共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Isolation and Characterization of Omnipotent Suppressors in the Yeast Saccharomyces Cerevisiae 总被引:4,自引:0,他引:4 下载免费PDF全文
Approximately 290 omnipotent suppressors, which enhance translational misreading, were isolated in strains of the yeast Saccharomyces cerevisiae containing the psi+ extrachromosomal determinant. The suppressors could be assigned to 8 classes by their pattern of suppression of five nutritional markers. The suppressors were further distinguished by differences in growth on paromomycin medium, hypertonic medium, low temperatures (10 degrees), nonfermentable carbon sources, alpha-aminoadipic acid medium, and by their dominance and recessiveness. Genetic analysis of 12 representative suppressors resulted in the assignment of these suppressors to 6 different loci, including the three previously described loci SUP35 (chromosome IV), SUP45 (chromosome II) and SUP46 (chromosome II), as well as three new loci SUP42 (chromosome IV), SUP43 (chromosome XV) and SUP44 (chromosome VII). Suppressors belonging to the same locus had a wide range of different phenotypes. Differences between alleles of the same locus and similarities between alleles of different loci suggest that the omnipotent suppressors encode proteins that effect different functions and that altered forms of each of the proteins can effect the same function. 相似文献
3.
Translational Maintenance of Frame: Mutants of Saccharomyces Cerevisiae with Altered -1 Ribosomal Frameshifting Efficiences 下载免费PDF全文
A special site on the (+) strand of the L-A dsRNA virus induces about 2% of ribosomes translating the gag open reading frame to execute a -1 frameshift and thus produce the viral gag-pol fusion protein. Using constructs in which a -1 ribosomal frameshift at this site was necessary for expression of lacZ we isolated chromosomal mutants in which the efficiency of frameshifting was increased. These mutants comprise eight genes, named mof (maintenance of frame). The mof1-1, mof2-1, mof4-1, mof5-1 and mof6-1 strains cannot maintain M(1) dsRNA at 30°, but, paradoxically, do not lose L-A. The mof2-1, mof5-1 and mof6-1 strains are temperature sensitive for growth at 37°, and all three show striking cell cycle phenotypes. The mof2-1 strains arrest with mother and daughter cells almost equal in size, mof5-1 arrests with multiple buds and mof6-1 arrests as single large unbudded cells. mof2-1 and mof5-1 strains are also Pet(-). The mof mutations show differential effects on various frameshifting signals. 相似文献
4.
5.
The Sup35 Omnipotent Suppressor Gene Is Involved in the Maintenance of the Non-Mendelian Determinant [Psi(+)] in the Yeast Saccharomyces Cerevisiae 总被引:11,自引:2,他引:11 下载免费PDF全文
M. D. Ter-Avanesyan A. R. Dagkesamanskaya V. V. Kushnirov V. N. Smirnov 《Genetics》1994,137(3):671-676
The SUP35 gene of yeast Saccharomyces cerevisiae encodes a 76.5-kD ribosome-associated protein (Sup35p), the C-terminal part of which exhibits a high degree of similarity to EF-1α elongation factor, while its N-terminal region is unique. Mutations in or overexpression of the SUP35 gene can generate an omnipotent suppressor effect. In the present study the SUP35 wild-type gene was replaced with deletion alleles generated in vitro that encode Sup35p lacking all or a part of the unique N-terminal region. These 5'-deletion alleles lead, in a haploid strain, simultaneously to an antisuppressor effect and to loss of the non-Mendelian determinant [psi(+)]. The antisuppressor effect is dominant while the elimination of the [psi(+)] determinant is a recessive trait. A set of the plasmid-borne deletion alleles of the SUP35 gene was tested for the ability to maintain [psi(+)]. It was shown that the first 114 amino acids of Sup35p are sufficient to maintain the [psi(+)] determinant. We propose that the Sup35p serves as a trans-acting factor required for the maintenance of [psi(+)]. 相似文献
6.
Identification and Characterization of Mutations Affecting Sporulation in Saccharomyces Cerevisiae 总被引:3,自引:1,他引:2 下载免费PDF全文
Mutations affecting the synthesis of the sporulation amyloglucosidase were isolated in a homothallic strain of Saccharomyces cerevisiae, SCMS7-1. Two were found, both of which were deficient in sporulation at 34 degrees. One, SL484, sporulated to 50% normal levels at 30 degrees but less than 5% at 34 degrees or 22 degrees. The other, SL641, failed to sporulate at any temperature. Both mutants were blocked before premeiotic DNA synthesis, and both complemented spo1, spo3, and spo7. Genetic analysis of the mutation in SL484 indicated linkage to TRP5 and placed the gene 10 map units from TRP5 on chromosome VII. A plasmid containing an insert which complements the mutation in SL484 fails to complement SL641. We therefore conclude that these two mutations are in separate genes and we propose to call these genes SPO17 and SPO18. These two genes are (with SPO7, SPO8, and SPO9) among the earliest identified in the sporulation pathway and may interact directly with the positive and negative regulators RME and IME. 相似文献
7.
8.
9.
Multiplicity of the Amino Acid Permeases in Saccharomyces cerevisiae IV. Evidence for a General Amino Acid Permease 总被引:20,自引:16,他引:20 下载免费PDF全文
Kinetic and genetic evidences are presented to show that, in addition to specific amino acid permeases, Saccharomyces cerevisiae has a general amino acid permease which catalyzes the transport of basic and neutral amino acids, but most probably not that of proline. The general amino acid permease appears to be constitutive, and its activity is inhibited when ammonium ions are added to the culture medium. A mutant which has lost the general amino acid permease activity was isolated. Its mutation, named gap (general amino acid permease), is not allelic to the aap (amino acid permease) mutation of Surdin et al., which has a quite different phenotype and cannot be considered as having selectively lost the general amino acid permease activity. 相似文献
10.
Mutation Affecting Activity of Several Distinct Amino Acid Transport Systems in Saccharomyces cerevisiae 总被引:6,自引:2,他引:6 下载免费PDF全文
Mutations at the apf locus selectively depress the activity of a number of distinct amino acid permeases in Saccharomyces cerevisiae. The activity of the general amino acid permease and specific amino acid permeases is decreased, but the uptake of pyrimidines and adenine is unaffected. Mutations at the apf locus are allelic to the aap mutation isolated by Surdin et al. Amino acid uptake is normal in a heterozygous diploid (apf/+) and in a tetraploid strain with only one functional allele at the apf locus. 相似文献
11.
Isolation and Characterization of Mutants Which Show an Oversecretion Phenotype in Saccharomyces Cerevisiae 总被引:3,自引:1,他引:3 下载免费PDF全文
We have isolated mutants responsible for an oversecretion phenotype in Saccharomyces cerevisiae, using a promoter of SUC2 and the gene coding for alpha-amylase from mouse as a marker of secretion. These mutations defined two complementation groups, designated as ose1 (over secretion) and rgr1 (resistant to glucose repression). The ose1 mutant produced an oversecretion of amylase by 12- to 15-fold under derepressing conditions; however, the amylase mRNA was present at nearly the same amount as it was in the parent cells. No expression of the amylase gene was detected under repressing conditions. The rgr1 mutant oversecreted amylase by 11- to 13-fold under repressing conditions by 15- to 18-fold under derepressing conditions. The rgr1 mutant showed pleiotropic effects on the following cellular functions: (1) resistance to glucose repression, (2) temperature-sensitive lethality, (3) sporulation deficieny in homozygous diploid cells, and (4) abnormal cell morphology. The rgr1 mutation was not allelic with ssn6 and cyc9, and failed to suppress snf1. 相似文献
12.
Regulatory properties of the enzymes involved in aromatic amino acid biosynthesis in the mutant of Corynebacterium glutamicum which produces a large amount of aromatic amino acids were examined. A phenylalanine auxotrophic l-tyrosine producer, pr-20, had a 3-deoxy-d-arabinoheptulosonate-7-phosphate (DAHP) synthetase released from the feedback inhibition by l-phenylalanine, l-tyrosine and l-tryptophan and had a two-fold derepressed chorismate mutase. A pair of l-phenylalanine and l-tyrosine still strongly inhibited the chorismate mutase activity, though the enzyme was partially released from the inhibition by l-phenylalanine alone. A tyrosine auxotrophic l-phenylalanine producer, PFP-19-31, had a DAHP synthetase sensitive to the feedback inhibition by l-phenylalanine, l-tyrosine and l-tryptophan and had a prephenate dehydratase and a chorismate mutase both partially released from the feedback inhibition by l-phenylalanine. The mutant produced a large amount of prephenate as well as l-phenylalanine. A phenylalanine and tyrosine double auxotrophic l-tryptophan producer, Px-115-97, had an anthranilate synthetase partially released from the feedback inhibition by l-tryptophan and had a DAHP synthetase sensitive to the feedback inhibition. These data explained the mechanism of the production of aromatic amino acids by these mutants and supported the in vivo functioning of the control mechanisms of aromatic amino acid biosynthesis in C. glutamicum previously elucidated in vitro experiments. 相似文献
13.
Analysis of Mitotic and Meiotic Defects in Saccharomyces Cerevisiae Srs2 DNA Helicase Mutants 下载免费PDF全文
The hyper-gene conversion srs2-101 mutation of the SRS2 DNA helicase gene of Saccharomyces cerevisiae has been reported to suppress the UV sensitivity of rad18 mutants. New alleles of SRS2 were recovered using this suppressor phenotype. The alleles have been characterized with respect to suppression of rad18 UV sensitivity, hyperrecombination, reduction of meiotic viability, and definition of the mutational change within the SRS2 gene. Variability in the degree of rad18 suppression and hyperrecombination were found. The alleles that showed the severest effects were found to be missense mutations within the consensus domains of the DNA helicase family of proteins. The effect of mutations in domains I (ATP-binding) and V (proposed DNA binding) are reported. Some alleles of SRS2 reduce spore viability to 50% of wild-type levels. This phenotype is not bypassed by spo13 mutation. Although the srs2 homozygous diploids strains undergo normal commitment to meiotic recombination, this event is delayed by several hours in the mutant strains and the strains appear to stall in the progression from meiosis I to meiosis II. 相似文献
14.
15.
Mutants of Saccharomyces Cerevisiae with Defects in Acetate Metabolism: Isolation and Characterization of Acn(-) Mutants 下载免费PDF全文
M. T. McCammon 《Genetics》1996,144(1):57-69
The two carbon compounds, ethanol and acetate, can be oxidatively metabolized as well as assimilated into carbohydrate in the yeast Saccharomyces cerevisiae. The distribution of acetate metabolic enzymes among several cellular compartments, mitochondria, peroxisomes, and cytoplasm makes it an intriguing system to study complex metabolic interactions. To investigate the complex process of carbon catabolism and assimilation, mutants unable to grow on acetate were isolated. One hundred five Acn(-) (``ACetate Nonutilizing') mutants were sorted into 21 complementation groups with an additional 20 single mutants. Five of the groups have defects in TCA cycle enzymes: MDH1, CIT1, ACO1, IDH1, and IDH2. A defect in RTG2, involved in the retrograde communication between the mitochondrion and the nucleus, was also identified. Four genes encode enzymes of the glyoxylate cycle and gluconeogenesis: ICL1, MLS1, MDH2, and PCK1. Five other genes appear to be defective in regulating metabolic activity since elevated levels of enzymes in several metabolic pathways, including the glyoxylate cycle, gluconeogenesis, and acetyl-CoA metabolism, were detected in these mutants: ACN8, ACN9, ACN17, ACN18, and ACN42. In summary, this analysis has identified at least 22 and as many as 41 different genes involved in acetate metabolism. 相似文献
16.
The Isolation and Characterization of Saccharomyces Cerevisiae Mutants That Constitutively Express Purine Biosynthetic Genes 总被引:1,自引:0,他引:1 下载免费PDF全文
In response to an external source of adenine, yeast cells repress the expression of purine biosynthesis pathway genes. To identify necessary components of this signalling mechanism, we have isolated mutants that are constitutively active for expression. These mutants were named bra (for bypass of repression by adenine). BRA7 is allelic to FCY2, the gene encoding the purine cytosine permease and BRA9 is ADE12, the gene encoding adenylosuccinate synthetase. BRA6 and BRA1 are new genes encoding, respectively, hypoxanthine guanine phosphoribosyl transferase and adenylosuccinate lyase. These results indicate that uptake and salvage of adenine are important steps in regulating expression of purine biosynthetic genes. We have also shown that two other salvage enzymes, adenine phosphoribosyl transferase and adenine deaminase, are involved in activating the pathway. Finally, using mutant strains affected in AMP kinase or ribonucleotide reductase activities, we have shown that AMP needs to be phosphorylated to ADP to exert its regulatory role while reduction of ADP into dADP by ribonucleotide reductase is not required for adenine repression. Together these data suggest that ADP or a derivative of ADP is the effector molecule in the signal transduction pathway. 相似文献
17.
Molecular Biology - Boric acid is essential for plants and has many vital roles in animals and microorganisms. However, its high doses are toxic to all organisms. We previously screened yeast... 相似文献
18.
19.
Control of Amino Acid Permease Sorting in the Late Secretory Pathway of Saccharomyces Cerevisiae by Sec13, Lst4, Lst7 and Lst8 总被引:2,自引:0,他引:2 下载免费PDF全文
The SEC13 gene was originally identified by temperature-sensitive mutations that block all protein transport from the ER to the Golgi. We have found that at a permissive temperature for growth, the sec13-1 mutation selectively blocks transport of the nitrogen-regulated amino acid permease, Gap1p, from the Golgi to the plasma membrane, but does not affect the activity of constitutive permeases such as Hip1p, Can1p, or Lyp1p. Different alleles of SEC13 exhibit different relative effects on protein transport from the ER to the Golgi, or on Gap1p activity, indicating distinct requirements for SEC13 function at two different steps in the secretory pathway. Three new genes, LST4, LST7, and LST8, were identified that are also required for amino acid permease transport from the Golgi to the cell surface. Mutations in LST4 and LST7 reduce the activity of the nitrogen-regulated permeases Gap1p and Put4p, whereas mutations in LST8 impair the activities of a broader set of amino acid permeases. The LST8 gene encodes a protein composed of WD-repeats and has a close human homologue. The LST7 gene encodes a novel protein. Together, these data indicate that SEC13, LST4, LST7, and LST8 function in the regulated delivery of Gap1p to the cell surface, perhaps as components of a post-Golgi secretory-vesicle coat. 相似文献
20.
Control of Arginine Biosynthesis in Escherichia coli: Characterization of Arginyl-Transfer Ribonucleic Acid Synthetase Mutants 下载免费PDF全文
The arginyl-transfer ribonucleic acid (Arg-tRNA) synthetase (EC 6.1.1.13, arginine: RNA ligase adenosine monophosphate) mutants, exhibiting nonrepressible synthesis of arginine by exogenous arginine, were employed in studies of several biochemical properties. Two of these mutants possessed Arg-tRNA synthetases with a reduced affinity for arginine, and this enzyme of another mutant had a reduced affinity for arginine-tRNA (tRNAarg). The mutant possessing an Arg-tRNA synthetase with an altered Km for tRNAarg was found to have reduced in vivo aminoacylation of two of the five isoaccepting species of tRNAarg and complete absence of aminoacylation of one of the isoaccepting species. 相似文献