首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In smooth muscle cells, localized intracellular Ca2+ transients, termed "Ca2+ sparks," activate several large-conductance Ca2+-activated K+ (KCa) channels, resulting in a transient KCa current. In some smooth muscle cell types, a significant proportion of Ca2+ sparks do not activate KCa channels. The goal of this study was to explore mechanisms that underlie fractional Ca2+ spark-KCa channel coupling. We investigated whether membrane depolarization or ryanodine-sensitive Ca2+ release (RyR) channel activation modulates coupling in newborn (1- to 3-day-old) porcine cerebral artery myocytes. At steady membrane potentials of -40, 0, and +40 mV, mean transient KCa current frequency was approximately 0.18, 0.43, and 0.26 Hz and KCa channel activity [number of KCa channels activated by Ca2+ sparksxopen probability of KCa channels at peak of Ca2+ sparks (NPo)] at the transient KCa current peak was approximately 4, 12, and 24, respectively. Depolarization between -40 and +40 mV increased KCa channel sensitivity to Ca2+ sparks and elevated the percentage of Ca2+ sparks that activated a transient KCa current from 59 to 86%. In a Ca2+-free bath solution or in diltiazem, a voltage-dependent Ca2+ channel blocker, steady membrane depolarization between -40 and +40 mV increased transient KCa current frequency up to approximately 1.6-fold. In contrast, caffeine (10 microM), an RyR channel activator, increased mean transient KCa current frequency but did not alter Ca2+ spark-KCa channel coupling. These data indicate that coupling is increased by mechanisms that elevate KCa channel sensitivity to Ca2+ sparks, but not by RyR channel activation. Overall, KCa channel insensitivity to Ca2+ sparks is a prominent factor underlying fractional Ca2+ spark uncoupling in newborn cerebral artery myocytes.  相似文献   

2.
K(Ca) channels are involved in control of cell proliferation and differentiation. Here we have revealed their role in overcoming the RNase-induced cytotoxicity. Toxic effects of Streptomyces aureofaciens RNases Sa, Sa2, Sa3, and of RNase Sa charge reversal mutants on the human embryonic kidney cell lines differing only by the presence of K(Ca) channels were characterized. In contrast to other RNases, a basic variant of RNase Sa and RNase Sa3 exhibit significant cytotoxic activity of the same order of magnitude as onconase. Our data indicate the absence of a correlation between catalytic activity and stability of RNases and cytotoxicity. On the other hand, cationization enhances toxic effect of an RNase indicating the major role of a positive charge. Essentially lower sensitivity to cytotoxic microbial RNases of cells expressing K(Ca) channels was found. These results suggest that cells without the K(Ca) channel activity cannot counteract toxic effect of RNases.  相似文献   

3.
A peptidyl inhibitor of the high conductance Ca(2+)-activated K+ channels (KCa) has been purified to homogeneity from the venom of the scorpion Androctonus mauretanicus mauretanicus. The peptide has been named kaliotoxin (KTX). It is a single 4-kDa polypeptide chain. Its complete amino acid sequence has been determined. KTX displays sequence homology with other scorpion-derived inhibitors of Ca(2+)-activated or voltage-gated K+ channels: 44% homology with charybdotoxin (CTX), 52% with noxiustoxin (NTX), and 44% with iberiotoxin (IbTX). Electrophysiological experiments performed in identified nerve cells from the mollusc Helix pomatia showed that KTX specifically suppressed the whole cell Ca(2+)-activated K+ current. KTX had no detectable effects on voltage-gated K+ current (delayed rectifier and fast transient A current) or on L-type Ca2+ currents. KTX interacts in a one-to-one way with KCa channels with a Kd of 20 nM. Single channel experiments were performed on high conductance KCa channels excised from the above Helix neurons and from rabbit coeliac ganglia sympathetic neurons. KTX acted exclusively at the outer face of the channel. KTX applied on excised outside-out KCa channels induced a transient period of fast-flicker block followed by a persistent channel blockade. The KTX-induced block was not voltage-dependent which suggests differences in the blockade of KCa channels by KTX and by CTX. Comparison of KTX and CTX sequences leads to the identification of a short amino acid sequence (26-33) which may be implicated in the toxin-channel interaction. KTX therefore appears to be a useful tool for elucidating the molecular pharmacology of the high conductance Ca(2+)-activated K+ channel.  相似文献   

4.
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.  相似文献   

5.
To clarify the mechanism by which lactate affects insulin secretion, we investigated the effect of lactate on insulin secretion, cytosolic free Ca2+ ([Ca2+](i), the ATP sensitive K+ channel (K(ATP)) and the Ca2+-activated K+ channel (K(Ca)) in HIT-T15 cells, and the results were compared with those of glucose and glibenclamide. All three agents caused insulin secretion and increased [Ca2+](i), but the effects on the K+ channels were different. In cell-attached patch configurations, 10 mmol/l glucose blocked both the K(ATP) and KCa channels, while 100 nmol/l glibenclamide had no effect on KCa channels, but blocked K(ATP) channels. Lactate at a concentration of 10 mmol/l activated both the K(ATP) and KCa channels, not only in cell-attached, but also in inside-out patch configurations, indicating that the increase in [Ca2+](i) and secretion of insulin by lactate cannot be explained by the blocking of the K+ channels. Lactate, at concentrations of 10 mmol/l and 50 mmol/l decreased 45Ca2+ efflux, while glibenclamide increased the efflux. These results suggest that the lactate-induced Ca2+ increase is not due to the closing of K+ channels, but at least in part, to the suppression of Ca2+ efflux from HIT cells.  相似文献   

6.
KCa3.1 is an intermediate conductance Ca2+-activated K+ channel that is expressed predominantly in hematopoietic cells, smooth muscle cells, and epithelia where it functions to regulate membrane potential, Ca2+ influx, cell volume, and chloride secretion. We recently found that the KCa3.1 channel also specifically requires phosphatidylinositol-3 phosphate [PI(3)P] for channel activity and is inhibited by myotubularin-related protein 6 (MTMR6), a PI(3)P phosphatase. We now show that PI(3)P indirectly activates KCa3.1. Unlike KCa3.1 channels, the related KCa2.1, KCa2.2, or KCa2.3 channels do not require PI(3)P for activity, suggesting that the KCa3.1 channel has evolved a unique means of regulation that is critical for its biological function. By making chimeric channels between KCa3.1 and KCa2.3, we identified a stretch of 14 amino acids in the carboxy-terminal calmodulin binding domain of KCa3.1 that is sufficient to confer regulation of KCa2.3 by PI(3)P. However, mutation of a single potential phosphorylation site in these 14 amino acids did not affect channel activity. These data together suggest that PI(3)P and these 14 amino acids regulate KCa3.1 channel activity by recruiting an as yet to be defined regulatory subunit that is required for Ca2+ gating of KCa3.1.  相似文献   

7.
The Ca2+ -activated K+ channel KCa3.1 is required for Ca2+ influx and the subsequent activation of B and T cells. Inhibitors of KCa3.1 are in development to treat autoimmune diseases and transplant rejection, underscoring the importance in understanding how these channels are regulated. We show that nucleoside diphosphate kinase B (NDPK-B), a mammalian histidine kinase, functions downstream of PI(3)P to activate KCa3.1. NDPK-B directly binds and activates KCa3.1 by phosphorylating histidine 358 in the carboxyl terminus of KCa3.1. Endogenous NDPK-B is also critical for KCa3.1 channel activity and the subsequent activation of CD4 T cells. These findings provide one of the best examples whereby histidine phosphorylation regulates a biological process in mammals, and provide an example whereby a channel is regulated by histidine phosphorylation. The critical role for NDPK-B in the reactivation of CD4 T cells indicates that understanding NDPK-B regulation should uncover novel pathways required for T cell activation.  相似文献   

8.
Vascular endothelial growth factor-A (VEGF-A) is an endothelial-cell specific growth factor and leads to an increase in cytosolic free calcium ([Ca2+](i)) in endothelial cells. Ca2+ -activated K+ channels (KCa-channels) have been suggested to facilitate calcium influx by hyperpolarising the cell and thus increasing the electrochemical driving force for calcium influx. The patch-clamp technique was used to investigate the effect of VEGF-A on large conductance KCa-channels. The role of these channels in VEGF-induced proliferation (cell count, [3H]thymidine incorporation) was studied using the specific inhibitor iberiotoxin. VEGF-A strongly stimulated KCa-channel activity and led to a 14.2 +/- 4.8 fold (SEM, n = 12) increase in activity after 8 min of VEGF-A stimulation. The VEGF-A-induced activation occurred in calcium-free solution as well (16.7+/-2.2 fold, SEM, n = 5) whereas carboxyamidotriazole (CAI), an antiangiogenic drug which inhibits both Ca2+ influx and Ca2+ release from intracellular stores, completely blocked VEGF-A-induced KCa channel activation. Specific inhibition of KCa channel activity with iberiotoxin did not inhibit proliferation of endothelial cells induced by VEGF-A and or basic fibroblast growth factor (bFGF). In conclusion, we show that VEGF-A activates KCa-channels in HUVEC. However, KCa channel activity is not involved in VEGF-A- or bFGF-induced endothelial-cell proliferation. Since hyperpolarization of endothelial cells secondary to KCa-channel activation is electrically transmitted to vascular smooth muscle cells, which relax in response to hyperpolarization, the VEGF-A-induced KCa channel activation might contribute to VEGF-A-induced vasorelaxation.  相似文献   

9.
Hair cells in the turtle cochlea are frequency-tuned by a mechanism involving the combined activation of voltage-sensitive Ca2+ channels and Ca(2+)-activated K+ (KCa) channels. The main determinants of a hair cell's characteristic frequency (Fo) are the KCa channels' density and kinetics, both of which change systematically with location in the cochlea in conjunction with the observed frequency map. We have developed a model based on the differential expression of two KCa channel subunits, which when accompanied by concurrent changes in other properties (e.g., density of Ca2+ channels and inwardly rectifying K+ channels), will generate sharp tuning at frequencies from 40 to 600 Hz. The kinetic properties of the two subunits were derived from previous single-channel analysis, and it was assumed that the subunits (A and B) combine to form five species of tetrameric channel (A4, A3B, A2B2, AB3, and B4) with intermediate kinetics and overlapping distribution. Expression of KCa and other channels was assumed to be regulated by diffusional gradients in either one or two chemicals. The results are consistent with both current- and voltage-clamp data on turtle hair cells, and they show that five channel species are sufficient to produce smooth changes in both Fo and kinetics of the macroscopic KCa current. Other schemes for varying KCa channel kinetics are examined, including one that allows extension of the model to the chick cochlea to produce hair cells with Fo's from 130 to 4000 Hz. A necessary assumption in all models is a gradient in the values of the parameters identified with the cell's cytoplasmic Ca2+ buffer.  相似文献   

10.
Chronic hyperglycemia and hypercholesterolemia have been shown to alter ionic currents in vascular smooth muscle. We tested the hypothesis that the combined effect of hyperglycemia and hyperlipidemia (diabetic dyslipidemia) would increase the Ca2+-sensitive K+ (KCa) current as a compensatory response to an increase in intracellular Ca2+ concentration. We also hypothesized that exercise training would prevent this elevation in KCa current. Miniature Yucatan swine were randomly assigned to five groups: control, standard pig chow (C, n = 6); hyperlipidemic, high-fat pig chow (H, n = 5); diabetic, standard pig chow (D, n = 7); diabetic, high-fat pig chow ("diabetic dyslipidemic," DD, n = 12); and exercise-trained DD (DDX, n = 9). High-fat chow consisted of standard minipig chow supplemented with cholesterol (2%) and coconut oil. Increased coronary vasoconstriction assessed in vivo and in vitro in DD was prevented by exercise. Patch-clamp experiments performed on right coronary artery smooth muscle cells resulted in greater K+ current densities in the H, D, and DD groups vs. the DDX group between -10 and 40 mV. In fura 2-loaded cells, current activated by caffeine-induced Ca2+ release was greater in H, D, and DD compared with C and DDX (P < 0.05), whereas intracellular Ca2+ concentration was not different across groups. Finally, there were no differences in the KCa or Kv channel protein content between groups. These data indicate that hyperglycemia, hyperlipidemia, and diabetic dyslipidemia lead to elevated whole cell K+ current and increased functional coupling of KCa and Ca2+ release. Endurance exercise prevented increased coupling of Ca2+ release to KCa channel activation in diabetic dyslipidemia.  相似文献   

11.
The HIV-1 Nef protein plays an important role in the development of the pathology associated with AIDS. Despite various studies that have dealt with different aspects of Nef function, the complete mechanism by which it alters the physiology of infected cells remains to be established. Nef can associate with cell membranes, therefore supporting the hypothesis that it might interact with membrane proteins as ionic channels and modify their electrical properties. By using the patch-clamp technique, we found that Nef expression determines a 25-mV depolarization of lymphoblastoid CEM cells. Both charybdotoxin (CTX) and the membrane-permeable Ca2+ chelator BAPTA/AM depolarized the membrane of native cells without modifying that of Nef-transfected cells. These data suggested that the resting potential in native CEM cells is settled by a CTX- and Ca2+-sensitive K+ channel (KCa,CTX), whose activity is absent in Nef-expressing cells. This was confirmed by direct measurements of whole-cell KCa,CTX currents. Single-channel recordings on excised patches showed that a KCa,CTX channel of 35 pS with a half-activation near 400 nM Ca2+ was present in both native and Nef-transfected cells. The measurements of free intracellular Ca2+ were not different in the two cell lines, but Nef-transfected cells displayed an increased Ca2+ content in ionomycin-sensitive stores. Taken together, these results indicate that Nef expression alters the resting membrane potential of the T lymphocyte cell line by inhibiting a KCa,CTX channel, possibly by intervening in the regulation of intracellular Ca2+ homeostasis.  相似文献   

12.
Ion channels participate in regulation of cell proliferation. However, though preadipocyte (the progenitor of fat cell) is a type of highly proliferating cells, ion channel expression and their role in proliferation is not understood in human preadipocytes. The present study was designed to characterize ion channels using whole-cell patch clamp technique, RT-PCR, and Western blotting. It was found that a 4-aminopyridine- (4-AP) sensitive transient outward K(+) current (I(to)) was present in a small population of (32.0%) cells, and an outward "noisy" big conductance Ca(2+)-activated K(+) current (I(KCa)) was present in most (92.7%) preadipocytes. The noisy current was inhibited by the big conductance I(KCa) channel blocker paxilline (1 microM), and enhanced by the Ca(2+) ionophore A23187 (5 microM) and the big conductance I(KCa) channel activator NS1619 (10 microM). RT-PCR and Western blot revealed the molecular identities (i.e., KCa1.1 and Kv4.2) of the functional ionic currents I(KCa) and I(to). Blockade of I(KCa) or I(to) with paxilline or 4-AP reduced preadipocyte proliferation, and similar results were obtained with specific siRNAs targeting to KCa1.1 and Kv4.2. Flow cytometric analysis showed ion channel blockade or knockdown of KCa1.1 or Kv4.2 with specific siRNA increased the cell number of G0/G1 phase. The present study demonstrates for the first time that two types of functional ion channel currents, I(to) and big conductance I(KCa), are present in human preadipocytes and that these two types of ion channels participate in regulating proliferation of human preadipocytes.  相似文献   

13.
In Th1 and Th2 lymphocytes, activation begins with identical stimuli but results in the production of different cytokines. The expression of some cytokine genes is differentially induced according to the amplitude and pattern of Ca2+ signaling. Using fura- 2 Ca2+ imaging of murine Th1 and Th2 clones, we observed that the Ca2+ rise elicited following store depletion with thapsigargin is significantly lower in Th2 cells than in Th1 cells. Maximal Ca2+ influx rates and whole-cell Ca2+ currents showed that both Th1 and Th2 cells express indistinguishable Ca2+-release-activated Ca2+ channels. Therefore, we investigated other mechanisms controlling the concentration of intracellular Ca2+, including K+ channels and Ca2+ clearance from the cytosol. Whole-cell recording demonstrated that there is no distinction in the amplitudes of voltage-gated K+ currents in the two cell types. Ca2+-activated K+ (KCa) currents, however, were significantly smaller in Th2 cells than in Th1 cells. Pharmacological equalization of Ca2+-activated K+ currents in the two cell types reduced but did not completely eliminate the difference between Th1 and Th2 Ca2+ responses, suggesting divergence in an additional Ca2+ regulatory mechanism. Therefore, we analyzed Ca2+ clearance from the cytosol of both cell types and found that Th2 cells extrude Ca2+ more quickly than Th1 cells. The combination of a faster Ca2+ clearance mechanism and smaller Ca2+-activated K+ currents in Th2 cells accounts for the lower Ca2+ response of Th2 cells compared with Th1 cells.  相似文献   

14.
To determine whether hormone synthesis by the GH4C1 pituitary cell line could be regulated by specifically modulating the movement of Ca2+ through voltage-sensitive channels, we have compared the effects of the dihydropyridine Ca2+ channel agonist BAY K8644 and the antagonist nimodipine on hormone production and Ca2+ current in these cells. BAY K8644 elicited, after a 10-15-h lag, a dose-dependent increase in prolactin (PRL) production as determined by measurements of total intracellular and secreted hormone. Over a 72-h period, GH4C1 cells incubated with 300 nM BAY K8644 produced 2-3 times as much total PRL as control cells. The effect on PRL was specific, since BAY K8644 did not increase growth hormone production, cell growth rate, or total cell protein. Exposing GH4C1 cells to BAY K8644 for short periods, up to 90 min, did not induce the delayed increase in PRL production observed with longer incubations. The effects of nimodipine were opposite to those of the Ca2+ channel agonist. PRL production was reduced 85% during 48-h treatment with 200 nM nimodipine, whereas growth hormone production was decreased less than 15%, and cell growth and total protein were unaffected. The actions of these two drugs on PRL production were well correlated with their effects on GH4C1 Ca2+ currents as measured by whole-cell patch-clamp recordings. BAY K8644 enhanced the magnitude of the peak Ca2+ current and shifted the current-voltage relationship such that Ca2+ channels were activated at less depolarized potentials. Nimodipine potently inhibited Ca2+ movement through the non-inactivating channel, while it antagonized the increases elicited by BAY K8644. These results indicate that PRL synthesis by GH4C1 cells can be specifically regulated by agents that enhance or block the movement of Ca2+ through voltage-sensitive channels. They also suggest that hormone synthesis by a secretory cell may be coupled to electrical activity by the opening of Ca2+ channels.  相似文献   

15.
Differential segmental distribution of electrophysiologically distinct myocytes helps to explain the variability of the pulmonary arteries to vasoactive agents. We have studied whether Ca2+ -dependent CI- (CICa) and K+ (KCa) channels are activated differentially in enzymatically dispersed conduit and resistance myocytes. We measured cytosolic [Ca2+] and the changes of membrane current and potential elicited by spontaneous or agonist-induced Ca2+ oscillations. Conduit arteries contained a heterogeneous cell population with a variable mixture of KCa and CICa conductances. Resistance arteries contained a more homogeneous cell population with predominance of CICa channel activation. The relation between KCa and CICa conductances in a given conduit myocyte determines the size of the V(m)change in response to a rise of cytosolic [Ca2+]. Conduit myocytes tend to hyperpolarize towards the K+ equilibrium potential (approximately - 90 m V). In resistance myocytes, release of Ca2+ from stores activates CI Cachannels and brings Vm to a value close to the chloride equilibrium potential (approximately - 20 or - 30 m V) thus favouring opening of Ca2+ channels and Ca2+ influx. In resistance vessels CICachannels contribute to link agonist-induced Ca2+ release from stores and membrane depolarization, thus permitting protracted vasoconstriction.  相似文献   

16.
The effects of changes in membrane cholesterol on ion currents were investigated in pituitary GH3 cells. Depletion of membrane cholesterol by exposing cells to methyl-beta-cyclodextrin (MbetaCD), an oligosaccharide, resulted in an increase in the density of Ca2+-activated K+ current (IK(Ca)). However, no significant change in IK(Ca) density was demonstrated in GH3 cells treated with a mixture of MbetaCD and cholesterol. Cholesterol depletion with MbetaCD (1.5 mg/ml) slightly suppressed the density of voltage-dependent L-type Ca2+ current. In inside-out patches recorded from MbetaCD-treated cells, the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels was enhanced with no change in single-channel conductance. In MbetaCD-treated cells, voltage-sensitivity of BK(Ca) channels was increased; however, no change in Ca2+-sensitivity could be demonstrated. A negative correlation between adjacent closed and open times in BK(Ca) channels was observed in MbetaCD-treated cells. In inside-out patches from MbetaCD-treated cells, dexamethasone (30 microM) applied to the intracellular surface did not increase BK(Ca)-channel activity, although caffeic acid phenethyl ester and cilostazol still opened its probability effectively. However, no modification in the activity of ATP-sensitive K+ channels could be seen in MbetaCD-treated cells. Current-clamp recordings demonstrated that the cholesterol depletion maneuver with MbetaCD reduced the firing of action potentials. Therefore, the increase in BK(Ca)-channel activity induced by membrane depletion may influence the functional activities of neurons or neuroendocrine cells if similar results occur in vivo.  相似文献   

17.
The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.  相似文献   

18.
Mechanisms that underlie autoregulation in the newborn vasculature are unclear. Here we tested the hypothesis that in newborn porcine cerebral arteries intravascular pressure elevates wall tension, leading to an increase in intracellular calcium concentration ([Ca2+]i) and a constriction that is opposed by pressure-induced K+ channel activation. Incremental step (20 mmHg) elevations in intravascular pressure between 10 and 90 mmHg induced an immediate transient elevation in arterial wall [Ca2+]i and a short-lived constriction that was followed by a smaller steady-state [Ca2+]i elevation and sustained constriction. Pressures between 10 and 90 mmHg increased steady-state arterial wall [Ca2+]i between approximately 142 and 299 nM and myogenic (defined as passive-active) tension between 25 and 437 dyn/cm. The relationship between pressure and myogenic tension was strongly Ca2+ dependent until forced dilation. At low pressure, 60 mM K+ induced a steady-state elevation in arterial wall [Ca2+]i and a constriction. Nimodipine, a voltage-dependent Ca2+ channel blocker, and removal of extracellular Ca2+ similarly dilated arteries at low or high pressures. 4-Aminopyridine, a voltage-dependent K+ (Kv) channel blocker, induced significantly larger constrictions at high pressure, when compared with those at low pressure. Although selective Ca2+-activated K+ (KCa) channel blockers and intracellular Ca2+ release inhibitors induced only small constrictions at low and high pressures, a low concentration of caffeine (1 microM), a ryanodine-sensitive Ca2+ release (RyR) channel activator, increased KCa channel activity and induced dilation. These data suggest that in newborn cerebral arteries, intravascular pressure elevates wall tension, leading to voltage-dependent Ca2+ channel activation, an increase in wall [Ca2+]i and Ca2+-dependent constriction. In addition, pressure strongly activates Kv channels that opposes constriction but only weakly activates KCa channels.  相似文献   

19.
The exocrine salivary glands of mammals secrete K+ by an unknown pathway that has been associated with HCO3(-) efflux. However, the present studies found that K+ secretion in the mouse submandibular gland did not require HCO3(-), demonstrating that neither K+/HCO3(-) cotransport nor K+/H+ exchange mechanisms were involved. Because HCO3(-) did not appear to participate in this process, we tested whether a K channel is required. Indeed, K+ secretion was inhibited >75% in mice with a null mutation in the maxi-K, Ca2+-activated K channel (KCa1.1) but was unchanged in mice lacking the intermediate-conductance IKCa1 channel (KCa3.1). Moreover, paxilline, a specific maxi-K channel blocker, dramatically reduced the K+ concentration in submandibular saliva. The K+ concentration of saliva is well known to be flow rate dependent, the K+ concentration increasing as the flow decreases. The flow rate dependence of K+ secretion was nearly eliminated in KCa1.1 null mice, suggesting an important role for KCa1.1 channels in this process as well. Importantly, a maxi-K-like current had not been previously detected in duct cells, the theoretical site of K+ secretion, but we found that KCa1.1 channels localized to the apical membranes of both striated and excretory duct cells, but not granular duct cells, using immunohistochemistry. Consistent with this latter observation, maxi-K currents were not detected in granular duct cells. Taken together, these results demonstrate that the secretion of K+ requires and is likely mediated by KCa1.1 potassium channels localized to the apical membranes of striated and excretory duct cells in the mouse submandibular exocrine gland.  相似文献   

20.
We compared the pattern of K+ channels and the mitogenic sensitivity to K+ channel blocking agents in primary cultures of rabbit proximal tubule cells (PC.RC) (Ronco et al., 1990) and two derived SV-40-transformed cell lines exhibiting specific functions of proximal (RC.SV1) and more distal (RC.SV2) tubule cells (Vandewalle et al., 1989). First, K+ channel equipment surveyed by the patch-clamp technique was modified after SV-40 transformation in both cell lines; although a high conductance Ca(2+)-activated K+ channel [K+200 (Ca2+)] remained the most frequently recorded K+ channel, the transformed state was characterized by emergence of three Ca(2+)-insensitive K+ channels (150, 50, and 30 pS), virtually absent from primary culture, contrasting with reduced frequency of two Ca(2+)-sensitive K+ channels (80 and 40 pS). Second, quinine (Q), tetraethylammonium ion (TEA) and charybdotoxin (CTX), at concentrations not affecting cell viability, all decreased 3H-TdR incorporation and cell growth in PC.RC cultures, but only TEA had similar effects in transformed cells. The latter were further characterized by paradoxical effects of Q that induced a marked increase in thymidine incorporation. Q also exerted contrasting effects on channel activity: it inhibited the [K+200 (Ca2+)] when the channel was highly active, with a Ki (0.2 mM) similar to that measured for 3H-TdR incorporation in PC.RC cells (0.3 mM), but increased the mean current through poorly active channels. TEA blocked all K+ channels with conductance greater than or equal to 50 pS, including the [K+200 (Ca2+)], in a range of concentrations that substantially affected cell proliferation. The unique effect of TEA on SV-40-transformed cells might be related to broad inhibition of K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号