首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the larval products (crude extract and excretory-secretory) of Anisakis simplex on the classical and alternative pathways of human complement system were investigated. This could constitute a mechanism to evade host defences, similarly than in other parasitic diseases. The larval products showed a stronger effect on the classical pathway than on the alternative pathway. The most pronounced modulating effects were found for the excretory-secretory products. Chelation of bivalent cations (Ca(2+) or Mg(2+)) by these larval products may be responsible for their mode of action on the alternative pathway, whereas the chelation is not likely to be particularly involved in the anticomplementary activity found on the classical pathway. Detailed studies revealed that the larval products of A. simplex act at the level of the C3 and other complement components. Heating the crude parasite extract led to a notable loss of haemolysis inhibition activity, and the addition of PMSF (a serine protease inhibitor) also cause variation in the activity of the crude extract.  相似文献   

2.
To resolve the taxonomic relationship between two types of parasitic nematode larvae (Type I and II) and two species of parasitic nematode adults (Anisakis simplex and A. physeteris) of the aquatic ascarid genus Anisakis, collected in Japanese coastal water, a comparison was made of their hemoglobins' physicochemical properties. The larval hemoglobins were more similar to each other in electrophoretic pattern than to either adult, indeed there were few similarities whatsoever in these patterns of larval and adult hemoglobins. However, isoelectric points were 6.2 for the Type I larva and for A. simplex and 5.4 for the Type II larva and for A. physeteris. All samples showed identical patterns in spectrophotometric scanning. The circular dichroic spectra of the samples were also virtually identical, although slight differences were noted in the oxygenated hemoglobins; the Type II larva and A. physeteris exhibited a small positive peak at 575 nm but the Type I larva and A. simplex exhibited a much smaller peak (negative position). The sedimentation coefficients of the samples possessed essentially identical values (11.2–12.4). The molecular weights of the samples were estimated, roughly, to be in the range 33 to 43 × 104 by thin-layer chromatography on Sephadex G-200. The evidence suggests that a relationship may exist between the Type I larva and A. simplex, and between the Type II larva and A. physeteris.  相似文献   

3.
4.
Extracts of Anisakis simplex third (L3) and fourth (L4) larval stages were assayed for protein content and activity and properties of alpha-amylase, glucoamylase and glycogen phosphorylase. Protein content in L4 was twice that in L3. SDS-PAGE applied to both larval stages revealed 22 protein fractions in each, including five stage-specific fractions in each larval stage. The L3 extracts contained three amylase isoenzymes: alpha 1, alpha 2 and alpha 3; their molecular weights were 64, 29 and 21 kDa, respectively. Only one amylase isoenzyme (64 kDa) was found in the L4 extracts. Glycogen in L3 was found to be broken down mostly by hydrolysis because of low glycogen phosphorylase activity. The alpha-amylase activity in L4 was higher than that in L3 by half and the glycogen phosphorylase activity was ten times higher. In addition, the same enzymes isolated from L3 and L4 were found to differ in their properties. These differences could be manifestations of metabolic adaptations of A. simplex larvae to host switch from fish (L3) to mammals (L4), i.e. adaptations to a new habitat.  相似文献   

5.
6.
Previously, an in vitro effect was observed on the complement system not only of the excretory-secretory products but also of somatic antigens from L3 Anisakis simplex larvae. In the present work the effect of anti-A. simplex specific antibodies on C3 and C4 levels in human sera was investigated. Up to 309 samples of sera were tested to determine levels of C3 and C4 and anti-A. simplex antibodies, including immunoglobulins IgG, IgM, IgA and IgE. Significant differences were observed between levels of C3 and C4 and all immunoglobulins except for IgE. In the case of immunoglobulins, the probability that an anti-A. simplex positive subject has a C3 deficiency was 3.8 times higher than a subject without specific antibodies. In conclusion, an association between elevated levels of anti-A. simplex antibodies and C3 and C4 deficiency was demonstrated.  相似文献   

7.
Fucoidan inhibits complement by mechanisms that so far remain to be unraveled, and the objective of this work was to delineate the mode of inhibition by this sulfated polysaccharide. For that purpose, low molecular weight fractions of algal (Ascophyllum nodosum) fucoidan containing the disaccharide unit [-->3)-alpha-L-Fuc(2SO3(-))-(1-->4)-alpha-L-Fuc(2,3diSO3(-))-(1-->](n) have been studied. Gel co-affinity electrophoresis and a new affinity capillary electrophoresis (ACE) method have been implemented to characterize fucoidan-complement protein complexes. Fucoidan binds C1q, likely to its collagen-like region through interactions involving lysine residues, and then prevents the association of the C1r(2)-C1s(2) subunit, required to form the fully active C1. In addition to C1q, fucoidan forms a complex with the protein C4 as observed by ACE. The fucoidan inhibits the first steps of the classical pathway activation that is of relevance in view of the proinflammatory effects of the subsequent products of the cascade. This study shows that a high level of inhibitory activity can be achieved with low molecular weight carbohydrate molecules and that the potential applicability of fucoidan oligosaccharides for therapeutic complement inhibition is worthy of consideration.  相似文献   

8.
9.
The adipose-specific protein adiponectin binds to a number of target molecules, including damaged endothelium and the surface of apoptotic cells. However, the significance of this binding remains unclear. This study demonstrates the binding of purified C1q to recombinant adiponectin under physiological conditions, and the dependence of this upon Ca++ and Mg++. Binding was enhanced by metaperiodate-mediated destruction of glucosylgalactosyl sugars on adiponectin. Adiponectin was bound by the globular domain of the A chain of collagenase-digested C1q, and C1q binding induced deposition of C4 and C3 through activation of the classical complement pathway. After Western blotting, affinity-purified adiponectin from human serum bound C1q, whereas adiponectin in whole serum did not, unless pre-treated with metaperiodate. These results suggest adiponectin is member of the pattern-recognition family of defence collagens, able to bind target molecules and activate complement. It may therefore play an important role in innate immunity and autoimmune phenomena.  相似文献   

10.
The abundance of parasites of public health significance in pen-reared salmon and wild-caught salmon was compared. Two hundred eighty-seven salmon from Puget Sound, Washington, were examined for third-stage larvae of Anisakis simplex. Of these fish, 237 Atlantic salmon (Salmo salar), coho salmon (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha) were reared in commercial salmon pens and 50 sockeye salmon (O. nerka) were caught during their spawning migration. All wild-caught salmon were found to be infected with larval A. simplex; conversely, all pen-reared fishes lacked such infections. Edible musculature of wild salmon were infected with 581 (87%) nematode larvae. Of other salmon parasites known to infect humans, one Diphyllobothrium sp. plerocercoid was collected from each of three of the 50 wild-caught salmon. The study showed that farmed salmon may increase the margin of safety for consumers of raw seafood.  相似文献   

11.
Although the initiating complex of lectin pathway (called M1 in this study) generates C3/C5 convertases similar to those assembled by the initiating complex (C1) of the classical pathway, activation of complement component C5 via the lectin pathway has not been examined. In the present study kinetic analysis of lectin pathway C3/C5 convertases assembled on two surfaces (zymosan and sheep erythrocytes coated with mannan (E(Man))) revealed that the convertases (ZymM1,C4b,C2a and E(Man)M1,C4b,C2a) exhibited a similar but weak affinity for the substrate, C5 indicated by a high K(m) (2.73-6.88 microm). Very high affinity C5 convertases were generated when the low affinity C3/C5 convertases were allowed to deposit C3b by cleaving native C3. These C3b-containing convertases exhibited K(m) (0.0086-0.0075 microm) well below the normal concentration of C5 in blood (0.37 microm). Although kinetic parameters, K(m) and k(cat), of the lectin pathway C3/C5 convertases were similar to those reported for classical pathway C3/C5 convertases, studies on the ability of C4b to bind C2 indicated that every C4b deposited on zymosan or E(Man) was capable of forming a convertase. These findings differ from those reported for the classical pathway C3/C5 convertase, where only one of four C4b molecules deposited formed a convertase. The potential for four times more amplification via the lectin pathway than the classical pathway in the generation of C3/C5 convertases and production of pro-inflammatory products, such as C3a, C4a, and C5a, implies that activation of complement via the lectin pathway might be a more prominent contributor to the pathology of inflammatory reactions.  相似文献   

12.
13.
C1q is the recognition subunit of the first component of the classical complement pathway. It participates in clearance of immune complexes and apoptotic cells as well as in defense against pathogens. Inappropriate activation of the complement contributes to cellular and tissue damage in different pathologies, urging the need for the development of therapeutic agents that are able to inhibit the complement system. In this study, we report heme as an inhibitor of C1q. Exposure of C1q to heme significantly reduced the activation of the classical complement pathway, mediated by C-reactive protein (CRP) and IgG. Interaction analyses revealed that heme reduces the binding of C1q to CRP and IgG. Furthermore, we demonstrated that the inhibition of C1q interactions results from a direct binding of heme to C1q. Formation of complex of heme with C1q caused changes in the mechanism of recognition of IgG and CRP. Taken together, our data suggest that heme is a natural negative regulator of the classical complement pathway at the level of C1q. Heme may play a role at sites of excessive tissue damage and hemolysis where large amounts of free heme are released.  相似文献   

14.
Mouse serum and EDTA plasma were subjected to low ionicity precipitation, gel filtration, and ion exchange chromatography in an attempt to purify C1, C4, and C2 to functional and chemical homogeneity. In marked contrast to human and guinea pig components, those of the mouse could not be separated by these techniques. Except for partial separation of C1 from C4 and C2 on DE-52 cellulose columuns with EDTA in the eluting buffers, there was no separation of those three components on ion exchange chromatographic columns. Sephadex G-200 gel filtration columns, or with precipitation of euglobulins from serum or plasma. Generation of EAC142 by incubation of EA in whole serum followed first order kinetics when mouse serum was used and second (or greater) order kinetics when human or guinea pig sera were used. Generation of EAC142 by incubation of EA in whole mouse serum followed by incubation in EDTA containing buffers resulted in rapid loss of all three activities from the cell. These experiments indicated that there were significant differences between the early classical C system of mice and those of human and guinea pig. In addition, they indicated that under a variety of in vitro conditions, murine C1, C4, and C2 behaved biochemically and functionally as a unit. The reasons for the major differences in behavior of the murine C components with not become clear until methods to stabilize their function are found so that they can survive multiple purification steps.  相似文献   

15.
Data on the occurrence of larvae of Anisakis simplex A and Anisakis physeteris in marine fishes from Italian waters are reported. The larvae have been identified by multilocus electrophoresis using biochemical keys. Considerations on the life-history pattern of these species in the Mediterranean Sea are advanced.  相似文献   

16.
C3/C5 convertase is a serine protease that cleaves C3 and C5. In the present study we examined the C5 cleaving properties of classical pathway C3/C5 convertase either bound to the surface of sheep erythrocytes or in its free soluble form. Kinetic parameters revealed that the soluble form of the enzyme (C4b,C2a) cleaved C5 at a catalytic rate similar to that of the surface-bound form (EAC1,C4b,C2a). However, both forms of the enzyme exhibited a poor affinity for the substrate, C5, as indicated by a high Km (6-9 microM). Increasing the density of C4b on the cell surface from 8,000 to 172,000 C4b/cell did not influence the Km. Very high affinity C5 convertases were generated only when the low affinity C3/C5 convertases (EAC1,C4b,C2a) were allowed to deposit C3b by cleaving native C3. These C3b-containing C3/C5 convertases exhibited Km (0.0051 microM) well below the normal concentration of C5 in blood (0.37 microM). The data suggest that C3/C5 convertase assembled with either monomeric C4b or C4b-C4b complexes are inefficient in capturing C5 but cleave C3 opsonizing the cell surface with C3b for phagocytosis. Deposition of C3b converts the enzymes to high affinity C5 convertases, which cleave C5 in blood at catalytic rates approaching Vmax, thereby switching from C3 to C5 cleavage. Comparison of the kinetic parameters with those of the alternative pathway convertase indicates that the 6-9-fold greater catalytic rate of the classical pathway C5 convertase may compensate for the fewer numbers of C5 convertase sites generated upon activation of this pathway.  相似文献   

17.
18.
We studied the effect of CO(2) on the in vitro cultivation of Anisakis simplex, an aquatic parasitic nematode of cetaceans (final hosts) and fish, squid, crustaceans and other invertebrates (intermediate/paratenic hosts), and, occasionally, of man (accidental host). The results showed that a high pCO(2), at a suitable temperature, is vital for the optimum development of these nematodes, at least from the third larval stage (L3) to adult. After 30 days cultivation in air, molting to L4 (fourth larval stage) was reduced to 1/3, while survival was about 1/3 of that when cultivated in air + 5% CO(2). The activity of the CO(2)-fixing enzymes, PEPCK and PEPC, was also studied. Throughout the development of the worms studied, PEPCK activity was much higher than that of PEPC (e.g., 305 vs. 6.8 nmol/min.mg protein, respectively, in L3 collected from the host fish). The activity of these enzymes in the worms cultivated in air + 5% CO(2) was highest during M3, and was also generally higher than that of those cultivated in air only, especially during molting from L3 to L4 (e.g., in recently molted L4, PEPCK activity was 3.7 times greater than that of PEPC 2.9 times greater than when cultivated in air).  相似文献   

19.
20.
Undesired activation of the complement system is a major pathogenic factor contributing to various immune complex diseases and conditions such as hyperacute xenograft rejection. We aim for prevention of complement-mediated damage by specific inhibition of the classical complement pathway, thus not affecting the antimicrobial functions of the complement system via the alternative pathway and the lectin pathway. Therefore, 42 peptides previously selected from phage-displayed peptide libraries on basis of C1q binding were synthesized and examined for their ability to inhibit the function of C1q. From seven peptides that showed inhibition of C1q hemolytic activity but no inhibition of the alternative complement pathway, one peptide (2J) was selected and further studied. Peptide 2J inhibited the hemolytic activity of C1q from human, chimpanzee, rhesus monkey, rat, and mouse origin, all with a similar dose-response relationship (IC(50) 2-6 microM). Binding of C1q to peptide 2J involved the globular head domain of C1q. In line with this interaction, peptide 2J dose-dependently inhibited the binding of C1q to IgG and blocked activation of C4 and C3 and formation of C5b-9 induced via classical pathway activation, as assessed by ELISA. Furthermore, the peptide strongly inhibited the deposition of C4 and C3 on pig cells following their exposure to human xenoreactive Abs and complement. We conclude that peptide 2J is a promising reagent for the development of a therapeutic inhibitor of the earliest step of the classical complement pathway, i.e., the binding of C1q to its target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号