首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 197 毫秒
1.
The feline homologue of CD134 (fCD134) is the primary binding receptor for feline immunodeficiency virus (FIV), targeting the virus preferentially to activated CD4+ helper T cells. However, with disease progression, the cell tropism of FIV broadens such that B cells and monocytes/macrophages become significant reservoirs of proviral DNA, suggesting that receptor utilization may alter with disease progression. We examined the receptor utilization of diverse strains of FIV and found that all strains tested utilized CD134 as the primary receptor. Using chimeric feline x human CD134 receptors, the primary determinant of receptor function was mapped to the first cysteine-rich domain (CRD1) of fCD134. For the PPR and B2542 strains, the replacement of CDR1 of fCD134 (amino acids 1 to 64) with human CD134 (hCD134) alone was sufficient to confer nearly optimal receptor function. However, evidence of differential utilization of CD134 was revealed, since strains GL8, CPGammer (CPG41), TM2, 0827, and NCSU1 required determinants in the region spanning amino acids 65 to 85, indicating that these strains may require a more stringent interaction for infection to proceed.  相似文献   

2.
Miyazawa T 《Uirusu》2005,55(1):27-34
Lentiviruses consist of primate lentiviruses, ungulate lentiviruses and feline immunodeficiency virus (FIV). The primate lentiviruses utilize CD4 and chemokine receptors as a primary receptor and coreceptors, respectively. Recently we found that FIV utilizes CD134 and CXCR4 as a primary receptor and a coreceptor, respectively. FIV utilizes feline CD134 but not human CD134, whereas it can utilize both feline and human CXCR4. Exceptionally an FIV laboratory strain can infect human cells via CXCR4 only by the CD134-independent manner. Similarly several strains of primate lentiviruses also infect cells by the CD4-independent manner. In this review, the evolution of the lentiviruses and possible mechanism for lentiviral cross-species transmission is discussed.  相似文献   

3.
The feline homolog of the α-chemokine receptor CXCR4 has recently been shown to support cell-cell fusion mediated by CXCR4-dependent strains of human immunodeficiency virus (HIV) and strains of feline immunodeficiency virus (FIV) that have been selected for growth in the Crandell feline kidney (CrFK) cell line. In this report we demonstrate that expression of CXCR4 alone is sufficient to render cells from diverse species permissive for fusion with FIV-infected cells, suggesting that CXCR4 is the sole receptor for CrFK-tropic strains of FIV, analogous to CD4-independent strains of HIV-2. To identify the regions of CXCR4 involved in fusion mediated by FIV, we screened panels of chimeric CXCR4 molecules for the ability to support fusion with FIV-infected cells. Human CXCR4 supported fusion more efficiently than feline CXCR4 and feline/human CXCR4 chimeras, suggesting that the second and third extracellular loops of human CXCR4 contain a critical determinant for receptor function. Rat/human CXCR4 chimeras suggested that the second extracellular loop contained the principal determinant for receptor function; however, chimeras constructed between human CXCR2 and CXCR4 revealed that the first and third loops of CXCR4 contribute to the FIV Env binding site, as replacement of these domains with the corresponding domains of CXCR2 rendered the molecule nonfunctional in fusion assays. Mutation of the DRY motif and the C-terminal cytoplasmic tail of CXCR4 did not affect the ability of the molecule to support fusion, suggesting that neither signalling via G proteins nor receptor internalization was required for fusion mediated by FIV; similarly, truncation of the N terminus of CXCR4 did not affect the function of the molecule as a receptor for FIV. CXCR4-transfected feline cells were rendered permissive for infection with both the CrFK-tropic PET isolate of FIV and the CXCR4-dependent RF strain of HIV-1, and susceptibility to infection correlated well with ability to support fusion. The data suggest that the second extracellular loop of CXCR4 is the major determinant of CXCR4 usage by FIV.  相似文献   

4.
CD134 is a primary binding receptor for feline immunodeficiency virus (FIV), and with CXCR4 facilitates infection of CD4(+) T cells. Human CD134 fails to support FIV infection. To delineate the regions important for defining virus specificity of CD134, we exchanged domains between human and feline CD134. The binding site for FIV surface glycoprotein (SU) is located in domain 1, in a region distinct from the natural ligand (CD134L)-binding site. Mutagenesis showed that Asp60 and Asp62 are required for interaction with FIV, and modeling studies localized these two residues to the outer edge of domain 1. Substitutions S60D and N62D, in conjunction with H45S, R59G and V64K, imparted both FIV SU binding and receptor function to human CD134. Finally, we demonstrated that soluble CD134 facilitates infection of CD134(-) CXCR4(+) target cells in a manner analogous to CD4 augmentation of HIV infection.  相似文献   

5.
The feline immunodeficiency virus (FIV) targets activated CD4-positive helper T cells preferentially, inducing an AIDS-like immunodeficiency in its natural host species, the domestic cat. The primary receptor for FIV is CD134, a member of the tumor necrosis factor receptor superfamily, and all primary viral strains tested to date use CD134 for infection. We examined the expression of CD134 in the cat using a novel anti-feline CD134 monoclonal antibody (MAb), 7D6, and showed that as in rats and humans, CD134 expression is restricted tightly to CD4+, and not CD8+, T cells, consistent with the selective targeting of these cells by FIV. However, FIV is also macrophage tropic, and in chronic infection the viral tropism broadens to include B cells and CD8+ T cells. Using 7D6, we revealed CD134 expression on a B220-positive (B-cell) population and on cultured macrophages but not peripheral blood monocytes. Moreover, macrophage CD134 expression and FIV infection were enhanced by activation in response to bacterial lipopolysaccharide. Consistent with CD134 expression on human and murine T cells, feline CD134 was abundant on mitogen-stimulated CD4+ T cells, with weaker expression on CD8+ T cells, concordant with the expansion of FIV into CD8+ T cells with progression of the infection. The interaction between FIV and CD134 was probed using MAb 7D6 and soluble CD134 ligand (CD134L), revealing strain-specific differences in sensitivity to both 7D6 and CD134L. Infection with isolates such as PPR and B2542 was inhibited well by both 7D6 and CD134L, suggesting a lower affinity of interaction. In contrast, GL8, CPG, and NCSU were relatively refractory to inhibition by both 7D6 and CD134L and, accordingly, may have a higher-affinity interaction with CD134, permitting infection of cells where CD134 levels are limiting.  相似文献   

6.
Shimojima M 《Uirusu》2007,57(1):75-82
Feline immunodeficiency virus (FIV) induces a disease similar to acquired immunodeficiency syndrome (AIDS) in cats, yet in contrast to human immunodeficiency virus (HIV), CD4 is not the viral receptor. We identified a primary receptor for FIV as CD134 (OX40), a T cell activation antigen and costimulatory molecule. CD134 expression promotes viral binding and renders cells permissive for viral entry, productive infection, and syncytium formation. Infection is CXCR4-dependent, analogous to infection with X4 strains of HIV. Thus, despite the evolutionary divergence of the feline and human lentiviruses, both viruses use receptors that target the virus to a subset of cells that are pivotal to the acquired immune response. Further, we applied the new method for FIV receptor to Ebola virus entry factors with some modifications, and identified receptor-type tyrosine kinases, Axl and Dtk (members of Tyro3 family). Distribution of the molecules matches well with the Ebola virus tropism.  相似文献   

7.
The env open reading frames of African lion (Panthera leo) lentivirus (feline immunodeficiency virus [FIV(Ple)]) subtypes B and E from geographically distinct regions of Africa suggest two distinct ancestries, with FIV(Ple)-E sharing a common ancestor with the domestic cat (Felis catus) lentivirus (FIV(Fca)). Here we demonstrate that FIV(Ple)-E and FIV(Fca) share the use of CD134 (OX40) and CXCR4 as a primary receptor and coreceptor, respectively, and that both lion CD134 and CXCR4 are functional receptors for FIV(Ple)-E. The shared usage of CD134 and CXCR4 by FIV(Fca) and FIV(Ple)-E may have implications for in vivo cell tropism and the pathogenicity of the E subtype among free-ranging lion populations.  相似文献   

8.
Domestic cats endure infections by all three subfamilies of the retroviridae: lentiviruses (feline immunodeficiency virus [FIV]), gammaretroviruses (feline leukemia virus [FeLV]), and spumaretroviruses (feline foamy virus [FFV]). Thus, cats present an insight into the evolution of the host-retrovirus relationship and the development of intrinsic/innate immune mechanisms. Tetherin (BST-2) is an interferon-inducible transmembrane protein that inhibits the release of enveloped viruses from infected cells. Here, we characterize the feline homologue of tetherin and assess its effects on the replication of FIV. Tetherin was expressed in many feline cell lines, and expression was induced by interferons, including alpha interferon (IFN-α), IFN-ω, and IFN-γ. Like human tetherin, feline tetherin displayed potent inhibition of FIV and HIV-1 particle release; however, this activity resisted antagonism by either HIV-1 Vpu or the FIV Env and "OrfA" proteins. Further, as overexpression of complete FIV genomes in trans could not overcome feline tetherin, these data suggest that FIV lacks a functional tetherin antagonist. However, when expressed stably in feline cell lines, tetherin did not abrogate the replication of FIV; indeed, syncytium formation was significantly enhanced in tetherin-expressing cells infected with cell culture-adapted (CD134-independent) strains of FIV (FIV Fca-F14 and FIV Pco-CoLV). Thus, while tetherin may prevent the release of nascent viral particles, cell-to-cell spread remains efficient in the presence of abundant viral receptors and tetherin upregulation may enhance syncytium formation. Accordingly, tetherin expression in vivo may promote the selective expansion of viral variants capable of more efficient cell-to-cell spread.  相似文献   

9.
10.
We describe the histopathological, immunohistochemical, and molecular characterization of a lymphoma arising in a 7-year-old cat following experimental infection with feline immunodeficiency virus (FIV). The tumor was high grade and of B-cell lineage. The transformed cell had an immature phenotype (CD79a+, CD79b, CD21, immunoglobulin heavy and light chain negative), confirmed by antigen receptor gene analysis, which showed germ line configuration. Single-copy, clonally integrated FIV provirus was detected in tumor genomic DNA. FIV p24 antigen was not detected in tumor cells by immunostaining. This study provides the first evidence that the feline lentivirus may play a direct role in cell transformation under certain circumstances.  相似文献   

11.
Feline immunodeficiency virus (FIV) shares with T-cell tropic strains of human immunodeficiency virus type 1 (HIV-1) the use of the chemokine receptor CXCR4 for cellular entry. In order to map the interaction of the FIV envelope surface unit (SU) with CXCR4, full-length FIV SU-Fc as well as constructs with deletions of extended loop L2, V3, V4, or V5 were produced in stable CHO cell lines. Binding studies were performed using these proteins on 3201 cells (CXCR4(hi) CD134(-)), with or without the CXCR4 inhibitor AMD3100. The findings established that SU binding to CXCR4 specifically requires the V3 region of SU. Synthetic peptides spanning the V3 region as well as a panel of monoclonal antibodies (MAbs) to SU were used to further map the site of CXCR4 interaction. Both the SU V3-specific antibodies and the full-length V3 peptide potently blocked binding of SU to CXCR4 and virus entry. By using a set of nested peptides overlapping a region of SU specifically recognized by CD134-dependent neutralizing V3 MAbs, we showed that the neutralizing epitope and the region required for CXCR4 binding are within the same contiguous nine-amino-acid sequence of V3. Site-directed mutagenesis was used to reveal that serine 393 and tryptophan 394 at the predicted tip of V3 are required to facilitate entry into the target cell via CXCR4. Although the amino acid sequences are not identical between FIV and HIV, the ability of FIV to bind and utilize both feline and human CXCR4 makes the feline model an attractive venue for development of broad-based entry antagonists.  相似文献   

12.
Recombinant soluble CD134 (sCD134) facilitated feline immunodeficiency virus (FIV) entry into CXCR4-positive, cell surface CD134-negative target cells. sCD134-activated entry was dose dependent and CXCR4 dependent. We used the sCD134 activation system to explore the neutralization by four anti-V3 monoclonal antibodies (MAbs). V3 MAbs weakly neutralized FIV infection using target cells expressing both CD134 and CXCR4 but potently inhibited sCD134-activated entry into target cells expressing CXCR4 alone. These findings provide direct evidence for a sequential interaction of FIV Env with CD134 and CXCR4 and reveal the presence of a cryptic epitope in V3 that is masked in the mature envelope oligomers.  相似文献   

13.
Feline immunodeficiency virus (FIV) induces a disease state in the domestic cat that is similar to AIDS in human immunodeficiency virus (HIV)-infected individuals. As with HIV, FIV can be divided into primary and cell culture-adapted isolates. Adaptation of FIV to replicate and form syncytia in the Crandell feline kidney (CrFK) cell line is accompanied by an increase in the net charge of the V3 loop of the envelope glycoprotein, mirroring the changes observed in the V3 loop of HIV gp120 with the switch from a non-syncytium-inducing phenotype to a syncytium-inducing phenotype. These data suggest a common mechanism of infection with FIV and HIV. In this study, we demonstrate that cell culture-adapted strains of FIV are able to use the alpha-chemokine receptor CXCR4 for cell fusion. Following ectopic expression of human CXCR4 on nonpermissive human cells, the cells are able to fuse with FIV-infected feline cells. Moreover, fusion between FIV-infected feline cells and CXCR4-transfected human cells is inhibited by both anti-CXCR4 and anti-FIV antibodies. cDNAs encoding the feline CXCR4 homolog were cloned from both T-lymphoblastoid and kidney cell lines. Feline CXCR4 displayed 94.9% amino acid sequence identity with human CXCR4 and was found to be expressed widely on cell lines susceptible to infection with cell culture-adapted strains FIV. Ectopic expression of feline CXCR4 on human cells rendered the cells susceptible to FIV-dependent fusion. Moreover, feline CXCR4 was found to be as efficient as human CXCR4 in supporting cell fusion between CD4-expressing murine fibroblast cells and either HIV type 1 (HIV-1) or HIV-2 Env-expressing human cells. Previous studies have demonstrated that feline cells expressing human CD4 are not susceptible to infection with HIV-1; therefore, further restrictions to HIV-1 Env-dependent fusion may exist in feline cells. As feline and human CXCR4 support both FIV- and HIV-dependent cell fusion, these results suggest a close evolutionary link between FIV and HIV and a common mechanism of infection involving an interaction between the virus and a member of the seven-transmembrane domain chemokine receptor family of molecules.  相似文献   

14.
The equine lentivirus receptor 1 (ELR1), a member of the tumor necrosis factor receptor (TNFR) protein family, has been identified as a functional receptor for equine infectious anemia virus (EIAV). Toward defining the functional interactions between the EIAV SU protein (gp90) and its ELR1 receptor, we mapped the gp90 binding domain of ELR1 by a combination of binding and functional assays using the EIAV SU gp90 protein and various chimeric receptor proteins derived from exchanges between the functional ELR1 and the nonbinding homolog, mouse herpesvirus entry mediator (murine HveA). Complementary exchanges of the respective cysteine-rich domains (CRD) between the ELR1 and murine HveA proteins revealed CRD1 as the predominant determinant of functional gp90 binding to ELR1 and also to a chimeric murine HveA protein expressed on the surface of transfected Cf2Th cells. Mutations of individual amino acids in the CRD1 segment of ELR1 and murine HveA indicated the Leu70 in CRD1 as essential for functional binding of EIAV gp90 and for virus infection of transduced Cf2Th cells. The specificity of the EIAV SU binding domain identified for the ELR1 receptor is fundamentally identical to that reported previously for functional binding of feline immunodeficiency virus SU to its coreceptor CD134, another TNFR protein. These results indicate unexpected common features of the specific mechanisms by which diverse lentiviruses can employ TNFR proteins as functional receptors.  相似文献   

15.
Two interleukin-2-dependent feline CD4-positive and CD8-negative cell lines, MYA-1 and the newly established FeL-039, were used as host cells for infection with feline immunodeficiency virus (FIV). All FIV strains used, the Petaluma strain and several new isolates, were highly cytopathic to MYA-1. In contrast, the kinetics of FIV replication in FeL-039 differed greatly depending on the strain tested, i.e., noninfectious strain, highly cytopathic strain, and less cytopathic strain producing a persistent state for a long period. It appears, therefore, that cell tropism for FIV differed with each FIV strain tested even in T-cell lines showing similar cell surface phenotypes. Cytopathicity of FIV is evidently due to both the FIV strain and the host T cell.  相似文献   

16.
A heterologous feline immunodeficiency virus (FIV) expression system permitted high-level expression of FIV proteins and efficient production of infectious FIV in human cells. These results identify the FIV U3 element as the sole restriction to the productive phase of replication in nonfeline cells. Heterologous FIV expression in a variety of human cell lines resulted in profuse syncytial lysis that was FIV env specific, CD4 independent, and restricted to cells that express CXCR4, the coreceptor for T-cell-line-adapted strains of human immunodeficiency virus. Stable expression of human CXCR4 in CXCR4-negative human and rodent cell lines resulted in extensive FIV Env-mediated, CXCR4-dependent cell fusion and infection. In feline cells, stable overexpression of human CXCR4 resulted in increased FIV infectivity and marked syncytium formation during FIV replication or after infection with FIV Env-expressing vectors. The use of CXCR4 is a fundamental feature of lentivirus biology independent of CD4 and a shared cellular link to infection and cytopathicity for distantly related lentiviruses that cause AIDS. Their conserved use implicates chemokine receptors as primordial lentivirus receptors.  相似文献   

17.
The process of feline immunodeficiency virus (FIV) cell entry was examined using assays for virus replication intermediates. FIV subtype B was found to utilize the chemokine receptor CXCR4, but not CCR5, as a cellular receptor. Zidovudine blocked formation of late viral replication products most effectively, including circular DNA genome intermediates. Our findings extend the role of CXCR4 as a primary receptor for CD4-independent cell entry by FIV.  相似文献   

18.
Infection with feline immunodeficiency virus (FIV) leads to the development of a disease state similar to AIDS in man. Recent studies have identified the chemokine receptor CXCR4 as the major receptor for cell culture-adapted strains of FIV, suggesting that FIV and human immunodeficiency virus (HIV) share a common mechanism of infection involving an interaction between the virus and a member of the seven transmembrane domain superfamily of molecules. This article reviews the evidence for the involvement of chemokine receptors in FIV infection and contrasts these findings with similar studies on the primate lentiviruses HIV and SIV (simian immunodeficiency virus).  相似文献   

19.
Monoclonal antibody vpg15 detects a 24-kDa cell surface protein on feline cells permissive for infection with feline immunodeficiency virus (FIV). The antibody blocks infection of FIV-susceptible cells, and expression of the vpg15 marker is decreased in FIV-infected cells in vitro. These results suggest that the antibody may recognize an FIV receptor distinct from CD4.  相似文献   

20.
Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when evaluated in Crandell feline kidney (CRFK) cells. With a series of bicyclam derivatives, 50% inhibitory concentrations (IC50s) against FIV were obtained in this cell system that were comparable to those obtained for HIV-1 IIIB replication in the human CD4(+) MT-4 T-cell line. The bicyclams were also able to block FIV replication in feline thymocytes, albeit at higher concentrations than in the CRFK cells. The prototype bicyclam AMD3100, 1-1'-[1,4-phenylene-bis(methylene)]-bis(1,4,8, 11-tetraazacyclotetradecane), was only fourfold less active in feline thymocytes (IC50, 62 ng/ml) than in CRFK cells (IC50, 14 ng/ml). AMD2763, 1,1'-propylene-bis(1,4,8, 11-tetraazacyclotetradecane), which is a less potent CXCR4 antagonist, was virtually inactive against FIV in feline thymocytes (IC50, >66.5 microgram/ml), while it was clearly active in CRFK cells (IC50, 0.9 microgram/ml). The CXC chemokine stromal-cell-derived factor 1alpha had anti-FIV activity in CRFK cells (IC50, 200 ng/ml) but not in feline thymocytes (IC50, >2.5 microgram/ml). When primary FIV isolates were evaluated for their drug susceptibility in feline thymocytes, the bicyclams AMD3100 and its Zn2+ complex, AMD3479, inhibited all six primary isolates at equal potency. The marked susceptibility of FIV to the bicyclams suggests that FIV predominantly uses feline CXCR4 for entering its target cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号