首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. H. McCusker  J. E. Haber 《Genetics》1988,119(2):303-315
We describe the isolation and preliminary characterization of a set of pleiotropic mutations resistant to the minimum inhibitory concentration of cycloheximide and screened for ts (temperature-sensitive) growth. These mutations fall into 22 complementation groups of cycloheximide resistant ts lethal mutations (crl). None of the crl mutations appears to be allelic with previously isolated mutations. Fifteen of the CRL loci have been mapped. At the nonpermissive temperature (37°), these mutants arrest late in the cell cycle after several cell divisions. Half of these mutants are also unable to grow at very low temperatures (5°). Although mutants from all of the 22 complementation groups exhibit similar temperature-sensitive phenotypes, an extragenic suppressor of the ts lethality of crl3 does not relieve the ts lethality of most other crl mutants. A second suppressor mutation allows crl10, crl12, and crl14 to grow at 37° but does not suppress the ts lethality of the remaining crl mutants. We also describe two new methods for the enrichment of auxotrophic mutations from a wild-type yeast strain.  相似文献   

2.
We isolated a large number of mutations in the structural gene for the plasma membrane ATPase (PMA1) of Saccharomyces cerevisiae. These mutations were selected by their resistance to the aminoglycoside antibiotic hygromycin B. Biochemical analysis of purified membrane preparations showed that the plasma membrane ATPase activity of the mutants was reduced as much as 75%. Intragenic complementation of pma1 mutants suggested that the yeast plasma membrane ATPase was a multimeric enzyme. The pma1 mutants were apparently defective in maintaining internal pH; more than half of the mutants were unable to grow either at a low pH or in the presence of a weak acid. Most pma1 mutants were also osmotic pressure sensitive. At a very low temperature (5 degrees C) many pma1 mutants were unable to grow and were arrested as unbudded cells. The three most severely affected mutants were also unable to grow in the presence of NH4+. The most extreme mutant exhibited a severe defect in progression through the cell cycle; on synthetic medium, the cells progressively accumulated nucleus-containing small buds that generally failed to complete bud enlargement and cytokinesis. Most of the pleiotropic phenotypes of pma1 mutants could be suppressed by the addition of 50 mM KCl but not NaCl to the medium.  相似文献   

3.
In 1988 McCusker and Haber generated a series of mutants which are resistant to the minimum inhibitory concentration of the protein synthesis inhibitor cycloheximide. These cycloheximide-resistant, temperature-sensitive (crl) mutants, in addition, exhibited other pleiotropic phenotypes, e.g., incorrect response to starvation, hypersensitivity against amino acid analogues, and other protein synthesis inhibitors. Temperature sensitivity of one of these mutants, crl3–2, had been found to be suppressed by a mutation, SCL1–1, which resided in an α-type subunit of the 20S proteasome. We cloned the CRL3 gene by complementation and found CRL3 to be identical to the SUG1/CIM3 gene coding for a subunit of the 19S cap complex of the 26S proteasome. Another mutation, crl21, revealed to be allelic with the 20S proteasomal gene PRE3. crl3–2 and crl21 mutant cells show significant defects in proteasome-dependent proteolysis, whereas the SCL1–1 suppressor mutation causes partial restoration of crl3–2-induced proteolytic defects. Notably, cycloheximide resistance was also detected for other proteolytically deficient proteasome mutants (pre1–1, pre2–1, pre3–1, pre4–1). Moreover, proteasomal genes were found within genomic sequences of 9 of 13 chromosomal loci to which crl mutations had been mapped. We therefore assume that most if not all crl mutations reside in the proteasome and that phenotypes found are a result of defective protein degradation.  相似文献   

4.
Selection for allyl alcohol resistance in respiratory incompetent yeast is a highly specific method for isolating functional mutations at ADH1, the gene coding for the cytoplasmic alcohol dehydrogenase, ADHI. Because of the nature of this selection scheme, the ADHI activity of such mutants is retained, but the kinetic characteristics of the enzymes are altered. The high specificity for targeting functional mutations at this locus suggested that selection for enzyme variants with more subtle phenotypic effects might be possible. Here, we describe functional ADHI mutants that are temperature-conditional in their allyl alcohol resistance. Haploid cells of one of these mutants grow well on plates at 10 mM allyl alcohol at 19 degrees, but not at 37 degrees, the restrictive temperature. A second mutant grows well at 10 mM at 37 degrees, but its growth is restricted at 19 degrees. What distinguishes these mutants from other temperature-sensitive mutants is that the temperature-conditional growth phenotypes described here must be due to interactions between allyl alcohol levels and ADHI functional properties and cannot be due to lability of the enzyme at the restrictive temperature. This system shows promise for the investigation of functional enzyme variants that differ by only one or two amino acid residues but have significant temperature- and substrate-conditional effects on growth phenotypes in both the haploids and the diploids.  相似文献   

5.
C. Kanik-Ennulat  E. Montalvo    N. Neff 《Genetics》1995,140(3):933-943
Orthovanadate is a small toxic molecule that competes with the biologically important oxyanion orthophosphate. Orthovanadate resistance arises spontaneously in Saccharomyces cerevisiae haploid cells by mutation in a number of genes. Mutations selected at 3 mM sodium orthovanadate have different degrees of vanadate resistance, hygromycin sensitivity, detergent sensitivity and sporulation defects. Recessive vanadate-resistant mutants belong to at least six genetic loci. Most mutants are defective in outer chain glycosylation of secreted invertase (van1, van2, van4, van5, van6, VAN7-116 and others), a phenotype found in some MNN or VRG mutants. The phenotypes of these vanadate-resistant mutants are consistent with an alteration in the permeability or specificity of the Golgi apparatus. The previously published VAN1 gene product has a 200 amino acid domain with 40% identity with the MNN9 gene product and 70% identity with the ANP1 gene product. Cells containing the van1-18, mnn9 (vrg6) or anp1 mutations have some phenotypic similarities. The VAN2 gene was isolated and its coding region is identified and reported. It is an essential gene on chromosome XV and its translated amino acid sequence predicts a unique 337 amino acid protein with multiple transmembrane domains.  相似文献   

6.
Kamińska J  Tobiasz A  Gniewosz M  Zoładek T 《Gene》2000,242(1-2):133-140
Mutations in the PMA1 gene, encoding plasma membrane H+ -ATPase, were isolated that are able to suppress the temperature sensitivity (ts) phenotype of mdp1 mutations located in RSP5, the ubiquitin-protein ligase gene. The mdp1 mutants were previously found to change the mitochondrial/cytosolic distribution of Mod5p-I, the tRNA modifying enzyme, and to affect fluid phase endocytosis. The data presented reveal that mdp1 mutants are also pH sensitive, and hypersensitive to hygromycin B and paromomycin. The ts phenotype, hygromycin B and paromomycin sensitivity are suppressed by pmal-t, but the pH sensitivity, the effect of mdp1 on Mod5p-I cytoplasmic/mitochondrial localization and endocytosis are not. Characterization of pmal-t revealed the substitution of amino acid G(653)V in the ATP-binding domain of the H+ -ATPase. Our results indicate that Rsp5 ubiquitin-protein ligase may also influence, in addition to protein distribution, the functioning of plasma membrane H+ -ATPase and the response of cells to stress.  相似文献   

7.
Transketolase Mutants of Escherichia coli   总被引:14,自引:9,他引:5       下载免费PDF全文
Transketolase mutants have been selected after ethyl methane sulfonate mutagenesis of Escherichia coli. These strains are unable to grow on any pentose and, in addition, require a supplement of aromatic amino acids or shikimic acid for normal growth on any other carbon source. Revertants are normal in both respects and also contain transketolase. Transketolase mutants do not require exogenous pentose for growth. Preliminary genetic mapping of the locus is presented.  相似文献   

8.
We mutagenized RH delta hxgprt strain tachyzoites of Toxoplasma gondii using N-nitroso-N-ethylurea and analyzed 40 clonal isolates (of 3680 ENU mutants) that were unable to grow in cell culture at 40 degrees C. These isolates grew normally at 34 degrees C, but showed variable growth at temperatures between 34 and 39 degrees C. The inability to grow at 40 degrees C was also correlated with a loss of virulence in mice for those mutants examined. We further characterized the temperature-sensitive (ts) isolates using flow cytometry and propidium iodide staining and identified three types of cell cycle-related mutations. Regardless of temperature, in the isolates ts1C12, ts7B4, and ts7B10, the distribution of parasites with a haploid DNA content was substantially higher (congruent with 85%) than that observed for RH delta hxgprt (congruent with 60%). Four other isolates, ts4F6, ts6C11, ts8G10, and ts11F5, contained G1-related mutations, and in each case, the DNA distribution among parasites at the permissive temperature was similar to that of the parental strain, but at 40 degrees C only a single population containing a 1N nuclear DNA complement was evident. Furthermore, there was no evidence of nuclear division or cytokinesis at 40 degrees C, and these parasites demonstrated a distended cytoplasm typical of G1 arrest in other cell types. Finally, parasites of the ts11C9 mutant arrested in two near-equal populations with either 1N or 2N complements of nuclear DNA. All arrested ts11C9 parasites contained a single nucleus, and a major subfraction of the 2N population contained abnormal and incompletely formed daughters-indicating that the initiation of daughter formation can occur in the absence of nuclear division.  相似文献   

9.
We have isolated 440 mutants of Salmonella typhimurium that show temperature-sensitive growth on complex medium at 44 degrees. Approximately 16% of the mutations in these strains have been mapped to 17 chromosomal locations; two of these chromosomal locations seem to include several essential genes. Genetic analysis of the mutations suggests that the collection saturates the genes readily mutable to a ts lethal phenotype in S. typhimurium. Physiological characteristics of the ts lethal mutants were tested: 6% of the mutants can grow at high temperature under anaerobic conditions, 17% can grow when the medium includes 0.5 M KCl, and 9% of the mutants die after a 2-hr incubation at the nonpermissive temperature. Most ts lethal mutations in this collection probably affect genes required for growth at all temperatures (not merely during high temperature growth) since Tn10 insertions that cause a temperature-sensitive lethal phenotype are rare.  相似文献   

10.
J. E. Masson  P. J. King    J. Paszkowski 《Genetics》1997,146(1):401-407
A simple screening method was developed for the isolation of Arabidopsis thaliana mutants hypersensitive to X-ray irradiation. The root meristem was used as the target for irradiation with sublethal doses of X rays, while protection of the shoot meristem by a lead cover allowed the rescue of hypersensitive individuals. We isolated nine independent X-ray-hypersensitive mutants from 7000 M2 seedlings. Analysis of three chosen mutants (xrs4, xrs9 and xrs11) showed that alterations in single recessive alleles are responsible for their phenotypes. The mutations are not allelic but linked and map to chromosome 4, suggesting mutations in novel genes as compared to previously mapped mutant alleles. Importantly, hypersensitivity to X rays was found to correlate with hypersensitivity to the DNA-alkylating agent mitomycin C, which provokes interstrand crosslinks, and/or to methyl methanesulfonate, which is known as a radiomimetic chemical. These novel phenotypes suggest that the mutants described here are altered in the repair of DNA damage, most probably by recombinational repair.  相似文献   

11.
Mutants of thermotolerant fungus Aspergillus fumigatus I-21 (ATCC 32722) unable to grow at 37 degrees C were sought. Cold-sensitive mutants were enriched from progeny spores of gamma-irradiated conidia by two or more incubations at various nonpermissive temperatures alternating with filtrations through chessecloth. The approximate minimum, optimum, and maximum growth temperatures of the parent were 12, 40, and 50 degrees C, respectively. Mutants unable to grow at 37 degrees C were not successfully isolated directly from the wild type. A mutant unable to grow at 25 degrees C was isolated and mutations further increasing the cold sensitivity by increments of 3-5 degrees C were found to occur. Mutants completely unable to grow at 37 degrees C were obtained by five sequential mutations. All mutants grew as fast as the wild-type parent at 45 degrees C and higher. Each mutant produced revertants able to grow not only at the nonpermissive temperature used for its isolation but also at lower temperatures.  相似文献   

12.
The cydDC operon of Escherichia coli encodes an ATP-dependent transporter of unknown function that is required for cytochrome bd synthesis. Strains containing defects in either the cydD or cydC gene also demonstrate hypersensitivity to growth at high temperatures and the inability to exit the stationary phase at 37 degrees C. We wished to determine what is responsible for these hypersensitive phenotypes and whether they are due to a lack of the CydDC proteins or a defect of the cytochrome bd encoded by the cydAB genes. Using both K-12- and B-type strains of E. coli, we have compared the phenotypes of isogenic cydAB mutants and cydC mutants. In both K-12- and B-type backgrounds, the hypersensitive phenotypes are due to defects of cytochrome bd activity and not defects of the cydDC genes. We also found that the temperature-sensitive growth phenotypes can be suppressed by exogenous reducing agents, such as glutathione and cysteine. Strikingly, even the enzymes catalase and superoxide dismutase, when added exogenously, can correct the temperature-sensitive and stationary phase arrest phenotypes. We propose that the temperature sensitive growth phenotypes are due to a buildup of diffusible oxygen radicals brought on by the absence of cytochrome bd.  相似文献   

13.
We characterized several unusual phenotypes caused by stable insertion mutations in a gene that is located upstream in the same operon from hisT, which encodes the tRNA modification enzyme pseudouridine synthase I. Mutants containing kanamycin resistance (Kmr) cassettes in this upstream gene, which we temporarily designated usg-2, failed to grow on minimal plus glucose medium at 37 and 42 degrees C. However, usg-2::Kmr mutants did form oddly translucent, mucoid colonies at 30 degrees C or below. Microscopic examination revealed that cells from these translucent colonies were spherical and seemed to divide equatorially. Addition of D-alanine restored the shape of the mutant cells to rods and allowed the mutants to grow slowly at 37 degrees C and above. By contrast, addition of the common L-amino acids prevented growth of the usg-2::Kmr mutants, even at 30 degrees C. Furthermore, prolonged incubation of usg-2::Kmr mutants at 37 and 42 degrees C led to the appearance of several classes of temperature-resistant pseudorevertants. Other compounds also supported growth of usg-2::Kmr mutants at 37 and 42 degrees C, including glycolaldehyde and the B6 vitamers pyridoxine and pyridoxal. This observation suggested that usg-2 was pdxB, which had been mapped near hisT. Complementation experiments confirmed that usg-2 is indeed pdxB, and inspection of the pyridoxine biosynthetic pathway suggests explanations for the unusual phenotypes of pdxB::Kmr mutants. Finally, Southern hybridization experiments showed that pdxB and hisT are closely associated in several enterobacterial species. We consider reasons for grouping pdxB and hisT together in the same complex operon and speculate that these two genes play roles in the global regulation of amino acid metabolism.  相似文献   

14.
In order to determine the functional roles of amino acid residues in gp18 (gp: gene product), the contractile tail sheath protein of bacteriophage T4, the mutation sites and amino acid replacements of available and newly created missense mutants with distinct phenotypes were determined. Amber mutants were also utilized for amino acid insertion by host amber suppressor cell strains. It was found that mutants that gave rise to a particular phenotype were mapped in a particular region along the polypeptide chain. Namely, all amino acid replacements in the cold-sensitive mutants (cs, which grows at 37 degrees C, but not at 25 degrees C) and the heat-sensitive mutant (hs, lose viability by incubation at 55 degrees C for 30 min) except for one hs mutant were mapped in a limited region in the C-terminal domain. On the other hand, all the temperature-sensitive mutants (ts, grow at 30 degrees C, but not at 42 degrees C) and carbowax mutants (CBW, can adsorb to the host bacterium in the presence of high concentrations of polyethylene glycol, where wild-type phage cannot) were mapped in the N-terminal protease-resistant domain, except for one ts mutant. The results suggested that the C-terminal region of gp18 is important for contraction and assembly, whereas the N-terminal protease-resistant domain constitutes the protruding part of the tail sheath.  相似文献   

15.
Genetic Analysis of Flagellar Mutants in Escherichia coli   总被引:37,自引:29,他引:8       下载免费PDF全文
Flagellar mutants in Escherichia coli were obtained by selection for resistance to the flagellotropic phage chi. F elements covering various regions of the E. coli genome were then constructed, and, on the basis of the ability of these elements to restore flagellar function, the mutations were assigned to three regions of the E. coli chromosome. Region I is between trp and gal; region II is between uvrC and aroD; and region III is between his and uvrC. F elements carrying flagellar mutations were constructed. Stable merodiploid strains with a flagellar defect on the exogenote and another on the endogenote were then prepared. These merodiploids yielded information on the complementation behavior of mutations in a given region. Region III was shown to include at least six cistrons, A, B, C, D, E, and F. Region II was shown to include at least four cistrons, G, H, I, and J. Examination of the phenotypes of the mutants revealed that those with lesions in cistron E of region III produce "polyhooks" and lesions in cistron F of region III result in loss of ability to produce flagellin. Mutants with lesions in cistron J of region II were entirely paralyzed (mot) mutants. Genetic analysis of flagellar mutations in region III suggested that the mutations located in cistrons A, B, C, and E are closely linked and mutations in cistrons D and F are closely linked.  相似文献   

16.
In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G(2) phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G(2) phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G(2) phase.  相似文献   

17.
The putP gene encodes a proline permease required for Salmonella typhimurium LT2 to grow on proline as the sole source of nitrogen. The wild-type strain is sensitive to two toxic proline analogs (azetidine-2-carboxylic acid and 3,4-dehydroproline) also transported by the putP permease. Most mutations in putP prevent transport of all three substrates. Such mutants are unable to grow on proline and are resistant to both of the analogs. To define domains of the putP gene that specify the substrate binding site, we used localized mutagenesis to isolate rare mutants with altered substrate specificity. The position of the mutations in the putP gene was determined by deletion mapping. Most of the mutations are located in three small (approximately 100-base-pair) deletion intervals of the putP gene. The sensitivity of the mutants to the proline analogs was quantitated by radial streaking to determine the affinity of the mutant permeases for the substrates. Some of the mutants showed apparent changes in the kinetics of the substrates transported. These results indicate that the substrate specificity mutations are probably due to amino acid substitutions at or near the active site of proline permease.  相似文献   

18.
Phosphoglucomutase Mutants of Escherichia coli K-12   总被引:16,自引:11,他引:5       下载免费PDF全文
Bacteria with strongly depressed phosphoglucomutase (EC 2.7.5.1) activity are found among the mutants of Escherichia coli which, when grown on maltose, accumulate sufficient amylose to be detectable by iodine staining. These pgm mutants grow poorly on galactose but also accumulate amylose on this carbon source. Growth on lactose does not produce high amylose but, instead, results in the induction of the enzymes of maltose metabolism, presumably by accumulation of maltose. These facts suggest that the catabolism of glucose-1-phosphate is strongly depressed in pgm mutants, although not completely abolished. Anabolism of glucose-1-phosphate is also strongly depressed, since amino acid- or glucose-grown pgm mutants are sensitive to phage C21, indicating a deficiency in the biosynthesis of uridine diphosphoglucose or uridine diphosphogalactose, or both. All pgm mutations isolated map at about 16 min on the genetic map, between purE and the gal operon.  相似文献   

19.
Isolates with mutations in glyS, the structural gene for glycyl-transfer ribonucleic acid (tRNA) synthetase (GRS) in Escherichia coli, are frequently found among glycine auxotrophs. Extracts of glyS mutants have altered GRS activities. The mutants grow with normal growth rates in minimal media when high levels of glycine are provided. No other metabolite of a variety tested is capable of restoring normal growth. The glyS mutants fail to make ribonucleic acid (RNA) when depleted of exogenous glycine in strains which are RC(str) but do so when the cells are RC(rel). In contrast, biosynthetic mutants which are unable to synthesize glycine (glyA mutants) do not make RNA when deprived of glycine even if they are RC(rel); in this case, RNA is synthesized upon glycine deprivation only when the nucleic acid precursors made from glycine are provided in the medium. The level of serine transhydroxymethylase is unaltered in extracts of any of the glyS mutants, even though the level of charged tRNA(Gly) is at least 20-fold lower than that found in a prototrophic parent; this indicates that, if there is control over the synthesis of serine transhydroxymethylase, it is not modified by reduced levels of charging of the major species of tRNA(Gly).  相似文献   

20.
Temperature-sensitive clones have been selected from a mutagenized culture of Chinese hamster lung cells by a procedure involving bromodeoxyuridine (BrdU) incorporation and irradiation with black light. The selection procedure used in these studies was adapted from methods developed by others to yield mutants that cease DNA replication within a short time after they are transferred to nonpermissive temperature. After mutagenesis with ethyl methanosulfonate ten clones survived the selection procedure. Three of the clones (mutants) were temperature-sensitive as measured by growth properties. Two mutants ceased DNA synthesis within six hours of being shifted to 39degrees and the third mutant continued to synthesize DNA at nonpermissive temperature at a reduced rate for at least 24 hours. Thus, all three mutants survived the selection procedure for understandable reasons, since each was unable to incorporate sufficient BrdU at 39degrees to lethally protosensitize its DNA during the standard exposure period. The two mutants that cease DNA synthesis at high temperature (clones 115-47 and 115-53) also stop incorporating radioactive amino acids and uridine within six hours at 39degrees. Their complex phenotype, i.e. defective DNA, RNA and protein biosynthesis, is reversible. When these mutants were returned to 33 degrees after 8 hours at 39 degrees, both resumed DNA synthesis immediately (less than 1 hour). Reversal of defective DNA synthesis in both mutants were sensitive to drugs that inhibit protein biosynthesis specifically. Those same drugs, as well as toxic amino acids analogs, also effected a striking mutant phenocopy in wild-type cells. The phenocopy produced by amino acid analogs that are incorporated into mammalian proteins suggested that one or more proteins must be synthesized continuously to support mammalian cells engaged in programmed DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号