首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intra-specific competition with a primary focus on root competition between plants living in an area with low resource levels, was studied using the natural monotypic population of a desert annual plantEremobium aegyptiacum (Cruciferae). We tested the effect of neighboring distance on shoot and root biomass, and such root parameters as root length, diameter of root neck, number of first order lateral roots and number of lateral roots per unit of main root length. Our results indicate a strong negative relationship between neighboring plant density and such plant parameters as shoot and root biomass, and root neck diameter. The number of first order lateral roots and the number of lateral roots per unit of main root length were negatively related to the distance between neighboring plants. Contrary to predictions, there was no influence of competition on node distribution: neither root overlap nor root avoidance was observed in pairs of adjacent plants.  相似文献   

2.
The root system of a rice plant (Oryza sativa L.) consists of numerous nodal roots and their laterals. The growth direction of these nodal roots affects the spatial distribution of the root system in soil, which seems to relate to yield and lodging resistance. The growth angle of a nodal root varies with the type and timing of emergence of the nodal root. The body of a rice plant can be recognized as an integrated set of shoot units, each unit consisting of an internode with a leaf and several roots. Nodal roots formed at the apical part of a shoot unit often elongate horizontally, whereas those formed at the basal part of the shoot unit show various growth directions depending on both the growth stages of the plant and the environmental conditions. Moreover, nodal roots that emerge from the most basal shoot unit of a tiller are usually thick and grow downwards. External factors such as planting density and nitrogen application affect the growth direction of nodal roots, probably partly because of the changing tillering pattern of the shoot. In addition to the growth angle of nodal roots, size of nodal roots may be another important factor determining the spatial distribution of the root system in soil.  相似文献   

3.
Poot  Pieter  Lambers  Hans 《Plant and Soil》2003,253(1):57-70
We investigated the responses of seven woody Hakea (Proteaceae) species (two populations of each), to two months of waterlogging and subsequent drainage, in a controlled glasshouse experiment. The species originated from contrasting environments (winter-wetland versus non-wetland habitats), and differed in abundance (endangered ironstone species versus common species). Waterlogging arrested growth of the main root system, and stimulated the formation of superficial adventitious roots just below the root/shoot junction in all species. Wetland species produced at least twice the amount of adventitious root dry mass of that of non-wetland species, due to differences in number, length or degree of branching. Their adventitious roots also tended to have higher porosities (7–10% versus 5–6% gas spaces). The relative amount of adventitious roots formed was strongly, positively correlated with the maintenance of shoot growth, and only the non-wetland species showed significant shoot growth reductions (19%) upon waterlogging. Dry mass percentage of stems and leaves, and leaf dry mass per area (LMA) increased considerably during waterlogging in all species (averages of 15, 29 and 27%, respectively), returning to the values of continuously drained control plants after drainage. Similarly, upon drainage, a suppression of shoot growth (average 35%) and a stimulation of root growth (average 50%) restored the root mass ratios to those of control plants. We found a negative correlation between the maintenance of growth during waterlogging versus that after waterlogging, suggesting a trade-off in functioning of the superficial adventitious roots between waterlogged and drained conditions. The rare winter-wet ironstone endemics resembled the common winter-wet species in most of their responses to waterlogging and drainage. Therefore, the results presented here cannot offer an explanation for their different distribution patterns. Our results suggest that non-wetland species may be disadvantaged in a wetland environment, due to their lower capacity to form adventitious roots resulting in stronger growth reductions.  相似文献   

4.
Summary To investigate the influence of soil-borne pathogens on the population biology of a grassland species in natural vegetation, soil samples were collected, partly disinfected or sterilized and then planted with Plantago lanceolata. Those on some of the untreated soils showed growth reduction due to a biotic factor in the soil. This growth reduction was not associated with the density of P. lanceolata plants at the sampling sites. It was only visible when differences in abiotic factors — especially nutrient levels —were eliminated. In the natural situation the nutritional status of the soil has a far greater impact than biotic soil factors. Micro-organisms harmful to Plantago roots are considered to be of minor importance in the distribution of the individuals in the P. lanceolata population studied.Study performed by Grassland Species Research Group No 113  相似文献   

5.
An experiment was conducted to study sour orange (Citrus aurantium L.) seedling root density, distribution, and morphological development under NaCl and polyethylene glycol (PEG) stresses in relation to shoot growth and stomatal conductance. Plants were treated with 2 stress levels (– 0.12 and – 0.24 MPa) of NaCl and PEG 4000 for 7 months. Root observation chambers were used to monitor root growth and distribution under stressed and non-stressed conditions. Seedlings receiving NaCl or PEG treatments produced fewer roots and shallower root systems with 46 to 65% of the roots occurring in the top portion of the soil. Fibrous root weight per unit length was increased by 24 to 30% by PEG but was not significantly increased by NaCl.Root growth rate usually alternated with shoot growth in a 2-month cycle. This alternating pattern was not shifted by NaCl and PEG stresses. In all NaCl and PEG treatments, growth was depressed and stomatal conductance was reduced. Compared to controls, plants that received NaCl or PEG had smaller shoot and root dry weights, fewer leaves, shorter height, and fewer roots. Sodium chloride usually caused less damage than PEG to sour orange seedlings suggesting that NaCl and PEG acted through different mechanisms.Florida Agricultural Experiment Station Journal Series No. 9941.  相似文献   

6.
Craine  J. M.  Wedin  D. A.  Chapin III  F. S.  Reich  P. B. 《Plant and Soil》2003,250(1):39-47
Dependence of the properties of root systems on the size of the root system may alter conclusions about differences in plant growth in different environments and among species. To determine whether important root system properties changed as root systems aged and accumulated biomass, we measured three important properties of fine roots (tissue density, diameter, and C:N) and three biomass ratios (root:shoot, fine:coarse, and shallow:deep) of monocultures of 10 North American grassland species five times during their second and third years of growth. With increasing belowground biomass, root tissue density increased and diameter decreased. This may reflect cortical loss associated with the aging of roots. For non-legumes, fine root C:N decreased with increasing root biomass, associated with decreases in soil solution NO3 concentrations. No changes in fine root C:N were detected with increasing belowground biomass for the two legumes we studied. Among all 10 species, there were generally no changes in the relative amounts of biomass in coarse and fine roots, root:shoot, or the depth placement of fine roots in the soil profile as belowground biomass increased. Though further research is needed to separate the influence of root system size, age of the roots, and changes in nutrient availability, these factors will need to be considered when comparing root functional traits among species and treatments.  相似文献   

7.
A greenhouse experiment was performed to investigate root growth dynamics, plant growth, root porosity and root morphology of a marsh plant Deyeuxia angustifolia, one of the dominant species in the Sanjiang Plain, China. The aim of this study was to elucidate how this plant adjusts its root system to acclimate to different hydrological environments. Experimental treatments included three water depths: −5, 0 and 5 cm (relative to the soil surface). Biomass accumulation was higher in the −5 cm (0.90 g per plant) and 0 cm water-depth (1.18 g per plant) than that in the 5 cm water-depth treatments (0.66 g per plant), indicating that plant growth was inhibited in the high water level. Root:shoot ratio (0.67 versus 0.42–0.43), the length (16 cm versus 12–13 cm) and diameter of adventitious roots (0.47 mm versus 0.41 mm), and root number (167 versus 81–119 number of roots per plant) were higher in the 0 cm water-depth than those in the high and low water-depth treatments. Enhanced water level led to slightly increased porosity of main roots, but porosity was about 7% in all treatments. After 8 weeks, roots had been distributed into 14, 11 and 7 cm soil depth in the 0, −5 and 5 cm water-depth treatments, respectively, indicating that both high and low water levels led to shallow root systems. Our data suggest that D. angustifolia can adjust root morphology and root growth pattern according to water level, and that this plant has limited oxygen diffusion potential to the roots due to the reduced biomass in the high water level.  相似文献   

8.
Root growth respiration and root maintenance respiration rate of the following species were determined: Hypochaeris radicata L. ssp. radicata L., H. radicata ssp. ericetorum Van Soest, Plantago lanceolata L., P. major L. ssp. major, P. major ssp. pleiosperma Pilgcr, P. maritime L., Senecio viscosus L., S. vulgaris L. and Urtica dioica L. A high root growth respiration (i.e. the amount of oxygen consumed for synthesis of a given weight of root material) implied a high maintenance respiration rate (i.e. the amount of oxygen consumed per unit of time and dry weight, but not connected with growth). High values of both components reflect a low efficiency of root respiratory processes. The efficiency of root respiration, as determined by the values for root growth respiration and root maintenance respiration rate could not be demonstrated to be of advantage in adaptation to soil conditions, as e.g. nitrogen content, moisture content and pH. It is concluded that (he degree of ‘wasteful utilization of sugars’ in roots, i.e. such consumption of sugars as cannot be related to structural growth, storage of carbohydrates or maintenance processes, depends on imbalance of transport of sugars from the shoot to the roots with utilization of sugars for synthesis of root material. The results are discussed in relation to Brouwer's explanation for the equilibrium between the growth of shoots and of roots. Root growth rate in the present species appears limited by a factor produced in the shoot under light conditions, and which factor is distinct from carbohydrates. The evidence presented shows that relatively inefficient root respiration does not imply a low growth rate. In regulation of plant growth the growth rate itself and also the shoot to-root ratio may be more important than the regulation of the efficiency of energy metabolism.  相似文献   

9.
Johnson CN  Vernes K  Payne A 《Oecologia》2005,143(1):70-76
We compared demography of populations along gradients of population density in two medium-sized herbivorous marsupials, the common brushtail possum Trichosurus vulpecula and the rufous bettong Aepyprymnus rufescens, to test for net dispersal from high density populations (acting as sources) to low density populations (sinks). In both species, population density was positively related to soil fertility, and variation in soil fertility produced large differences in population density of contiguous populations. We predicted that if source–sink dynamics were operating over this density gradient, we should find higher immigration rates in low-density populations, and positive relationships of measures of individual fitness—body condition, reproductive output, juvenile growth rates and survivorship—to population density. This was predicted because under source–sink dynamics, immigration from high-density sites would hold population density above carrying capacity in low-density sites. The study included 13 populations of these two species, representing a more than 50-fold range of density for each species, but we found that individual fitness, immigration rates and population turnover were similar in all populations. We conclude that net dispersal from high to low density populations had little influence on population dynamics in these species; rather, all populations appeared to be independently regulated at carrying capacity, with a balanced exchange of dispersers among populations. These two species have suffered recent reductions in range, and they are ecologically similar to other species that have declined to extinction in inland Australia. It has been argued that part of the cause of the vulnerability of species like these is that they exhibit source–sink dynamics, and disturbance to source habitats can therefore cause large-scale population collapses. The results of our study argue against this interpretation.  相似文献   

10.
C. Engels 《Plant and Soil》1993,150(1):129-138
The effects of low root zone temperatures (RZT) on nutrient demand for growth and the capacity for nutrient acquisition were compared in maize and wheat growing in nutrient solution. To differentiate between direct temperature effects on nutrient uptake and indirect effects via an altered ratio of shoot to root growth, the plants were grown with their shoot base including apical shoot meristem either within the root zone (low SB), i.e. at RZT (12°, 16°, or 20°C) or, above the root zone (high SB), i.e. at uniformly high air temperature (20°/16° day/night).At low SB, suboptimal RZT reduced shoot growth more than root growth in wheat, whereas the opposite was true in maize. However, in both species the shoot growth rate per unit weight of roots, which was taken as parameter for the shoot demand for mineral nutrients per unit of roots, decreased at low RZT. Accordingly, the concentrations of potassium (K) and phosphorus (P) remained constant or even increased at low RZT despite reduced uptake rates.At high SB, shoot growth at low RZT in both species was higher than at low SB, whereas root growth was not increased. At high SB, the shoot demand per unit of roots was similar for all RZT in wheat, but increased with decreasing RZT in maize. Uptake rates of K at high SB and low RZT adapted to shoot demand within four days, and were even higher in maize than in wheat. Uptake rates of P adapted more slowly to shoot demand in both species, resulting in reduced concentrations of P in the shoot, particularly in maize.In conclusion, the two species did not markedly differ in their physiological capacity for uptake of K and P at low RZT. However, maize had a lower ability than wheat to adapt morphologically to suboptimal RZT by increasing biomass allocation towards the roots. This may cause a greater susceptibility of maize to nutrient deficiency, particularly if the temperatures around the shoot base are high and uptake is limited by nutrient transport processes in the soil towards the roots.  相似文献   

11.
The giant rhizomatous grass Gynerium sagittatum is an early successional species that forms dense monocultures in Peruvian Amazon floodplains. We studied the shoot population structures by recording shoot densities and shoot heights. Leaf areas and stem volumes were allometrically estimated. Stands of two varieties of G. sagittatum were examined that differ in height and in the degree of shoot branching. In stands of increasing age, marked decreases in shoot densities were accompanied with an increase in mean shoot size. Self-thinning was indicated by the negative correlation between log stem volume per unit ground area and log shoot density, significant at least for one of the two varieties. The difference in thinning slope between the varieties could be largely accounted for by their different shoot geometry, as was revealed by calculations based on the allometric model of Weller (1987b). The relationship between log leaf area per shoot and log shoot density was significantly negative with slopes close to –1. Shoot size inequalities decreased with increasing mean stem volume per shoot, probably as a result of density-dependent mortality of the smaller shoots. All of these results accord with expectations for shoot self-thining. Gynerium sagittatum is the first clear example of a clonal plant species that exhibits self-thining in natural monospecific stands. It is argued that self-thinning occurs in this giant tropical grass because its shoots are perennial and do not experience seasonal die-back (periodic density-independent mortality), in contrast to many of the clonal plant species that have been studies so far.  相似文献   

12.
Monoxenic cultures of burrowing nematode populations extracted from banana roots from Belize, Guatemala, Honduras, and Costa Rica were established on carrot discs. Cultures of Radopholus spp. were also obtained from Florida, Puerto Rico, Dominican Republic, and Ivory Coast. The aggressiveness (defined as reproductive fitness and root necrosis) of these populations was evaluated by inoculating banana plants (Musa AAA, cv. Grande Naine) with 200 nematodes/plant. Banana plants produced by tissue culture were grown in 0.4-liter styrofoam cups, containing a 1:1 mix of a coarse and a fine sand, at ca. 27 °C and 80% RH. Banana plants were acclimated and allowed to grow for 4 weeks prior to inoculation. Plant height, fresh shoot and root weights, root necrosis, and nematode population densities were determined 8 weeks after inoculation. Burrowing-nematode populations varied in aggressiveness, and their reproductive fitness was generally related to damage reported in the field. Plant height and fresh shoot and root weight did not reflect damage caused by nematodes under our experimental conditions. Necrosis of primary roots was closely related to the reproductive fitness of the nematode populations. Variation in aggressiveness among nematode populations followed a similar trend in the two susceptible hosts tested, Grande Naine and Pisang mas. All nematode populations had a low reproductive factor (Rf ≤2.5) in the resistant host except for the Ivory Coast population which had a moderate reproductive factor (Rf ≤ 5) on Pisang Jari Buaya. This is the first report of a burrowing nematode population parasitizing this important source of resistance to R. similis.  相似文献   

13.
The effect of variations in fertility level of the substrate on the self-thinning lines followed by populations of Ocimum basilicum L. was investigated experimentally by establishing populations over a range of densities at two fertility levels. Populations from each fertility level followed different self-thinning lines for shoot biomass. Self-thinning began at a lower biomass in populations grown at the higher fertility level; the subsequent slope of the thinning line was –0.5 for these stands on a log shoot biomass versus log density plot. The slope of the self-thinning line was flatter (–0.29) at the lower fertility level. Fitting the self-thinning line by the Structural Relationship rather than the Major Axis made little difference to line estimates. Biomass packing differed with fertility level, with plants from the higher fertility stands requiring more canopy volume for given shoot biomass than plants from lower fertility levels. Biologically, this would mean shoot competition intensified more rapidly at the higher fertility level as biomass accumulated in stands. The difference in slope between fertility levels was associated with changes above- and belowground. The radial extension of the canopy versus shoot mass relationships of individual plants differed with fertility level. Plants at the lower fertility level allocated more biomass to root growth, and had less leaf area per unit root length. The differences in slope of the self-thinning lines may have been because of differences in the radial extension of the canopy versus shoot mass relationships of individual plants at each fertility level, and/or to an increase in root competition at the lower fertility level.  相似文献   

14.
Summary Populations of nativeRhizobium japonicum 123 in the rhizospheres of field and pot grown plants as determined by immunofluorescence were calculated on the basis of root surface area. The density ofR. japonicum 123 on the root fluctuated between a few hundred to over a thousand per square centimeter of root surface. As root volume expanded rapidly, the Rhizobium density fell to less than one hundred per unit area. There was no appreciable effect due to different plant, nitrogen amendment, or addition of another strain ofR. japonicum, on the surface density of the nativeR. japonicum population on roots. Nor did the native population influence the added strain. Direct examination of root surface segments revealed that naturalized rhizobia existed sparsely on root surfaces in the form of short rods. They were observed to be attached sideways or in a polar manner on root hairs, epidermal cells, and at junctions of tap and lateral roots. There was no evidence of specific stimulation of the homologous Rhizobium by the host plant as a prelude to nodulation.  相似文献   

15.
Summary The phosphorus (P) uptake rate of several white clover populations was determined in two solution culture experiments. Populations and cultivars differed in P uptake per plant and per unit root length in both experiments. Correlation and multiple regression analysis showed that differences between populations for P uptake per plant were largely related (r2>80%) to differences in leaf area and absolute growth rate, when plants had been grown at high-P levels, and by differences in root size and absolute growth rate when plants had been grown at low-P levels. Differences between populations for P uptake per unit root length were related (r2≈50%) to leaf area and relative growth rate in experiment 1 and to transpiration rate and water influx in experiment 2, when plants were pretreated at high-P levels. Differences between populations for P uptake per unit root length were negatively related to root size when plants had been grown at low-P levels. On the basis of these and other results it is suggested that P uptake per plant is determined largely by shoot factors. However, P uptake per unit root length is negatively related to root size, because demand for P is largely determined by shoot factors, and so differences in root size lead to an apparent difference in uptake per unit of root size.  相似文献   

16.
The ecophysiological characteristics of fine roots of mature forest plants are poorly understood because of difficulties of measurement. We explored a root in-growth approach to measure respiration and nitrate uptake of woody plant roots in situ. Roots of seven species were grown into sand-filled chambers. Root-associated respiration was measured as CO 2 emission on four dates and nitrate uptake was quantified using 15N. All the roots were younger than 3 months at the time of measurement. Fine root respiration measured over the temperature range of 14.5–15.5 °C averaged 18.9–36.5 nmol gDM –1 s –1 across species. Nitrate uptake rates by these fine roots (1.3–6.8 nmol gDM –1 s –1) were comparable to other studies of forest trees. The root respiration rates were several times higher than measurements on detached roots of mature trees, concurring with literature observations that young roots respire much more rapidly than older roots. The root in-growth approach appears promising for providing information on the metabolic activity of fine roots of mature forest trees growing in soil.  相似文献   

17.
The abundance of Pratylenchus scribneri in soil and root habitats was compared in potato and corn plots during 1986-88. Nematodes were extracted from 100-cm³ soil samples and the roots contained within the samples. The percentage of the population recovered from soil, similar among years and crops, averaged ca. 50% at the beginning and end of the growing season and ca. 20% from early to late season. Proportionately more adults and fourth-stage juveniles than younger stages were located outside roots until harvest. In a related study, nematodes were isolated from the roots, root surfaces, and soil associated with roots of whole corn and potato plants sampled from the field. Nematode population estimates calculated from the whole plant samples were generally lower than those based on soil cores, but showed similar patterns of population growth. Nematode density per gram dry weight was highest in roots, intermediate on root surfaces, and lowest in soil. Estimates of the absolute abundance of nematodes in each of the three habitats were highest in roots or soil, depending on the sampling date, and lowest on root surfaces. This study demonstrates that P. scribneri inhabits soil environments even when host roots are present and illustrates the importance of considering all possible habitats when estimating the size of Pratylenchus spp. populations.  相似文献   

18.
The effect of mutual shading on the root/shoot ratio and on the number of nodal roots of maize was studied. Plants of two varieties (Dea and LG2281) were grown in individual pots of 9 L, at three plant densities: 7.5, 11 and 15 plants m–2. A control experiment was carried out in order to study if root growth was affected by the small size of the pots. Maize plants (cv Dea) were grown at a low plant density (7.5 plants m–2) in pots of two different volumes (9 and 25 L respectively). In both experiments plants were watered every two hours with a nutrient solution. Some plants were sampled at five dates in the main experiment and the following data were recorded: foliar stage; root, stem and leaf dry weight; number of root primordia and number of emerged roots per phytomer. The final sampling date occurred at silking.Results of the control experiment showed that the root biomass was lower in small pots but the number of nodal roots per phytomer was not affected.Results of the main experiment showed that the total plant biomass and the root/shoot ratio were lower at high plant density. The number of emerged roots was strongly reduced on the upper phytomer (P8). This reduction was mainly due to a lower percentage of root primordia which elongated. A proposed interpretation is that the number of roots which emerge on upper phytomers is controlled by carbohydrate availability.  相似文献   

19.
Characterization of a factor within the cotyledons of Pisum that promotes cell arrest in G2 in mature root tissue and stationary phase root and shoot meristems is presented. Diffusion of the G2 factor into aseptic liquid and solid agar media enabled us to perform experiments focused on its cellular effect. The factor promotes cell arrest in G2 in shoots and roots of Pisum and roots of Vicia indicating a lack of species and organ specificity. In seedling roots of Pisum the factor promotes arrest in G2 in a large portion of the cell population. However, because pea cotyledons have a limited supply which is depleted 8–10 days after seed germination, cells previously responsive to the G2 factor in Pisum root meristems eventually assume preponderant arrest in G1. Once these cells arrest in G1 they are no longer influenced to arrest in G2. The G2 factor doss not promote arrest in G2 in meristem root cells of Helianthus and Triticum which normally show preponderant arrest in G1.  相似文献   

20.
Lamont  Byron B. 《Plant and Soil》2003,248(1-2):1-19
Hairy rootlets, aggregated in longitudinal rows to form distinct clusters, are a major part of the root system in some species. These root clusters are almost universal (1600 species) in the family Proteaceae (proteoid roots), with fewer species in another seven families. There may be 10–1000 rootlets per cm length of parent root in 2–7 rows. Proteoid roots may increase the surface area by over 140× and soil volume explored by 300× that per length of an equivalent non-proteoid root. This greatly enhances exudation of carboxylates, phenolics and water, solubilisation of mineral and organic nutrients and uptake of inorganic nutrients, amino acids and water per unit root mass. Root cluster production peaks at soil nutrient levels (P, N, Fe) suboptimal for growth of the rest of the root system, and may cease when shoot mass peaks. As with other root types, root cluster production is controlled by the interplay between external and internal nutrient levels, and mediated by auxin and other hormones to which the process is particularly sensitive. Proteoid roots are concentrated in the humus-rich surface soil horizons, by 800× in Banksia scrub-heath. Compared with an equal mass of the B horizon, the A1 horizon has much higher levels of N, P, K and Ca in soils where species with proteoid root clusters are prominent, and the concentration of root clusters in that region ensures that uptake is optimal where supply is maximal. Both proteoid and non-proteoid root growth are promoted wherever the humus-rich layer is located in the soil profile, with 4× more proteoid roots per root length in Hakea laurina. Proteoid root production near the soil surface is favoured among hakeas, even in uniform soil, but to a lesser extent, while addition of dilute N or P solutions in split-root system studies promotes non-proteoid, but inhibits proteoid, root production. Local or seasonal applications of water to hakeas initiate non-proteoid, then proteoid, root production, while waterlogging inhibits non-proteoid, but promotes proteoid, root production near the soil surface. A chemical stimulus, probably of bacterial origin, may be associated with root cluster initiation, but most experiments have alternative interpretations. It is possible that the bacterial component of soil pockets rich in organic matter, rather than their nutrient component, could be responsible for the proliferation of proteoid roots there, but much more research on root cluster microbiology is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号