首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The role of aldosterone in regulation of electrogenic Na+ transport is well established, though mineralocorticoid receptors bind glucocorticoids with similar binding affinity as aldosterone and plasma concentration of aldosterone is much lower than glucocorticoids. In mammals, the aldosterone specificity is conferred on the low-selective mineralocorticoid receptors by glucocorticoid inactivating enzyme 11beta-hydroxysteroid dehydrogenase (11HSD) that converts cortisol or corticosterone into metabolites (cortisone, 11-dehydrocorticosterone) with lower affinity for these receptors. The present study examined the chicken intestine, whether changes in 11HSD activity are able to modulate the effect of corticosterone on Na+ transport, and how the metabolism of this hormone is distributed within the intestinal wall. This study shows that not only aldosterone, but also corticosterone (B), was able to increase the electrogenic Na+ transport in chicken caecum in vitro. The effect of corticosterone was higher in the presence of carbenoxolone, an inhibitor of steroid dehydrogenases, and was comparable to the effect of aldosterone. The metabolism of B in the intestine was studied; results showed oxidation of this steroid to 11-dehydrocorticosterone (A) and reduction to 11-dehydro-20beta-dihydrocorticosterone (20diA) as the main metabolic products at low nanomolar concentration of the substrate. In contrast, 20beta-dihydrocorticosterone and 20diA were the major products at micromolar concentration of B. Progesterone was converted to 20beta-dihydroprogesterone. The metabolism of corticosterone was localized predominantly in the intestinal mucosa (enterocytes). In conclusion, the oxidation at position C11 and reduction at position C20 suggest that both 11HSD and 20beta-hydroxysteroid dehydrogenase (20HSD) operate in the chicken intestine and that the mucosa of avian intestine possesses a partly different system of modulation of corticosteroid signals than mammals. This system seems to protect the aldosterone target tissue against excessive concentration of corticosterone and progesterone.  相似文献   

3.
Cortisol and aldosterone have the same in vitro affinity for the mineralocorticoid receptor (MR), although in vivo only aldosterone acts as a physiologic agonist of the MR, despite circulating levels of cortisol in humans and corticosterone in rodents being three orders of magnitude higher than aldosterone levels. In mineralocorticoid target organs the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) inactivates 11-hydroxy steroids, to their inactive keto-forms, thus protecting the nonselective MR from activation by glucocorticoids. The gene is highly expressed in all sodium-transporting epithelia, particularly in the kidney and colon, but also in human placenta and vascular wall. Mutations in the HSD11B2 gene cause a rare monogenic juvenile hypertensive syndrome called apparent mineralocorticoid excess (AME). In AME, compromised 11βHSD2 enzyme activity results in activation of the MR by cortisol, causing sodium retention, hypokalaemia, and salt-dependent hypertension. Whereas mutations or inhibition of 11βHSD2 by licorice have been clearly shown to produce a congenital or acquired syndrome of mineralocorticoid excess, the questions remaining are the extent to which subtle abnormalities in MR/11βHSD2 mechanisms may contribute to essential hypertension. Studies in patients with essential hypertension showed a prolonged half-life of cortisol and an increased ratio of urinary cortisol to cortisone metabolites, suggesting a deficient 11βHSD2 activity. These abnormalities may be genetically determined, as suggested by the association of a microsatellite flanking the HSD11B2 gene with hypertension in black patients with end-stage kidney disease and with salt sensitivity of blood pressure in healthy subjects. These findings indicate that variants of the HSD11B2 gene may contribute to the enhanced blood pressure response to salt and possibly to hypertension in humans.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Manipulating the metabolism of glucocorticoids may serve as a useful adjunct in the treatment of breast cancer. The 11β-hydroxysteroid dehydrogenase type 2 enzyme (11βHSD2) potently inactivates glucocorticoids thereby protecting the non-selective mineralocorticoid receptor (MR) in fluid transporting tissues. In the present study, Western blot analysis showed the presence of 11βHSD2 in 66% of the breast tumor samples. The 11βHSD2 and MR are also present in the breast tumor cell line PMC42. Glycyrrhetinic acid abolished glucocorticoid metabolism and inhibited cell growth by 40%, the latter at concentrations consistent with glucocorticoid receptor (GR) and MR binding studies. Metabolism was increased by glucocorticoids, the anti-glucocorticoid RU 38486 and anti-mineralocorticoid spironolactone, while aldosterone had no effect. Neither cortisol nor aldosterone affected cell proliferation, but both RU 38486 and spironolactone caused a significant decrease in cell number. The effects of RU 38486 were only observed at micromolar concentrations and are inconsistent with an action via GR or progesterone receptor (PR). This study shows that 11βHSD2 activity and cell proliferation of PMC42 cells can be modulated via steroid receptors.  相似文献   

11.
12.
13.
14.
The Type I (mineralocorticoid) receptor has identical affinities in vitro for cortisol and aldosterone. It has been suggested that the selective role of aldosterone in regulating sodium homeostasis relies on the microsomal enzyme 11 beta-hydroxysteroid dehydrogenase (11-HSD). This enzyme converts cortisol to its inactive metabolite, cortisone, preventing cortisol from binding to the Type I receptor. We have isolated human cDNA clones encoding 11-HSD from a human testis cDNA library by hybridization with a previously isolated rat 11-HSD cDNA clone. The cDNA contains an open reading frame of 876 bases, which predicts a protein of 292 amino acids. The sequence is 77% identical at the amino acid level to rat 11-HSD cDNA. The mRNA is widely expressed, but the level of expression is highest in the liver. Hybridization of the human 11-HSD cDNA to a human-hamster hybrid cell panel localized the single corresponding HSD11 gene to chromosome 1. This gene was isolated from a chromosome 1 specific library using the cDNA as a probe. HSD11 consists of 6 exons and is at least 9 kilobases long. The data developed in this study should be applicable to the study of patients with hypertension due to apparent mineralocorticoid excess, a deficiency in 11-HSD activity.  相似文献   

15.
16.
17.
18.
19.
Sp1, Sp3 (SPR-2) and Sp4 (SPR-1) are human sequence-specific DNA binding proteins with very similar structural features. In this report, we have analyzed Sp3 in direct comparison with Sp1. We have raised antibodies against both Sp1 and Sp3, and show that Sp3 protein, like Sp1, is expressed in various cell lines. Co-transfection experiments in different mammalian cell lines reveal that in contrast to Sp1 and Sp4, Sp3 is not able to activate several Sp1 responsive promoters. In addition, Sp3 also fails to activate reporter constructs in Drosophila SL2 cells lacking endogenous Sp factors. Instead, we find that Sp3 represses Sp1-mediated activation in a linear dose-dependent manner. A mutant of Sp3 lacking the DNA binding domain does not affect activation by Sp1, suggesting that the inhibition is most likely due to the competition with Sp1 for their common binding sites. To determine if any structurally similar domain of Sp3 is able to replace partially homologous domains of Sp1, we have generated chimeric proteins and tested their activation characteristics in gene transfer experiments. It appears that neither the glutamine-rich domains A and B nor the D domain of Sp1 can be replaced by the homologous regions of Sp3. Our results suggest that Sp3 is an inhibitory member of the Sp family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号