首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Solvent isotope effects on microtubule polymerization and depolymerization   总被引:2,自引:0,他引:2  
The initial velocity of polymerization of purified beef brain tubulin has been determined at various values of pH or pD in water and in H2O-D2O mixtures. D2O was shown to inhibit both polymerization at 37 °C and depolymerization measured at 5 °C and 37 °C. The microtubules formed in D2O were indistinguishable from those formed in H2O, by electron microscope examination. In 93% D2O the pL2versus rate of polymerization curve was displaced about one unit towards higher pL values. In certain regions of the pL versus rate curve, a stimulation in the rate of polymerization by D2O is observed. The extent of polymerization at the optimum pL value was not affected by D2O.  相似文献   

4.
Deuterium isotope effects and fractionation factors of N1...H3–N3 hydrogen bonded Watson–Crick A:T base pairs of two DNA dodecamers are presented here. Specifically, two-bond deuterium isotope effects on the chemical shifts of 13C2 and 13C4, 213C2 and 213C4, and equilibrium deuterium/protium fractionation factors of H3, , were measured and seen to correlate with the chemical shift of the corresponding imino proton, H3. Downfield-shifted imino protons associated with larger values of 213C2 and 213C4 and smaller values, which together suggested that the effective H3–N3 vibrational potentials were more anharmonic in the stronger hydrogen bonds of these DNA molecules. We anticipate that 213C2, 213C4 and values can be useful gauges of hydrogen bond strength of A:T base pairs.  相似文献   

5.
We have adapted hydrogen/deuterium (H/D) exchange with electrospray ionization mass spectrometry (ESI-MS) to study protein conformation and excipient interactions in lyophilized solids. Using calmodulin (CaM, 17 kD) as a model protein, we demonstrate that trehalose and calcium exert site-specific effects on protein conformation. The effects of calcium are observed primarily in the calcium binding loops, while those of trehalose are observed primarily in non-terminal alpha-helical regions. To our knowledge, this is the first demonstration of site-specificity in the effects of excipients on protein structure in the solid state, and of the utility of H/D exchange with ESI-MS to characterize proteins in amorphous solids.  相似文献   

6.
Solvent isotope effects have been observed on the in vitro refolding kinetics of a protein, hen lysozyme. The rates of two distinct phases of refolding resolved by intrinsic fluorescence have been found to be altered, to differing extents, in D2O compared with H2O, and experiments have been conducted aimed at assessing the contributions to these effects from various possible sources. The rates were found to be essentially independent of whether backbone amide nitrogens were protiated or deuterated, indicating that making and breaking of their hydrogen bonding interactions is not associated with a substantial isotope effect. Neither were the rates significantly affected by adding moderate concentrations of sucrose or glycerol to the refolding buffer, suggesting that viscosity differences between H2O and D2O are also unlikely to explain the isotope effects. The data suggest that different factors, acting in opposing directions, may be dominant under different conditions. Thus, the isotope effect on the rate-determining step was found to be qualitatively reversed on going to low pH, suggesting that one component is probably associated with changes in the environments of carboxylate groups in forming the folding transition state. This term disappears at low pH as these groups are protonated and an opposing effect then dominates. It was not possible to identify this other effect on the basis of the present data, but a dependence of the hydrophobic interaction on solvent isotopic composition is a likely candidate.  相似文献   

7.
The flavoprotein nitroalkane oxidase catalyzes the oxidative denitrification of a broad range of primary and secondary nitroalkanes to yield the respective aldehydes or ketones, hydrogen peroxide and nitrite. With nitroethane as substrate the D2O(kcat/KM) value is 0.6 and the D2Okcat value is 2.4. The kcat proton inventory is consistent with a single exchangeable proton in flight, while the kcat/KM is consistent with either a single proton in flight in the transition state or a medium effect. Increasing the solvent viscosity did not affect the kcat or kcat/KM value significantly, establishing that nitroethane binding is at equilibrium and that product release does not limit kcat.  相似文献   

8.
Stable isotope ratios of organic compounds are valuable tools for determining the geographical origin, identity, authenticity or history of samples from a vast range of sources such as sediments, plants and animals, including humans. Hydrogen isotope ratios (delta(2)H values) of methoxyl groups in lignin from wood of trees grown in different geographical areas were measured using compound-specific pyrolysis isotope ratio mass spectrometry analysis. Lignin methoxyl groups were depleted in (2)H relative to both meteoric water and whole wood. A high correlation (r(2) = 0.91) was observed between the delta(2)H values of the methoxyl groups and meteoric water, with a relatively uniform fractionation of -216 +/- 19 per thousand recorded with respect to meteoric water over a range of delta(2)H values from -110 in northern Norway to +20 per thousand in Yemen. Thus, woods from northern latitudes can be clearly distinguished from those from tropical regions. By contrast, the delta(2)H values of bulk wood were only relatively poorly correlated (r(2) = 0.47) with those of meteoric water. Measurement of the delta(2)H values of lignin methoxyl groups is potentially a powerful tool that could be of use not only in the constraint of the geographical origin of lignified material but also in paleoclimate, food authenticity and forensic investigations.  相似文献   

9.
The structural stability of mitochondrial membranes and the enzyme complexes of the electron transport system, and the solubility of a small molecular-weight nonelectrolyte (2-methylnaphthoquinone), have been studied as a function of water structure. D2O, which is considered to be more structured than ordinary water, and H2O were used as solvents in conjunction with chaotropic ions which have been shown to break down water structure. Assays for membrane stability were (a) resolution with respect to solubilization of at least one constituent enzyme, and (b) chaotrope-induced lipid autoxidation, which is a measure of structural destabilization. Solvent isotope effects expressed as the quotient of chaotrope (NaClO4) concentration (CDCH) necessary to elicit the same effect were found to be (a) essentially constant for each system over a wide range of NaClO4 concentration, and (b) limited to the narrow range of 1.2–1.8 in all tests despite significant differences in the systems studied and the measurements used. The magnitude and the constancy of the isotope effects indicate that increased membrane stability (i.e., the increased strength of hydrophobic interactions in membranes), and decreased water-solubility of nonelectrolytes in D2O are mainly due to the higher degree of order of the deuterated solvent. Thus, in the mitochondrial electron transport chain and many other enzyme systems where solvent isotope effects have been observed, the isotope effect appears to be more a consequence of conformational changes imposed on the enzymes by D2O, because it is a more structured solvent, rather than an indication of direct involvement of protons or the water molecule in the reaction mechanisms.  相似文献   

10.
Osmolytes increase the thermodynamic conformational stability of proteins, shifting the equilibrium between native and denatured states to favor the native state. However, their effects on conformational equilibria within native-state ensembles of proteins remain controversial. We investigated the effects of sucrose, a model osmolyte, on conformational equilibria and fluctuations within the native-state ensembles of bovine pancreatic ribonuclease A and S and horse heart cytochrome c. In the presence of sucrose, the far- and near-UV circular dichroism spectra of all three native proteins were slightly altered and indicated that the sugar shifted the native-state ensemble toward species with more ordered, compact conformations, without detectable changes in secondary structural contents. Thermodynamic stability of the proteins, as measured by guanidine HCl-induced unfolding, increased in proportion to sucrose concentration. Native-state hydrogen exchange (HX) studies monitored by infrared spectroscopy showed that addition of 1 M sucrose reduced average HX rate constants at all degrees of exchange of the proteins, for which comparison could be made in the presence and absence of sucrose. Sucrose also increased the exchange-resistant core regions of the proteins. A coupling factor analysis relating the free energy of HX to the free energy of unfolding showed that sucrose had greater effects on large-scale than on small-scale fluctuations. These results indicate that the presence of sucrose shifts the conformational equilibria toward the most compact protein species within native-state ensembles, which can be explained by preferential exclusion of sucrose from the protein surface.  相似文献   

11.
Partial molar heat capacities of five linear alcohols (methanol, ethanol, n-propanol, n-butanol, n-pentanol) and five N-substituted amides (n-propionamide, N-methylformamide, N-methylacetamide, N-methylpropionamide, N-ethylacetamide) in aqueous D(2)O solution have been measured at 25 degrees C. The heat capacities of transfer of these compounds from H(2)O to D(2)O were calculated using previously reported (Makhatadze et al., Biophys. Chem. 64 (1997) 93) values of partial heat capacities of alcohols and amides in aqueous H(2)O solutions. It is shown that the sign and magnitude of the heat capacity change upon transfer from H(2)O to D(2)O depends on the relative amount of polar and non-polar solvent accessible surface areas of solute. Analysis shows that transfer of non-polar surface from H(2)O to D(2)O is accompanied by a positive heat capacity change. In contrast, transfer of polar surface from H(2)O to D(2)O occurs with negative heat capacity change. Estimates show that the solvent isotope effect on the heat capacity changes upon protein unfolding can be predicted using the changes of the polar and non-polar surface area changes upon protein unfolding and the transfer data of model compounds. Analysis of the thermodynamic functions of transfer of non-polar compounds from H(2)O to D(2)O shows puzzling behavior which contradicts current definitions of the hydrophobic effect.  相似文献   

12.
Hydrogen/deuterium exchange reactions of protonated and sodium cationized peptide molecules have been studied in the gas phase with a MALDI/quadrupole ion trap mass spectrometer. Unit-mass selected precursor ions were allowed to react with deuterated ammonia introduced into the trap cell by a pulsed valve. The reactant gas pressure, reaction time, and degree of the internal excitation of reactant ions were varied to explore the kinetics of the gas phase isotope exchange. Protonated peptide molecules exhibited a high degree of reactivity, some showing complete exchange of all labile hydrogen atoms. On the contrary, peptide molecules cationized with sodium exhibited only very limited reactivity, indicating a vast difference between the gas phase structures of the two ions. © 1997 Wiley-Liss Inc.  相似文献   

13.
This study focuses on the spatial patterns of transpiration-driven water isotope enrichment (Delta(lw)) along monocot leaves. It has been suggested that these spatial patterns are the result of competing effects of advection and (back-)diffusion of water isotopes along leaf veins and in the mesophyll, but also reflect leaf geometry (e.g. leaf length, interveinal distance) and non-uniform gas-exchange parameters. We therefore developed a two-dimensional model of isotopic leaf water enrichment that incorporates new features, compared with previous models, such as radial diffusion in the xylem, longitudinal diffusion in the mesophyll, non-uniform gas-exchange parameters and non-steady-state effects. The model reproduces well all published measurements of Delta(lw) along monocot leaf blades, except at the leaf tip and given the uncertainties on measurements and model parameters. We show that the longitudinal diffusion in the mesophyll cannot explain the observed reduction in the isotope gradient at the leaf tip. Our results also suggest that the observed differences in Delta(lw) between C(3) and C(4) plants reflect more differences in mesophyll tortuosity rather than in leaf length or interveinal distance. Mesophyll tortuosity is by far the most sensitive parameter and different values are required for different experiments on the same plant species. Finally, using new measurements of non-steady-state, spatially varying leaf water enrichment we show that spatial patterns are in steady state around midday only, just as observed for bulk leaf water enrichment, but can be easily upscaled to the whole leaf level, regardless of their degree of heterogeneity along the leaf.  相似文献   

14.
15.
Solvent isotope effects and the pH dependence of laccase catalysis under steady-state conditions were examined with a rapid reductant to assess the potential roles of protein protic groups and the catalytic mechanism. The pH dependence of both reductant-dependent and reductant-independent steps showed bell-shaped profiles implicating at least two protic groups in each case. The apparent pKa values were: for the reductant-independent step(s), pK alpha 1 = 8.98 +/- 0.02 and pK alpha 2 = 5.91 +/- 0.03; for the reductant-dependent step(s), pK' alpha 1 = 7.55 +/- 0.12, pK' alpha 2 = 8.40 +/- 0.23. No solvent isotope effect on reductant-dependent steps was detected other than a standard shift effect. However, a significant solvent isotope effect on a reductant-independent step(s) was observed; kH/kD = 2.12 at the pH optimum of 7.5. The concentration dependence of the D2O effect indicated that a single proton was involved. Simulations of the p(H,D) data suggested that the solvent isotope effect was associated with the protein protic group required in its undissociated form (pK alpha 2). The pH effects on reductant-dependent steps are apparently associated with reductant-dependent steps that occur between O2 binding and water formation in the catalytic reaction sequence.  相似文献   

16.
17.
D M Quinn 《Biochemistry》1985,24(13):3144-3149
Solvent deuterium isotope effects on the rates of lipoprotein lipase (LpL) catalyzed hydrolysis of the water-soluble esters p-nitrophenyl acetate (PNPA) and p-nitrophenyl butyrate (PNPB) have been measured and fall in the range 1.5-2.2. The isotope effects are independent of substrate concentration, LpL stability, and reaction temperature and hence are effects on chemical catalysis and not due to a medium effect of D2O on LpL stability and/or conformation. pL (L = H or D) vs. rate profiles for the Vmax/Km of LpL-catalyzed hydrolysis of PNPB increase sigmoidally with increasing pL. Least-squares analysis of the profiles gives pKaH2O = 7.10 +/- 0.01, pKaD2O = 7.795 +/- 0.007, and a solvent isotope effect on limiting velocity at high pL of 1.97 +/- 0.03. Because the pL-rate profiles are for the Vmax/Km of hydrolysis of a water-soluble substrate, the measured pKa's are intrinsic acid-base ionization constants for a catalytically involved LpL active-site amino acid side chain. Benzeneboronic acid, a potent inhibitor of LpL-catalyzed hydrolysis of triacylglycerols [Vainio, P., Virtanen, J. A., & Kinnunen, P. K. J. (1982) Biochim. Biophys. Acta 711, 386-390], inhibits LpL-catalyzed hydrolysis of PNPB, with Ki = 6.9 microM at pH 7.36, 25 degrees C. This result and the solvent isotope effects for LpL-catalyzed hydrolysis of water-soluble esters are interpreted in terms of a proton transfer mechanism that is similar in many respects to that of the serine proteases.  相似文献   

18.
The chemical shifts of (13)C2 of adenosine residues of DNA were observed to experience a through-space or trans-hydrogen bond isotope effect as a result of deuterium substitution at the imino hydrogen site of base-paired thymidine residues. NMR measurements of several self-complementary DNA duplexes at natural abundance (13)C in 50% H(2)O, 50% D(2)O solvent mixtures yielded an average trans-hydrogen bond isotope effect, (2h)Delta(13)C2, of -47 ppb. The data suggest that stronger hydrogen bonds have more negative (2h)Delta(13)C2 values, which means that A:T N1.H3 hydrogen bonds increase the anharmonicity of the effective vibrational potential of H3. However, (2h)Delta(13)C2 values do not correlate with intra-residue (2)Delta(13)C4 values of thymidine observed here and earlier (Vakonakis et al., 2003), which suggests that (2h)Delta(13)C2 is not determined entirely by hydrogen bond strength. Instead, the variations observed in (2h)Delta(13)C2 values suggest that they may also be sensitive to base pair geometry.  相似文献   

19.
Hydrogen and carbon isotope ratios of saponifiable lipids and cellulose nitrate from CAM, C3, and C4 plants that grew near one another were determined. The deuterium/protium (D/H) ratios of cellulose nitrate from CAM plants were much higher than those of cellulose nitrate from C3 and C4 plants, as has been observed previously. In contrast, the D/H ratios of saponifiable lipids from CAM plants did not differ from those of the same fraction from C3 and C4 plants. These observations indicate that deuterium enrichment in cellulose of CAM plants is not caused by any metabolic or physiological process which would lead to deuterium enrichment in all biochemical fractions.  相似文献   

20.
The abundance of the hydrogen isotope deuterium (D) in tree rings is an attractive record of climate; however, use of this record has proved difficult so far, presumably because climatic and physiological influences on D abundance are difficult to distinguish. Using D labelling, we created a D gradient in trees. Leaf soluble sugars of relatively low D abundance entered cellulose synthesis in stems containing strongly D-labelled water. We used nuclear magnetic resonance (NMR) spectroscopy to quantify D in the C-H groups of leaf glucose and of tree-ring cellulose. Ratios of D abundances of individual C-H groups of leaf glucose depended only weakly on leaf D labelling, indicating that the D abundance pattern was determined by physiological influences. The D abundance pattern of tree-ring cellulose revealed C-H groups that exchanged strongly (C(2)-H) or weakly (C(6)-H2) with water during cellulose synthesis. We propose that strongly exchanging C-H groups of tree-ring cellulose adopt a climate signal stemming from the D abundance of source water. C-H groups that exchange weakly retain their D abundance established in leaf glucose, which reflects physiological influences. Combining both types of groups may allow simultaneous reconstruction of climate and physiology from tree rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号