首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Persistent hyperplastic primary vitreous (PHPV) is a common congenital developmental anomaly of the eye that results following failure of the embryological, primary vitreous and hyaloid vasculature to regress. It typically presents unilaterally without associated systemic findings. Although the etiology is assumed to be identical in each of its three variants, PHPV is still subclassified into three presentations. The purely anterior presentation of PHPV is also known as persistent tunica vasculosa lentis and persistent posterior fetal fibrovascular sheath of the lens. It occurs in eyes with pathology of the anterior segment. This form typically involves cataract, glaucoma and a retrolenticular membrane. The purely posterior presentation of PHPV is termed falciform retinal septum and ablatio falcicormis congentia. It occurs in eyes with abnormalities confined to the posterior segment such as retinal folds, vitreal stalk, vitreal membranes, macular abnormalities and optic disc abnormalities. A combination of anterior and posterior presentations is the most commonly seen clinical presentation. Case report. We present a case in which an 11-year old male was referred to our office for reevaluation of a large angle esotropia, strabismic and deprivational amblyopia and previously diagnosed PHPV, OD. Conclusion. Without treatment, PHPV can produce recurrent intraocular hemorrhage, secondary glaucoma and eventually require enucleation. Early surgical intervention is necessary to prevent progressive pathologic changes and to obtain the best visual results. Finally, while PHPV is a documented source of leukocoria, clinicians should be aware of differential diagnoses which involve the white pupil (congenital cataract, retinoblastoma, Norrie's disease, retinopathy of prematurity, retinal detachment and Coat's disease).  相似文献   

2.
3.
Generation of double knockout mice for collagen types XV and XVIII indicated surprisingly that the mice are viable and do not suffer from any new major defects. Although the two collagens are closely related molecules sharing similarities in tissue expression, we conclude that their biological roles are essentially separate, that of type XV in muscle and type XVIII in the eye. Detailed comparisons of the null mice eyes indicated that type XV collagen seems to be involved in the tunica vasculosa lentis regression process, whereas type XVIII is in the regression of vasa hyaloidea propria, and only minor compensatory effects could be detected. Furthermore, the essential role of type XVIII collagen in the eye is highlighted by the occurrence of this collagen in the epithelial basement membranes of the iris and the ciliary body and in the inner limiting membrane of the retina, sites lacking type XV.  相似文献   

4.
We have established that the Arf tumor suppressor gene regulates mural cell biology in the hyaloid vascular system (HVS) of the developing eye. In the absence of Arf, perivascular cells accumulate within the HVS and prevent its involution. We now demonstrate that mural cell accumulation evident at embryonic day (E) 13.5 in Arf(-/-) mice was driven by excess proliferation at E12.5, when Arf expression was detectable in vitreous pericyte-like cells. Their expression of Arf overlapped with Pdgf receptor beta (Pdgfrbeta), which is essential for pericyte accumulation in the mouse. In cultured cells, p19Arf decreased Pdgfrbeta and blocked Pdgf-B-driven proliferation independently of Mdm2 and p53. The presence of a normal Arf allele correlated with decreased Pdgfrbeta in the embryonic vitreous. Pdgfrbeta was required for vitreous cell accumulation in the absence of Arf. Our findings demonstrate a novel, p53- and Mdm2-independent function for p19Arf. Instead of solely sensing excessive mitogenic stimuli, developmental cues induce Arf to block Pdgfrbeta-dependent signals and prevent the accumulation of perivascular cells selectively in a vascular bed destined to regress.  相似文献   

5.
6.
Microphthalmia, coloboma and persistent fetal vasculature within the vitreous cavity are among the most common human congenital ocular anomalies, and each has been associated with a variety of genetic disorders. Here we show that, in the mouse, loss of frizzled 5 (Fz5) - a putative Wnt receptor expressed in the eye field, optic cup and retina - causes all of these defects with high penetrance. In the developing Fz5(-/-) eye, the sequence of defects, in order of appearance, is: increased cell death in the ventral retina, delayed and/or incomplete closure of the ventral fissure, an excess of mesenchymal cells in the vitreous cavity, an excess of retinal astrocyte precursors and mature astrocytes, and persistence of the hyaloid vasculature in association with a large number of pigment cells. Fz5(-/-) mice also exhibit a late-onset progressive retinal degeneration by approximately 6 months of age, which might be related to the expression of Fz5 in Müller glia in the adult retina. These results demonstrate a central role for frizzled signaling in mammalian eye development and are likely to be relevant to the etiology of congenital human ocular anomalies.  相似文献   

7.
Ectopic expression of oncogenes such as Ras induces expression of p19(Arf), which, in turn, activates p53 and growth arrest. Here, we used a multistage model of squamous cell carcinoma development to investigate the functional interactions between Ras, p19(Arf), and p53 during tumor progression in the mouse. Skin tumors were induced in wild-type, p19(Arf)-deficient, and p53-deficient mice using the DMBA/TPA two-step protocol. Activating mutations in Hras were detected in all papillomas and carcinomas examined, regardless of genotype. Relative to wild-type mice, the growth rate of papillomas was greater in p19(Arf)-deficient mice, and reduced in p53-deficient mice. Malignant conversion of papillomas to squamous cell carcinomas, as well as metastasis to lymph nodes and lungs, was markedly accelerated in both p19 (Arf)- and p53-deficient mice. Thus, p19(Arf) inhibits the growth rate of tumors in a p53-independent manner. Through its regulation of p53, p19(Arf) also suppresses malignant conversion and metastasis. p53 expression was upregulated in papillomas from wild-type but not p19( Arf)-null mice, and p53 mutations were more frequently seen in wild-type than in p19( Arf)-null carcinomas. This indicates that selection for p53 mutations is a direct result of signaling from the initiating oncogenic lesion, Hras, acting through p19(Arf).  相似文献   

8.
The p53 tumor suppressor is a multifunctional protein, which regulates cell cycle, differentiation, DNA repair and apoptosis. Experimental seizures up-regulate p53 in the brain, and acute seizure-induced neuronal death can be reduced by genetic deletion or pharmacologic inhibition of p53. However, few long-term functional consequences of p53 deficiency have been explored. Here, we investigated the development of epilepsy triggered by status epilepticus in wild-type and p53-deficient mice. Analysis of electroencephalogram (EEG) recordings during status epilepticus induced by intra-amygdala kainic acid (KA) showed that seizures lasted significantly longer in p53-deficient mice compared with wild-type animals. Nevertheless, neuronal death in the hippocampal CA3 subfield and the neocortex was significantly reduced at 72 h in p53-deficient mice. Long-term continuous EEG telemetry recordings after status epilepticus determined that the sum duration of spontaneous seizures was significantly longer in p53-deficient compared with wild-type mice. Hippocampal damage and neuropeptide Y distribution at the end of chronic recordings was found to be similar between p53-deficient and wild-type mice. The present study identifies protracted KA-induced electrographic status as a novel outcome of p53 deficiency and shows that the absence of p53 leads to an exacerbated epileptic phenotype. Accordingly, targeting p53 to protect against status epilepticus or related neurologic insults may be offset by deleterious consequences of reduced p53 function during epileptogenesis or in chronic epilepsy.  相似文献   

9.
The PP2C phosphatase Wip1 dephosphorylates p38 and blocks UV-induced p53 activation in cultured human cells. Although the level of TCR-induced p38 MAPK activity is initially comparable between Wip1-/- and wild-type thymocytes, phosphatase-deficient cells failed to down-regulate p38 MAPK activity after 6 h. Analysis of young Wip1-deficient mice showed that they had fewer splenic T cells. Their thymi were smaller, contained significantly fewer cells, and failed to undergo age-dependent involution compared with wild-type animals. Analysis of thymocyte subset numbers by flow cytometry suggested that cell numbers starting at the double-negative (DN)4 stage are significantly reduced in Wip1-deficient mice, and p53 activity is elevated in cell-sorted DN4 and double-positive subpopulations. Although apoptosis and proliferation was normal in Wip1-/- DN4 cells, they appeared to be in cell cycle arrest. In contrast, a significantly higher percentage of apoptotic cells were found in the double-positive population, and down-regulation of thymocyte p38 MAPK activation by anti-CD3 was delayed. To examine the role of p38 MAPK in early thymic subpopulations, fetal thymic organ cultures cultured in the presence/absence of a p38 MAPK inhibitor did not correct the thymic phenotype. In contrast, the abnormal thymic phenotype of Wip1-deficient mice was reversed in the absence of p53. These data suggest that Wip1 down-regulates p53 activation in the thymus and is required for normal alphabeta T cell development.  相似文献   

10.
Ectopic expression of oncogenes such as Ras induces expression of p19Arf, which, in turn, activates p53 and growth arrest. Here, we used a multistage model of squamous cell carcinoma development to investigate the functional interactions between Ras, p19Arf, and p53 during tumor progression in the mouse. Skin tumors were induced in wild-type, p19Arf-deficient, and p53-deficient mice using the DMBA/TPA two-step protocol. Activating mutations in Hras were detected in all papillomas and carcinomas examined, regardless of genotype. Relative to wild-type mice, the growth rate of papillomas was greater in p19Arf-deficient mice, and reduced in p53-deficient mice. Malignant conversion of papillomas to squamous cell carcinomas, as well as metastasis to lymph nodes and lungs, was markedly accelerated in both p19 Arf- and p53-deficient mice. Thus, p19Arf inhibits the growth rate of tumors in a p53-independent manner. Through its regulation of p53, p19Arf also suppresses malignant conversion and metastasis. p53 expression was upregulated in papillomas from wild-type but not p19 Arf-null mice, and p53 mutations were more frequently seen in wild-type than in p19 Arf-null carcinomas. This indicates that selection for p53 mutations is a direct result of signaling from the initiating oncogenic lesion, Hras, acting through p19Arf.  相似文献   

11.
Tubedown-1 (tbdn-1) is a mammalian homologue of the N-terminal acetyltransferase subunit NAT1 of Saccharomyces cerevisiae and copurifies with an acetyltransferase activity. Tbdn-1 expression in endothelial cells becomes downregulated during the formation of capillary-like structures in vitro and is regulated in vivo in a manner which suggests a functional role in dampening blood vessel development. Here we show that tbdn-1 is expressed highly in the vitreal vascular network (tunica vasculosa lentis and vasa hyaloidea propria) during the pruning and remodeling phases of this transient structure. The vitreal blood vessels of mice harboring a targeted inactivation of TGF-beta2 fail to remodel and abnormally accumulate, a phenomenon reminiscent of the ocular pathology resembling persistent fetal vasculature (PFV) in humans. Since suppression of normal tbdn-1 expression has been previously observed in retinal vessel proliferation, we analyzed vitreal vascular changes and tbdn-1 expression in TGF-beta2(-/-) eyes. The nuclei of vitreal vessel endothelial cells in TGF-beta2(-/-) eyes express proliferating cell nuclear antigen (PCNA) and exhibit increased levels of active (P42/44)mitogen-activated protein kinase (phospho-(P42/44)MAPK), characteristics consistent with proliferative endothelial cells. In contrast to normal vitreal vessels, collagen IV expression exhibited a disorganized pattern in the TGF-beta2(-/-) vitreal vessels, suggesting vessel disorganization and possibly a breakdown of vessel basal laminae. Moreover, vitreal vessels of TGF-beta2(-/-) mice lack expression of pericyte markers (CD13, alpha smooth muscle actin) and show ultrastructural changes consistent with pericyte degeneration. The accumulating vitreal blood vessels of TGF-beta2(-/-) mice, while maintaining expression of the endothelial marker von Willebrand Factor, show a significant decrease in the expression of tbdn-1. We addressed the functional role of tbdn-1 in the regulation of vitreal blood vessels using an in vitro model of choroid-retina capillary outgrowth. Clones of the RF/6A fetal choroid-retina endothelial cell line showing suppression of tbdn-1 levels after overexpression of an antisense TBDN-1 cDNA display a significant increase in the formation of capillary-like structures in vitro compared with controls. These findings suggest that tbdn-1 inhibits capillary-like formation in vitro and may serve to dampen vitreal blood vessel formation preceding the regression of the vitreal vasculature during development. Our results also suggest that tbdn-1 may participate with TGF-beta2 in regulating normal development of the vitreal vasculature.  相似文献   

12.
《Journal of morphology》2017,278(7):896-906
Vision is one of the main sensory systems in amphibians, and the eye structure is highly associated with habitat conditions. The ontogeny, as well as the adult structure, of the eye has been studied in only a few species. The life change after metamorphosis is accompanied by changes in the visual environment. The aim of this work is to describe the eye ontogeny of Pleurodema bufoninum and to compare it with that of Pleurodema somuncurense . Specimens of both Pleurodema species were processed for histology analysis at different stages of development, including the tadpole, postmetamorphic, and adult forms. Eyes in both Pleurodema species are composed of the 3 tunics, tunica fibrosa , tunica vasculosa , and tunica interna , and the lens. Additionally, in both, the iris presents a projection on its dorsal and ventral free ends that screens the cornea. This structure has been reported in the eye of several anuran species and is called the umbraculum, meniscus or pupillary nodule. Our results show that the structures related to light capture (retina and lens) appear early in larval life, while the components of the terrestrial‐life eye (scleral cartilage, specialized cornea, eyelids, nictitating membrane, and Harderian's gland) do not develop until the metamorphic climax, when the tadpole leaves the water. The adult eyes of P. bufoninum and P. somuncurense are very similar in structure and development.  相似文献   

13.
Simian virus 40 large T antigen transforms cells by sequestration and inactivation of the tumor suppressor proteins p53, retinoblastoma gene product (pRb), and the pRb-related proteins p107 and p130. Thus, the absence of functional p53 is expected to promote T antigen-mediated tumorigenesis. However, in a transgenic mouse model of T antigen-mediated beta cell carcinogenesis (Rip1Tag2), tumor volumes are significantly diminished when these mice are intercrossed with p53-deficient mice. Whereas the incidence of beta tumor cell apoptosis is unaffected, their proliferation rate is reduced in p53-deficient beta cell tumors in vivo and in cell lines established from these tumors in vitro. Biochemical analyses reveal higher levels of T antigen in wild-type tumor cells as compared to p53-deficient tumor cells. The data indicate that p53 stabilizes SV40 large T antigen, thereby augmenting its oncogenic potential as manifested by increased proliferation rates in wild-type beta tumor cells as compared to p53-deficient beta tumor cells.  相似文献   

14.
15.
Thirty-five years ago, Siminovitch et al. (Siminovitch L, Till JE, McCulloch EA. J Cell Com Physiol 64:23-32, 1964), using serially transplanted mouse spleens at 14-day intervals, observed a markedly progressive decline in the proliferative capacity of bone marrow (BM) cells, with the loss of clonogenicity by the fourth transplant generation. Using the same protocol, we assessed the proliferative capacity of p53-deficient mouse BM cells transplanted serially at the same 14-day intervals into lethally irradiated mice, which was a useful tool for understanding the characteristics of hemopoietic stem cells lacking solely the p53 gene function. BM cells from p53-deficient homozygous (p53(-/-)), p53-heterozygous (p53(+/-)), and wild-type (p53(+/+)) C57BL/6 mice were transplanted into lethally irradiated C57BL/6 recipients. Fourteen days later, the repopulated spleens were harvested, and 10(7)cells were retransplanted into secondary recipients. Serial transplantation was continued at 14-day intervals until hemopoietic repopulation failure. The number of heterozygous and homozygous p53-deficient spleen cells increased logarithmically up to the fourth and fifth passages, respectively, whereas wild-type spleen cells ceased to proliferate by the third passage. The number of macroscopic spleen colonies increased logarithmically until the third passage in recipients of heterozygous and homozygous p53-deficient cells, but ceased to grow by the second passage in recipients of wild-type cells. The numbers of heterozygous and homozygous p53-deficient colony forming units in spleen (CFUs-S) remained stable during the first four transplant generations, whereas that of wild-type CFUs-S decreased progressively from the first transplant generation onward. The clonogenicity of p53-deficient cells was lost when the number of CFUs-S per spleen decreased to below 10. This suggests that one out of 10 CFUs-S might be long-term repopulating cells (LTRCs), and that p53-deficient LTRCs may proliferate more rapidly than wild-type LTRCs. Longer passages that were possible in the p53-deficient groups were considered to be due to the faster cell cycle of the p53-deficient hemopoietic progenitor cells, as determined by bromodeoxyuridine incorporation with purging by UV light exposure, followed by hemopoietic colony assay (BUUV assay).  相似文献   

16.
A portion of fetal germ cells undergoes apoptosis in the physiological context, but the molecular mechanisms of their apoptosis are largely unknown. Because p53 tumor suppressor gene product promotes apoptosis in various types of cells, we have investigated the expression of p53 in fetal gonads and examined the influence of loss of p53 function in fetal gonad cells using mice deficient in the p53 gene. We found that the expression of p53 protein in fetal testis was induced after 15.5 dpc (days post coitum), while the expression was not detected in fetal ovary. The number of apoptotic cells found in the seminiferous tubules of fetal testes was not significantly different between p53-deficient and wild-type mice until 16.5 dpc. At 17.5 dpc, however, more apoptotic cells were observed in wild-type testes than in the p53-deficient mice. In contrast, a similar number of apoptotic cells was found in fetal ovaries throughout these developmental stages. These observations indicate that p53 promotes apoptosis of fetal testicular cells after 16.5 dpc.  相似文献   

17.
During embryogenesis, the development and differentiation of the eye requires the concomitant formation of the neural/glial elements along with a dense vascular network. The adult neural retina is supported by two distinct vascular systems, the proper retinal vessels and the choroidal vessels. The two beds differ not only in their pattern of embryonic differentiation, but also in their function in the adult organism. The retinal vasculature has barrier properties similar to those observed in the brain, whereas the choroidal vessels display a highly fenestrated phenotype. The hyaloid vasculature is a transient embryonic vascular bed which is complete at birth in mammals and regresses contemporaneously with the formation of the retinal vasculature. The dependence of the retina on its blood supply makes it highly vulnerable to any vascular changes and indeed ocular diseases, such as proliferative retinopathy, age-related macular degeneration and the hyperplastic primary vitreous, which are associated with abnormalities of the different vascular beds of the eye. A number of factors have been implicated in developmental and pathological changes in vessel formation and regression, including fibroblast growth factors, platelet-derived endothelial growth factor and vascular endothelial growth factor, among others. The purpose of this review is to describe and discuss new insights into the mechanisms and molecular cues involved in the development of the normal and pathological vascular systems of the eye. The characterization of the molecules and cell-cell interactions involved in the formation, stabilization and regression of new vessels has led to the identification of potential control points for therapeutic intervention.  相似文献   

18.
Mice exposed to a lethal dose of radiation were repopulated with heterozygous p53(+/-) (TRP53(+/-)) bone marrow cells and then exposed to doses of 1, 3 and 5 Gy 1 month later. This resulted in the transplanted bone marrow-specific diseases other than competitively induced nonhematopoietic neoplasms. Interestingly, the present study showed a high frequency of stem cell leukemia, i.e., leukemias characterized by a lack of differentiation due also to p53 deficiency, even after 5 Gy irradiation. The frequencies of stem cell leukemias (and those of total hematopoietic malignancies) were 16% (24%) at 1 Gy and 45% (75%) at 3 Gy. Furthermore, markedly high incidences of stem cell leukemias were observed at 5 Gy in p53(+/-) mice, i.e., 87% (100%) in the transplantation assay and 60% (83.3%) in the whole-body assay, whereas a conventional whole-body assay induced only 14% in wild-type mice. The high incidence of stem cell leukemias observed in this study using heterozygous p53-deficient mice agrees with results of a previous study of homozygous p53-deficient mice and is consistent with the high frequency of loss of heterozygosity in the p53 wild-type allele observed in leukemias. This suggests that the target cells for radiation-induced stem cell leukemias may be p53-deficient hematopoietic stem cells.  相似文献   

19.
Junctional adhesion molecule-A (JAM-A, JAM-1, F11R) is an Ig domain containing transmembrane protein that has been proposed to function in diverse processes including platelet activation and adhesion, leukocyte transmigration, angiogenesis, epithelial cell shape and endothelial cell migration although its function in vivo is less well established. In the mouse eye, JAM-A protein expression is first detected at 12.5 dpc in the blood vessels of the tunica vasculosa, while it is first detected in both the corneal epithelium and lens between 13.5 and 14.5 dpc. In the corneal epithelium, JAM-A levels remain appreciable throughout life, while JAM-A immunostaining becomes stronger in the lens as the animals age. Both the cornea and lens of mice lacking an intact JAM-A gene are transparent until at least a year of age, although the cells of the JAM-A null corneal epithelium are irregularly shaped. In wild-type mice, JAM-A protein is found at the leading edge of repairing corneal epithelial wounds, however, corneal epithelial wound repair was qualitatively normal in JAM-A null animals. In summary, JAM-A is expressed in the corneal epithelium where it appears to regulate cell shape.  相似文献   

20.

Background

Valuable insights into the complex process of retinal vascular development can be gained using models with abnormal retinal vasculature. Two such models are the recently described mouse lines with mutations in Lama1, an important component of the retinal internal limiting membrane (ILM). These mutants have a persistence of the fetal vasculature of vitreous (FVV) but lack a primary retinal vascular plexus. The present study provides a detailed analysis of astrocyte and vascular development in these Lama1 mutants.

Results

Although astrocytes and blood vessels initially migrate into Lama1 mutant retinas, both traverse the peripapillary ILM into the vitreous by P3. Once in the vitreous, blood vessels anastomose with vessels of the vasa hyaloidea propria, part of the FVV, and eventually re-enter the retina where they dive to form the inner and outer retinal capillary networks. Astrocytes continue proliferating within the vitreous to form a dense mesh that resembles epiretinal membranes associated with persistent fetal vasculature and proliferative vitreoretinopathy.

Conclusions

Lama1 and a fully intact ILM are required for normal retinal vascular development. Mutations in Lama1 allow developing retinal vessels to enter the vitreous where they anastomose with vessels of the hyaloid system which persist and expand. Together, these vessels branch into the retina to form fairly normal inner retinal vascular capillary plexi. The Lama1 mutants described in this report are potential models for studying the human conditions persistent fetal vasculature and proliferative vitreoretinopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号