. Similar findings were obtained when [14C]glycine incorporation into purine nucleotides was monitored in cells incubated with unlabeled 5-formyltetrahydrofolate. Finally, in antifolate-treated cells incubated with unlabeled 5-formyl-tetrahydrofolate, transfer of 14C from [14C]formate or [14C]serine into biosynthetic products or incorporation of [3H]deoxyuridine into nucleic acids was potently inhibited. These results suggest that insufficient levels of tetrahydrofolate and 5, 10-methylenetetrahydrofolate were formed to drive these reactions despite the presence of high levels of 10-formyltetrahydrofolate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Riboflavin binding by plasma proteins from healthy human subjects was examined by equilibrium dialysis using a physiological concentration of [2-14C]riboflavin (0.04 microM). Binding ranged from 0.080 to 0.917 pmole of riboflavin/mg of protein (with a mean +/- SD of 0.274 +/- 0.206), which corresponded to 4.14 to 49.4 pmole/ml of plasma (15.5 +/- 11.0) (N = 34). Males and females yielded similar results. Upon fractionation of plasma by gel filtration, the major riboflavin-binding components eluted with albumin and gamma-globulins. Albumin was purified and found to bind riboflavin only very weakly (Kd = 3.8 to 10.4 mM), although FMN and photochemical degradation products (e.g., lumiflavine and lumichrome) were more tightly bound. Binding in the gamma-globulin fraction was attributed to IgG and IGA because the binding protein(s) and immunoglobulins copurified using various methods were removed by treatment of plasma with protein A-agarose, and were coincident upon immunoelectrophoresis followed by autoradiography to detect [2-14C]riboflavin. Differences among the plasma samples correlated with the binding recovered with the immunoglobulins. Binding was not directly related to the total IgG or IgA levels of subjects. Hence, it appears that the binding is due to a subfraction of these proteins. These findings suggest that riboflavin-binding immunoglobulins are a major cause of variations in riboflavin binding in human circulation, and may therefore affect the utilization of this micronutrient.  相似文献   

18.
1. Yeast was grown in a minimal synthetic medium together with a range of (14)C-labelled substrates under standardized conditions. After isolation, the purified thiamine was cleaved by sulphite and the pyrimidine and thiazole moieties were purified and assayed for radioactivity. 2. In order of decreasing incorporation, [(14)C]formate, [3-(14)C]serine, [2-(14)C]glycine and [2-(14)C]acetate supplied label for the pyrimidine, and [2-(14)C]glycine, [3-(14)C]serine, [1-(14)C]glycine, [(14)C]formate and [2-(14)C]acetate for the thiazole. Incorporation of label into the fragments from several other (14)C-labelled substrates, including [Me-(14)C]- and [3,4-(14)C(2)]-methionine, was insignificant. 3. [3-(14)C]Serine was shown not to contribute label to C-2 of the thiazole ring. 4. Significant incorporation of nitrogen from [(15)N]glycine into the thiazole moiety, but not into the pyrimidine moiety, was established. 5. It appears that C-2 and N-3 of the thiazole ring are formed from C-2 and the nitrogen atom of glycine, but the entire methionine molecule does not appear to be implicated.  相似文献   

19.
13C-nuclear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeled substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-1/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [1,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The steps involved in kaurenolide and fujenoic acids biosynthesis, from ent-kauradienoic acid and ent-6alpha,7alpha-dihydroxykaurenoic acid, respectively, are demonstrated in the gibberellin (GA)-deficient Gibberella fujikuroi mutant SG139, which lacks the entire GA-biosynthesis gene cluster, complemented with the P450-1 gene of GA biosynthesis (SG139-P450-1). ent-[2H]Kauradienoic acid was efficiently converted into 7beta-hydroxy[2H]kaurenolide and 7beta,18-dihydroxy[2H]kaurenolide by the cultures while 7beta-hydroxy[2H]kaurenolide was transformed into 7beta,18-dihydroxy[2H]kaurenolide. The limiting step was found to be hydroxylation at C-18. In addition, SG139-P450-1 transformed ent-6alpha,7alpha-dihydroxy[14C4]kaurenoic acid into [14C4]fujenoic acid and [14C4]fujenoic triacid. Fujenal was also converted into the same products but was demonstrated not to be an intermediate in this sequence. All the above reactions were absent in the mutant SG139 and were suppressed in the wild-type strain ACC917 by disruption of the P450-1 gene. Kaurenolide and fujenoic acids synthesis were associated with the microsomal fraction and showed an absolute requirement for NADPH or NADH, all properties of cytochrome P450 monooxygenases. Only 7beta-hydroxy[14C4]kaurenolide synthesis and not further 18-hydroxylation was detected in the microsomal fraction. The substrates for the P450-1 monooxygenase, ent-kaurenoic acid and [2H]GA12, efficiently inhibited kaurenolide synthesis with I50 values of 3 and 6 microM, respectively. Both substrates also inhibited ent-6alpha,7alpha-dihydroxy[14C4]kaurenoic acid metabolism by SG139-P450-1. Conversely, [14C4]GA14 synthesis from [14C4]GA12-aldehyde was inhibited by ent-[2H]kauradienoic acid and fujenal with I50 values of 10 and 30 microM, respectively. These results demonstrate that kaurenolides and seco-ring B kaurenoids are formed by the P450-1 monooxygenase (GA14 synthase) of G. fujikuroi and are thus side products that probably result from stabilization of radical intermediates involved in GA14 synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号