首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of biogenic amines (noradrenaline, dopamine), infused at different concentration into the aorta of the urethane anesthetized control and irradiated rats for 2 min., was followed on the basis of systemic blood pressure and mesenteric blood flow. The mesenteric blood flow was measured by means of an electromagnetic flow meter. The changes observed i.e. after dopamine an increase in pressure and flow, after noradrenaline an increase in pressure and a decrease in flow with an increase after infusion had been stopped, correspond to those obtained in larger animals. In many, but not in all cases, the response is proportional to the log of the concentration of the amine infused. Irradiation with 2 kR, i.e. a dose which causes the animals to die from the gastrointestinal syndrome after 3 days, modified the response to dopamine and noradrenaline. The changes are, for noradrenaline, a greater pressure and a lower flow responses and for dopamine a greater pressure response at low and middle doses.  相似文献   

2.
J R Sowers  F W Beck  P Eggena 《Life sciences》1984,34(24):2339-2346
This study was designed to more selectively investigate the dopaminergic regulation of 18-hydroxycorticosterone (18-OHB) and aldosterone production by the adrenal zona glomerulosa. Mature rhesus monkeys received either an infusion of dopamine (2 micrograms/kg/min) or 5% dextrose (0.2 ml/min) over a 60 min period (N=6). Dopamine had no effect on plasma levels of renin activity, cortisol, corticosterone, aldosterone or blood pressure. However, dopamine suppressed (p less than 0.05) plasma 18-OHB levels from a baseline of 31.6 +/- 3.5 ng/dl to 23.6 +/- 2.1 ng/dl at 60 min after onset of infusion. This observation is in agreement with some studies in humans but differs from others in which no depression in 18-OHB was observed following dopamine infusion. Dopamine infusion markedly (p less than 0.001) suppressed plasma PRL levels by 30 min after onset of infusion. Corticosteroid responses to metoclopramide (200 micrograms/kg) after dexamethasone 1 mg im every 6 h X 5 days or placebo treatment (vehicle im every 6 h X 5 days) was then evaluated. Dexamethasone significantly suppressed basal cortisol, corticosterone, 18-OHB and aldosterone. Although dexamethasone blunted the prolactin response, it did not inhibit the aldosterone response to metoclopramide. The 18-OHB response to metoclopramide was increased (p less than 0.01) following dexamethasone treatment. Following dexamethasone suppression, 18-OHB levels were still lowered (p less than 0.05) by dopamine infusion. These results suggest that dopamine selectively inhibits zona glomerulosa production of 18-OHB and aldosterone in rhesus monkeys.  相似文献   

3.
Dopamine is often used as a pressor agent in sick newborn infants, but an increase in arterial blood pressure could disrupt the blood-brain barrier (BBB), especially in the preterm newborn. Using time-dated pregnant sheep, we tested the hypothesis that dopamine-induced hypertension increases fetal BBB permeability and cerebral water content. Barrier permeability was assessed in nine brain regions, including cerebral cortex, caudate, thalamus, brain stem, cerebellum, and spinal cord, by intravenous injection of the small tracer molecule [(14)C]aminoisobutyric acid at 10 min after the start of dopamine or saline infusion. We studied 23 chronically catheterized fetal sheep at 0.6 (93 days, n = 10) and 0.9 (132 days, n = 13) gestation. Intravenous infusion of dopamine increased mean arterial pressure from 38 +/- 3 to 53 +/- 5 mmHg in 93-day fetuses and from 55 +/- 5 to 77 +/- 8 mmHg in 132-day fetuses without a decrease in arterial O(2) content. These 40% increases in arterial pressure are close to the maximum hypertension reported for physiological stresses at these ages in fetal sheep. No significant increases in the brain transfer coefficient of aminoisobutyric acid were detected in any brain region in dopamine-treated fetuses compared with saline controls at 0.6 or 0.9 gestation. There was also no significant increase in cortical water content with dopamine infusion at either age. We conclude that a 40% increase in mean arterial pressure during dopamine infusion in normoxic fetal sheep does not produce substantial BBB disruption or cerebral edema even as early as 0.6 gestation.  相似文献   

4.
The effect of intravenous dopamine infusion (25 and 60 μg per kg and min consecutively) on blood flow distribution in the splanchnic region of anesthetized rabbits was studied applying the microsphere technique. During infusion of the low dose, blood flow increased most markedly in the stomach, less in the pancreas, jejunum and descending colon, and decreased in the spleen. In the stomach the increase was confined to the mucosa-submucosa. Raising the dose of dopamine resulted in a slight fall of arterial blood pressure, a further increase in blood flow through the mucosa-submucosa of the gastric fundus (+493 % as against control), but not through the other tissues studied. In another series, blood flow through the left gastric artery was measured with an electromagnetic flowmeter. The infusion of dopamine produced a dose-dependent increase in regional blood flow, which was inhibited by the dopamine antagonist bulbocapnine. Furthermore, the control blood flow was transiently decreased, and resistance to flow was increased by bulbocapnine. The results indicate that the dopamine-induced vasodilation in the gastrointestinal tract of the rabbit is largely restricted to the gastric circulation and suggest that specific receptors mediating this vasodilation are located in the mucosa-submucosa. It is hypothesized that endogenous dopamine functions as a vasodilatory tissue hormone in the gastric mucosa of the rabbit.  相似文献   

5.
Dopamine increases blood flow to a hypoxic left lower lobe in dogs. To elucidate possible mechanisms, left lower lobe collapse was induced in anesthetized dogs, and lobar (QLLL) and total (QT) pulmonary blood flow was measured by electromagnetic flow probes. Dopamine infusion increased mean pulmonary arterial pressure (Ppa), QT, and QLLL. However, the increase in QLLL was double that produced by a similar increase in Ppa without increase in QT (inflation of a Swan-Ganz balloon in right pulmonary artery) or by a similar increase in QT with smaller increase in Ppa (opening of arteriovenous fistulas). QLLL/QT was not changed by opening arteriovenous fistulas, but was increased by Swan-Ganz balloon inflation, and by infusion of dopamine. It is concluded that the increase in QLLL/QT produced by dopamine was due to a decrease in hypoxic vasoconstriction in the lobe secondary to an increase in mixed venous PO2 and to vasoconstriction in the oxygenated lung.  相似文献   

6.
The influence of VIP, a potent vasodilator, on central hemodynamics, splanchnic blood flow and glucose metabolism was studied in six healthy subjects. Teflon catheters were inserted into an artery, a femoral vein and a right-sided hepatic vein. A Swan-Ganz catheter was introduced percutaneously and its tip placed in the pulmonary artery. Determinations of cardiac output, systemic, pulmonary arterial and hepatic venous pressures as well as splanchnic blood flow were made in the basal state and at the end of two consecutive 45 min periods of VIP infusion at 5 and 10 ng/kg/min, respectively. Arterial blood samples for analysis of glucose, FFA, insulin and glucagon were drawn at timed intervals. VIP infusion at 5 ng/kg/min resulted in an increase in cardiac output (55%) and heart rate (25%) as well as a reduction in mean systemic arterial pressure (15%) and vascular resistance (45%). With the higher rate of VIP infusion heart rate tended to rise further while cardiac output and arterial pressure remained unchanged. At 15 min after the end of VIP infusion the above variables had returned to basal levels. Splanchnic blood flow and free hepatic venous pressure did not change significantly. Arterial concentrations of glucose, FFA, insulin and glucagon increased during VIP infusion. At 15 min after the end of infusion the glucose levels were still significantly higher than basal (20%). Net splanchnic glucose output did not change in response to VIP infusion. It is concluded that VIP exerts a potent vasodilatory effect resulting in augmented cardiac output and lowered systemic blood pressure and vascular resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
目的:研究依托咪酯持续输注用于乳腺癌根治术患者的镇痛效果及对血流动力学与炎症介质的影响。方法:选取2015年8月至2016年7月我院收治的84例乳腺癌根治术患者,根据患者入院顺序分为观察组和对照组,42例每组。观察组持续输注依托咪酯,对照组持续输注丙泊酚。比较两组患者手术后不同时点视觉模拟评分(VAS),拔管时舒张压(DBP)、收缩压(SBP)、心率(HR)及血清白介素-2(IL-2)、IL-10、IL-12水平的变化。结果:拔管时,观察组的DBP、SBP、HR水平显著低于对照组(P0.05)。观察组在术后1、5、10、24、48 h的VAS评分均显著低于对照组(P0.05)。观察组术后3天时血清IL-2水平显著高于对照组(P0.05),IL-10、IL-12水平显著低于对照组(P0.05)。结论:依托咪酯持续输注用于乳腺癌根治术患者中的镇痛效果良好,且对患者血流动力学与炎症反应的影响较小。  相似文献   

8.
Carl Epp  Fred Y. Aoki 《CMAJ》1985,132(6):663-664
A previously healthy 68-year-old woman presented with fever and sore throat. Her condition was initially diagnosed as necrotizing streptococcal tonsillitis and was treated with penicillin G, given intravenously. A swab of her throat taken for culture at the time of admission yielded Corynebacterium diphtheriae 48 hours later. At that time an electrocardiogram showed new T-wave inversion — evidence of diphtheritic myocarditis. She was immediately given 60 000 units of equine diphtheria antitoxin (following a test dose), but later that day she began choking, became apneic and died. The patient had not received any immunizing agents as a child, and no antitoxin was detected in a blood sample obtained prior to administration of the antitoxin. Her death re-emphasizes the seriousness of diphtheria, an infection to which many elderly people are susceptible.  相似文献   

9.
Twelve patients with severe persistent cardiogenic shock complicating acute myocardial infarction underwent single crossover treatment with intravenous dopamine and salbutamol to determine the more beneficial therapy. Salbutamol (10 to 40 microgram/min) reduced systemic vascular resistance and progressively increased both cardiac index and stroke index. Heart rate increased from 95 to 104 beats/min. Changes in mean arterial pressure and pulmonary artery end-diastolic pressure were small and insignificant. Dopamine infusion at rates of 200 and 400 micrograms/min also increased cardiac index and stroke index. Systemic vascular resistance fell slightly but mean arterial pressure rose from 57 to 65 mm Hg. Heart rate increased from 95 to 105 beats/min. Changes in pulmonary artery end-diastolic pressure were again small and insignificant. Dopamine infusion at 800 micrograms/min caused an appreciable increase in systemic vascular resistance; a further increment in mean arterial pressure was observed, though cardiac index fell slightly. Heart rate and pulmonary artery end-diastolic pressure rose steeply. Salbutamol, a vasodilator, increased cardiac output in patients with cardiogenic shock complicating acute myocardial infarction but did not influence blood pressure. If correction of hypotension is essential dopamine in low doses may be the preferred agent. Doses of 800 microgram/min, which is within the therapeutic range, worsen other manifestations of left ventricular dysfunction.  相似文献   

10.
Since the first report of streptococcal toxic shock-like syndrome (TSLS) in Japan, the numbers of reported patients have been increasing. However, clinical manifestations remain somewhat unclear, and factors potentially defining prognosis remain to be identified. We conducted a retrospective nationwide postal survey of major Japanese hospitals concerning clinical manifestations of invasive streptococcal infections including necrotizing fasciitis and TSLS. We evaluated 30 patients who died and 36 survivors. The overall mortality rate was 45%. Physical and laboratory findings on admission were compared statistically between fatal cases and surviving patients. Most laboratory results from the patients who died showed greater abnormality than results from the survivors. Patients who died had significantly fewer leukocytes and platelets, although their C-reactive protein concentrations were similar to those in survivors. Creatinine was significantly higher, and temperature and blood pressure were significantly lower, in patients who died. Patients with invasive streptococcal infections should be managed aggressively when the above features are present.  相似文献   

11.
Dopamine is used clinically to stabilize mean arterial blood pressure (MAP) in sick infants. One goal of this therapeutic intervention is to maintain adequate cerebral blood flow (CBF) and perfusion pressure. High-dose intravenous dopamine has been previously demonstrated to increase cerebrovascular resistance (CVR) in near-term fetal sheep. We hypothesized that this vascular response might limit cerebral vasodilatation during acute isocapnic hypoxia. We studied nine near-term chronically catheterized unanesthetized fetal sheep. Using radiolabeled microspheres to measure fetal CBF, we calculated CVR at baseline, during fetal hypoxia, and then with the addition of an intravenous dopamine infusion at 2.5, 7.5, and 25 microg.kg(-1).min(-1) while hypoxia continued. During acute isocapnic fetal hypoxia, CBF increased 73.0 +/- 14.1% and CVR decreased 38.9 +/- 4.9% from baseline. Dopamine infusion at 2.5 and 7.5 microg.kg(-1).min(-1), begun during hypoxia, did not alter CVR or MAP, but MAP increased when dopamine infusion was increased to 25 microg.kg(-1).min(-1). Dopamine did not alter CBF or affect the CBF response to hypoxia at any dose. However, CVR increased at a dopamine infusion rate of 25 microg.kg(-1).min(-1). This increase in CVR at the highest dopamine infusion rate is likely an autoregulatory response to the increase in MAP, similar to our previous findings. Therefore, in chronically catheterized unanesthetized near-term fetal sheep, dopamine does not alter the expected cerebrovascular responses to hypoxia.  相似文献   

12.
The potential involvement of D1 and D2 dopamine receptors in the effects of cocaine on cardiovascular function in squirrel monkeys was evaluated. A low dose of cocaine (0.1 mg/kg i.v.) produced increases in both blood pressure and heart rate. At the higher doses of cocaine (1.0-3.0 mg/kg) the heart rate response was biphasic, consisting of an early decrease followed by an increase in heart rate 10-20 min following injection. The dopamine D2 antagonist haloperidol (0.1 mg/kg i.m.) attenuated the heart rate increasing effect of cocaine, but doses as high as 0.03 mg/kg did not alter the blood pressure increase. The D1 antagonist SCH 23390 (0.01-0.03 mg/kg i.m.) did not attenuate either the blood pressure or heart rate increasing effects of cocaine. The D2 agonist quinpirole (1.0 mg/kg i.v.) produced increases in heart rate similar to cocaine, with little effect on blood pressure. Although effective against the heart rate increasing effect of cocaine, haloperidol (0.01 mg/kg) did not antagonize the heart rate increasing effects of quinpirole. The D1 agonist SKF 38393 (3.0 mg/kg i.v.) decreased heart rate and increased blood pressure. The blood pressure increasing effect of SKF 38393 was antagonized by 0.01 mg/kg SCH 23390. Haloperidol's ability to partially antagonize the tachycardiac response to cocaine suggests the involvement of D2 receptors in that response. However, the failure of haloperidol to antagonize quinpirole's tachycardiac effect suggests that non-dopaminergic mechanisms may also be involved in haloperidol's antagonism of cocaine's tachycardiac effect. The pressor effects of cocaine do not appear to be controlled by selective dopamine receptors.  相似文献   

13.
Human atrial natriuretic peptide was infused over four hours in three patients with essential hypertension. When the patients had a sodium intake of 200 mmol (mEq) daily an infusion of 0.5 micrograms atrial natriuretic peptide/min caused no significant change in blood pressure, whereas an infusion of 1.0 micrograms/min caused a gradual decrease in blood pressure and an increase in heart rate. After two to three hours of infusion with the higher dose two patients showed a sudden decrease in heart rate, with symptomatic hypotension. When the same patients had an intake of 50 mmol sodium daily their blood pressure was more sensitive to infusion of atrial natriuretic peptide; one patient again developed symptomatic hypotension, this time during an infusion of 0.5 micrograms/min. During all infusions distinct natriuresis occurred irrespective of whether blood pressure was affected. Prolonged, relatively low dose infusions of atrial natriuretic peptide can cause unwanted symptomatic hypotension. The effect on blood pressure is enhanced after sodium depletion, and blood pressure should be monitored carefully during longer infusions of atrial natriuretic peptide in patients with essential hypertension.  相似文献   

14.
The effects of dibutyryladenosine 3', 5'-monophosphate (DBcAMP), a nucleotide analogue, on blood pressure, serum electrolytes and plasma corticoid concentrations were investigated in 10 normotensive healthy subjects who received a constant diet containing 5-8 g sodium chloride in hospital. The systolic blood pressure did not change after infusion of 0.25 or 0.33 mg/kg/min of DBcAMP for 20 min. On the other hand, the diastolic blood pressure was significantly decreased after the infusion of DBcAMP. The levels of serum sodium and potassium were significantly decreased after the infusion of DBcAMP. After infusion of 0.25 mg/kg/min of DBcAMP for 20 min, the changes in plasma levels of 6 corticoids [progesterone, deoxycorticosterone (DOC), 18-hydroxy-deoxycorticosterone (18-OH-DOC), corticosterone, cortisol and dehydroepiandrosterone sulfate (DHEA-S] revealed no significant changes. After infusion of 0.33 mg/kg/min of DBcAMP for 20 min, the plasma levels of cortisol, corticosterone and 18-OH-DOC were significantly increased and the changes in plasma levels of aldosterone showed a tendency to increase but this was not significant. The plasma levels of DOC and DHEA-S were not appreciably changed, while the plasma levels of progesterone were significantly decreased after the infusion of 0.33 mg/kg/min of DBcAMP. It is speculated therefore that DBcAMP may act to enhance the activity of the sodium-potassium pump and to promote steroid biosynthesis dose-dependently in humans.  相似文献   

15.
Renal dopamine receptors participate in the regulation of blood pressure. Genetic factors, including polymorphisms of the dopamine D(2) receptor gene (DRD2) are associated with essential hypertension, but the mechanisms of their contribution are incompletely understood. Mice lacking Drd2 (D(2)-/-) have elevated blood pressure, increased renal expression of inflammatory factors, and renal injury. We tested the hypothesis that decreased dopamine D(2) receptor (D(2)R) function increases vulnerability to renal inflammation independently of blood pressure, is an immediate cause of renal injury, and contributes to the subsequent development of hypertension. In D(2)-/- mice, treatment with apocynin normalized blood pressure and decreased oxidative stress, but did not affect the expression of inflammatory factors. In mouse RPTCs Drd2 silencing increased the expression of TNFα and MCP-1, while treatment with a D(2)R agonist abolished the angiotensin II-induced increase in TNF-α and MCP-1. In uni-nephrectomized wild-type mice, selective Drd2 silencing by subcapsular infusion of Drd2 siRNA into the remaining kidney produced the same increase in renal cytokines/chemokines that occurs after Drd2 deletion, increased the expression of markers of renal injury, and increased blood pressure. Moreover, in mice with two intact kidneys, short-term Drd2 silencing in one kidney, leaving the other kidney undisturbed, induced inflammatory factors and markers of renal injury in the treated kidney without increasing blood pressure. Our results demonstrate that the impact of decreased D(2)R function on renal inflammation is a primary effect, not necessarily associated with enhanced oxidant activity, or blood pressure; renal damage is the cause, not the result, of hypertension. Deficient renal D(2)R function may be of clinical relevance since common polymorphisms of the human DRD2 gene result in decreased D(2)R expression and function.  相似文献   

16.
This study was conducted to assess the influence of dopamine on thyrotropin secretion in patients with primary hypothyroidism before and after optimized L-thyroxin replacement therapy. Thyrotropin responses to dopamine infusion (4 microg/kg/min over 3 hours) and IV metoclopramide (10 mg bolus), a dopamine receptor blocker were studied in 25 consecutive patients with primary hypothyroidism before and after achieving stable euthyroid state and compared with 15 normal age-matched controls. Thyrotropin response to both dopamine infusion (decremental) and IV metoclopramide bolus (incremental) was greater in patients with primary hypothyroidism than that in the control subjects. Thyrotropin response was greater in women than in men. The magnitude of decremental thyrotropin response to dopamine infusion and the incremental response to IV metoclopramide bolus significantly correlated with the basal T3 and T4 levels. Thyrotropin response was blunted to dopamine infusion but not to metoclopramide at follow-up after six-month replacement with L-thyroxin, and both the responses were comparable in women and men in patient group. We conclude that modulation of dopaminergic system by dopamine or by dopamine receptor blocker has a greater influence on thyrotropin secretion in patients with primary hypothyroidism than euthyroid normal subjects.  相似文献   

17.
AimsIn 3/4 nephrectomized (3/4nx) rats the renal dopaminergic system was suggested to be involved in the adaptive increase of sodium excretion two weeks after renal mass ablation. The aim of the present study was to evaluate the renal adaptations in sodium handling and renal dopaminergic system activity in 3/4nx rats up to twenty-six weeks after surgery.Main methodsThe rats were placed in metabolic cages for the collection of 24 h urine for evaluation of sodium, dopamine, dopamine precursor and metabolites. Blood pressure, aromatic L-amino acid decarboxylase (AADC) activity in proximal tubules and the effect of dopamine D1 receptor selective antagonist (Sch-23390) on natriuresis was evaluated.Key findingsA time-dependent increase in both systolic and diastolic blood pressure was observed in 3/4nx rats, and this was accompanied by a decrease in urinary levels of dopamine and in renal AADC activity at twenty-six weeks after renal mass ablation. In contrast to what has been found two weeks after renal mass ablation, the natriuretic response to volume expansion was progressively reduced in 3/4nx rats at ten and twenty-six weeks after surgery and this was accompanied by insensitivity of natriuresis to Sch-23390.SignificanceIn conclusion the renal dopaminergic system activity is compromised in 3/4nx rats in a time-dependent manner after renal mass ablation. It is suggested that this may contribute to compromise sodium excretion and increase blood pressure, in chronic renal insufficiency.  相似文献   

18.
In female sheep, estradiol-dependent dopaminergic inhibition exerted by the A15 nucleus during long days (LD) results in a blockade of reproductive activity. This effect could involve the GnRH cell bodies or their terminals in the median eminence (ME). However, a vast majority of terminals of the A15 nucleus are located in neurohypophysis and only a few in the ME. Previously we demonstrated that tritiated dopamine (DA) was transferred from the venous blood of the cavernous sinus to the arterial blood supplying the brain. In the present paper, we tested the hypothesis that the transferred dopamine could reach further the brain and ME. Using isolated sheep heads harvested on short days vs. long days, we examined radioactivity in brain tissues following infusion of tritiated dopamine into the cavernous sinus. The experiment was performed in ovariectomized ewes treated with estradiol (E2) or vehicle. The mean level of radioactivity in brain was affected by season (p<0.001) and E2 (p<0.05) and was the highest during LD in E2-treated animals. In the next experiment on isolated sheep head we measured dopamine and its metabolites levels in blood and pituitary after infusion of non-radiolabeled dopamine. We observed an increase (p<0.01) in dopamine concentration in arterial blood but not in the brain. The pituitary was the only structure examined in which a tendency (p=0.06) towards increased dopamine concentration following dopamine infusion was observed. Thus, even if part of DA released from terminals within the posterior and intermediate lobes of the pituitary reaches the vessels of the ME through local vascular pathways, it is unlikely that it could affect the LHRH terminals located in ME. In addition, our results suggest that brain capillaries in the isolated head are able to maintain a functional blood brain barrier.  相似文献   

19.
Male Wistar rats were intraperitoneally administered 300 mg/kg b.w. of α-methyl-p-tyrosine methyl ester(α-MT). These α-MT pretreated rats were anesthetized with urethane and then 5% glucose or dopamine (1 μg/kg b.w./min) was infused for 45 min. At 1 min before or 15 min after dopamine infusion, 10 or 50 mg/kg of 5-hydroxytryptophan (5-HTP) was injected intraperitoneally, and blood samples were taken from the jugular vein for prolactin determination. In rats treated with α-MT, the administration of 5-HTP increases the serum prolactin level in a dose-related manner. Dopamine infusion caused a marked decrease in serum prolactin level. The concomitant administration of dopamine and 5-HTP prevented the dopamine-induced decrease of serum prolactin in α-MT treated rats. These results indicate that the serotonergic stimulus enhanced prolactin release, not by inhibiting the dopaminergic activity, but by stimulating a prolactin-releasing factor or by activating other neurotransmitter systems.  相似文献   

20.
Effects of exogenous PG E1 on the level of human plasma norepinephrine (NE), dopamine-beta-hydroxylase (DBH) activity, cAMP, cGMP, free fatty acids (FFA) as well as pulse rate and blood pressure were studied. Significant decreases of blood pressure and increases of pulse rate were observed after 20 min of the infusion of 0.05 microgram/kg/min of PG E1. The level of plasma NE increased by 174% (p less than 0.005) after the infusion. However, the increase of DBH activity was not significant. There was a tendency of increase of plasma level of FFA. These results suggested that the infusion of PG E1 caused an augmented sympathetic nervous activity due to systemic hypotension induced by PG E1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号