首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An essential, but poorly understood part of malaria transmission by mosquitoes is the development of the ookinetes into the sporozoite-producing oocysts on the mosquito midgut wall. For successful oocyst formation newly formed ookinetes in the midgut lumen must enter, traverse, and exit the midgut epithelium to reach the midgut basal lamina, processes collectively known as midgut invasion. After invasion ookinete-to-oocyst transition must occur, a process believed to require ookinete interactions with basal lamina components. Here, we report on a novel extracellular malaria protein expressed in ookinetes and young oocysts, named secreted ookinete adhesive protein (SOAP). The SOAP gene is highly conserved amongst Plasmodium species and appears to be unique to this genus. It encodes a predicted secreted and soluble protein with a modular structure composed of two unique cysteine-rich domains. Using the rodent malaria parasite Plasmodium berghei we show that SOAP is targeted to the micronemes and forms high molecular mass complexes via disulphide bonds. Moreover, SOAP interacts strongly with mosquito laminin in yeast-two-hybrid assays. Targeted disruption of the SOAP gene gives rise to ookinetes that are markedly impaired in their ability to invade the mosquito midgut and form oocysts. These results identify SOAP as a key molecule for ookinete-to-oocyst differentiation in mosquitoes.  相似文献   

2.

Background

The population dynamics of Plasmodium sporogony within mosquitoes consists of an early phase where parasite abundance decreases during the transition from gametocyte to oocyst, an intermediate phase where parasite abundance remains static as oocysts, and a later phase where parasite abundance increases during the release of progeny sporozoites from oocysts. Sporogonic development is complete when sporozoites invade the mosquito salivary glands. The dynamics and efficiency of this developmental sequence were determined in laboratory strains of Anopheles dirus, Anopheles minimus and Anopheles sawadwongporni mosquitoes for Plasmodium vivax parasites circulating naturally in western Thailand.

Methods

Mosquitoes were fed blood from 20 symptomatic Thai adults via membrane feeders. Absolute densities were estimated for macrogametocytes, round stages (= female gametes/zygotes), ookinetes, oocysts, haemolymph sporozoites and salivary gland sporozoites. From these census data, five aspects of population dynamics were analysed; 1) changes in life-stage prevalence during early sporogony, 2) kinetics of life-stage formation, 3) efficiency of life-stage transitions, 4) density relationships between successive life-stages, and 5) parasite aggregation patterns.

Results

There was no difference among the three mosquito species tested in total losses incurred by P. vivax populations during early sporogony. Averaged across all infections, parasite populations incurred a 68-fold loss in abundance, with losses of ca. 19-fold, 2-fold and 2-fold at the first (= gametogenesis/fertilization), second (= round stage transformation), and third (= ookinete migration) life-stage transitions, respectively. However, total losses varied widely among infections, ranging from 6-fold to over 2,000-fold loss. Losses during gametogenesis/fertilization accounted for most of this variability, indicating that gametocytes originating from some volunteers were more fertile than those from other volunteers. Although reasons for such variability were not determined, gametocyte fertility was not correlated with blood haematocrit, asexual parasitaemia, gametocyte density or gametocyte sex ratio. Round stages and ookinetes were present in mosquito midguts for up to 48 hours and development was asynchronous. Parasite losses during fertilization and round stage differentiation were more influenced by factors intrinsic to the parasite and/or factors in the blood, whereas ookinete losses were more strongly influenced by mosquito factors. Oocysts released sporozoites on days 12 to 14, but even by day 22 many oocysts were still present on the midgut. The per capita production was estimated to be approximately 500 sporozoites per oocyst and approximately 75% of the sporozoites released into the haemocoel successfully invaded the salivary glands.

Conclusion

The major developmental bottleneck in early sporogony occurred during the transition from macrogametocyte to round stage. Sporozoite invasion into the salivary glands was very efficient. Information on the natural population dynamics of sporogony within malaria-endemic areas may benefit intervention strategies that target early sporogony (e.g., transmission blocking vaccines, transgenic mosquitoes).  相似文献   

3.
Knowledge of parasite-mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500-100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite-mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.  相似文献   

4.
Plasmodium parasites cause malaria in mammalian hosts and are transmitted by Anopheles mosquitoes. Activated gametocytes in the mosquito midgut egress from erythrocytes followed by fertilization and zygote formation. Zygotes differentiate into motile invasive ookinetes, which penetrate the midgut epithelium before forming oocysts beneath the basal lamina. Ookinete development and traversal across the mosquito midgut wall are major bottlenecks in the parasite life cycle. In ookinetes, surface proteins and proteins stored in apical organelles have been shown to be involved in parasite-host interactions. A group of ookinete proteins that are predicted to have such functions are named PSOPs (putative secreted ookinete protein). PSOP1 is possibly involved in migration through the midgut wall, and here its subcellular localization was examined in ookinetes by immunoelectron microscopy. PSOP1 localizes to the micronemes of Plasmodium yoelii and Plasmodium berghei ookinetes, indicating that it is stored and possibly apically secreted during ookinete penetration through the mosquito midgut wall.  相似文献   

5.
Crystalloids are transient organelles that form in developing malaria ookinetes and disappear after ookinete-to-oocyst transition. Their origins and functions remain poorly understood. The Plasmodium berghei scavenger receptor-like protein PbSR is essential for mosquito-to-host transmission of the parasite: PbSR knockout parasites produce normal numbers of oocysts that fail to form sporozoites, pointing to a role for PbSR in the oocyst during sporogony. Here, using fluorescent protein tagging and targeted gene disruption, we show that PbSR is synthesized in macrogametocytes, gets targeted to the crystalloids of developing ookinetes and is involved in crystalloid formation. While oocyst sporulation rates of PbSR knockout parasites are highly reduced in parasite-infected mosquitoes, sporulation rates in vitro are not adversely affected, supporting the view that mosquito factors could be involved in the PbSR loss-of-function phenotype. These findings are the first to identify a parasite protein involved with the crystalloid organelle, and suggest a novel protein-trafficking mechanism to deliver PbSR to the oocysts.  相似文献   

6.
The population dynamics of cultured Plasmodium falciparum parasites was examined during their sporogonic development in Anopheles gambiae mosquitoes. Estimates of absolute densities were determined for each life stage, and life tables were constructed for each of 38 experimental infections. Macrogametocyte and ookinete mortalities contributed equally to the overall mortality. On average, there was a 40-fold decrease in parasite numbers in the transition from the macrogametocyte to the ookinete stage, a 69-fold decrease in the transition from ookinete to oocyst stages, and a total net decrease in parasite numbers from macrogametocyte to oocyst stage of 2,754-fold (i.e., multiplicative). There was no relationship between macrogametocyte and ookinete densities due to the inherent variability in fertility among different gametocyte cultures. There was a curvilinear relationship (r2 = 0.66) between ookinete and oocyst densities. Above a threshold of about 30 ookinetes/mosquito, the oocyst yield per ookinete became increasingly greater with increasing ookinete density. There was a linear relationship (r2 = 0.73) between oocyst and sporozoite densities, with an average of 663 salivary gland sporozoites produced per oocyst. Sporozoite production per oocyst was not affected by oocyst density and virtually all oocyst infections resulted in sporozoite infections of the salivery glands. This quantitative study indicates that the sporogony of cultured P. falciparum in laboratory-infected A. gambiae is an inefficient process and that the ookinete is the key transitional stage affecting the probability of vector infectivity.  相似文献   

7.
The ookinete surface proteins (P25 and P28) are proven antimalarial transmission-blocking vaccine targets, yet their biological functions are unknown. By using single (Sko) and double gene knock-out (Dko) Plasmodium berghei parasites, we show that P25 and P28 share multiple functions during ookinete/oocyst development. In the midgut of mosquitoes, the formation of ookinetes lacking both proteins (Dko parasites) is significantly inhibited due to decreased protection against lethal factors, including protease attack. In addition, Dko ookinetes have a much reduced capacity to traverse the midgut epithelium and to transform into the oocyst stage. P25 and P28 are partially redundant in these functions, since the efficiency of ookinete/oocyst development is only mildly compromised in parasites lacking either P25 or P28 (Sko parasites) compared with that of Dko parasites. The fact that Sko parasites are efficiently transmitted by the mosquito is a compelling reason for including both target antigens in transmission-blocking vaccines.  相似文献   

8.
When malaria parasites enter to mosquitoes, they fertilize and differentiate to zygotes and ookinetes. The motile ookinetes cross the midgut cells and arrive to the basement membranes where they differentiate into oocysts. The midgut epithelium is thus a barrier for ookinetes to complete their life cycle in the mosquitoes. The ookinetes develop gliding motility to invade midgut cells successfully, but the molecular mechanisms behind are poorly understood. Here, we identified a single molecule with guanylate cyclase domain and N-terminal P-type ATPase like domain in the rodent malaria parasite Plasmodium berghei and named it PbGCbeta. We demonstrated that transgenic parasites in which the PbGCbeta gene was disrupted formed normal ookinetes but failed to produce oocyst. Confocal microscopic analysis showed that the disruptant ookinetes remained on the surface of the microvilli. The disruptant ookinetes showed severe defect in motility, resulting in failure of parasite invasion of the midgut epithelium. When the disruptant ookinetes were cultured in vitro, they transformed into oocysts and sporozoites. These results demonstrate that PbGCbeta is essential for ookinete motility when passing through the midgut cells, but not for further development of the parasites.  相似文献   

9.
Malaria parasite oocysts located on the mosquito midgut generate sporozoites by a process called sporogony. Plasmodium berghei parasites express six LCCL lectin domain adhesive-like proteins (LAPs), which operate as a complex and share a localisation in the crystalloid – an organelle found in the ookinete and young oocyst. Depletion of LAPs prevents crystalloid formation, increases oocyst growth, and blocks sporogony. Here, we describe a LAP4 mutant that has abnormal crystalloid biogenesis and produces oocysts that display reduced growth and premature sporogony. These findings provide evidence for a role of the LAP complex in regulating oocyst cell division via the crystalloid.  相似文献   

10.
The mosquito stage of Plasmodium berghei was cultivated in vitro, with special attention to ookinete transformation into early oocyst. The ookinetes were obtained by in vitro culture of gametocytes taken from infected mice, purified by density gradient of metrizoic acid or a lymphocyte separation medium, and incubated either in acellular culture or in co-cultivations with mosquito cells. In acellular culture, the ookinetes were found to aggregate with each other and transformed from banana to round shapes. Their inner pellicular membranes and subpellicular microtubules partially disappeared, indicating that development to early oocyst had occurred. Co-cultivation wtih Aedes albopictus cells (C6/36 clone) revealed that ookinetes transformed into early oocyst in the medium, or invaded the cells and then transformed to early oocysts within the cell cytoplasm as well. However all of these transformed cells failed to develop further, i.e., neither deposition of the oocyst capsule nor nuclear division was observed. Many ookinetes which failed to penetrate the Aedes cells were phagocytized within three days of culture. A significant difference between invaded and transformed oocysts and phagocytized ookinetes was seen in that the former lacked vacuole membrane. Co-cultivation with Toxorhynchites amboinensis cells (TRA-284-SFG clone) permitted transformation of ookinetes into early oocysts in the medium as in the acellular culture, but no ookinete invasion nor phagocytosis by the cell was observed.  相似文献   

11.
Plasmodium, the causative agent of malaria, has to undergo sexual differentiation and development in anopheline mosquitoes for transmission to occur. To isolate genes specifically induced in both organisms during the early stages of Plasmodium differentiation in the mosquito, two cDNA libraries were constructed, one enriched for sequences expressed in differentiating Plasmodium berghei ookinetes and another enriched for sequences expressed in Anopheles stephensi guts containing invading ookinetes and early oocysts. Sequencing of 457 ookinete library clones and 652 early oocyst clones represented 175 and 346 unique expressed sequence tags, respectively. Nine of 13 Plasmodium and four of the five Anopheles novel expressed sequence tags analyzed on Northern blots were induced during ookinete differentiation and mosquito gut invasion. Ancaspase-7, an Anopheles effector caspase, is proteolytically activated during Plasmodium invasion of the midgut. WARP, a gene encoding a Plasmodium surface protein with a von Willebrand factor A-like adhesive domain, is expressed only in ookinetes and early oocysts. An anti-WARP polyclonal antibody strongly inhibits (70-92%) Plasmodium development in the mosquito, making it a candidate antigen for transmission blocking vaccines. The present results and those of an accompanying report (Srinivasan, P., Abraham, E. G., Ghosh, A. K., Valenzuela, J., Ribeiro, J. M. C., Dimopoulos G., Kafatos, F. C., Adams, J. H., and Jacobs-Lorena, M. (2004) J. Biol. Chem. 279, 5581-5587) provide the foundation for further analysis of Plasmodium differentiation in the mosquito and of mosquito responses to the parasite.  相似文献   

12.
1. The membrane fraction, prepared by hypotonic lysis, of mouse red cells infected with Plasmodium berghei, P. yoelii YM, P. yoelii 17 X, P. yoelii 33 X, P. vinckei or P. chabaudi shows significant alterations from normal in protein composition as observed by dodecylsulphate-polyacrylamide gel electrophoresis. 2. There is a reduction in intensity of various protein bands, notably bands I and II (spectrin), of membranes prepared from infected red cells. 3. New bands are observed as a result of infection, the intensity and location of which depend on the parasite species and strain. A new band of apparent molecular weight 150,000 appears with a strong intensity in P. yoelii YM infection, with a moderate intensity in P. berghei infection, and with a weak intensity in P. vinckei and P. chabaudi infection. In P. yoelii 17X and 33X infection, multiple weak bands are seen in the molecular weight range 120,000-210,000.  相似文献   

13.
It is well documented that the density of Plasmodium in its vertebrate host modulates the physiological response induced; this in turn regulates parasite survival and transmission. It is less clear that parasite density in the mosquito regulates survival and transmission of this important pathogen. Numerous studies have described conversion rates of Plasmodium from one life stage to the next within the mosquito, yet few have considered that these rates might vary with parasite density. Here we establish infections with defined numbers of the rodent malaria parasite Plasmodium berghei to examine how parasite density at each stage of development (gametocytes; ookinetes; oocysts and sporozoites) influences development to the ensuing stage in Anopheles stephensi, and thus the delivery of infectious sporozoites to the vertebrate host. We show that every developmental transition exhibits strong density dependence, with numbers of the ensuing stages saturating at high density. We further show that when fed ookinetes at very low densities, oocyst development is facilitated by increasing ookinete number (i.e., the efficiency of ookinete-oocyst transformation follows a sigmoid relationship). We discuss how observations on this model system generate important hypotheses for the understanding of malaria biology, and how these might guide the rational analysis of interventions against the transmission of the malaria parasites of humans by their diverse vector species.  相似文献   

14.
ABSTRACT. The mosquito stage of Plasmodium berghei was cultivated in vitro, with special attention to ookinete transformation into early oocyst. The ookinetes were obtained by in vitro culture of gametocytes taken from infected mice, purified by density gradient of metrizoic acid or a lymphocyte separation medium, and incubated either in acellular culture or in co-cultivations with mosquito cells. In acellular culture, the ookinetes were found to aggregate with each other and transformed from banana to round shapes. Their inner pellicular membranes and subpellicular microtubules partially disappeared, indicating that development to early oocyst had occurred. Co-cultivation with Aedes albopictus cells (C6/36 clone) revealed that ookinetes transformed into early oocyst in the medium, or invaded the cells and then transformed to early oocysts within the cell cytoplasm as well. However, all of these transformed cells failed to develop further, i.e. neither deposition of the oocyst capsule nor nuclear division was observed. Many ookinetes which failed to penetrate the Aedes cells were phagocytized within three days of culture. A significant difference between invaded and transformed oocysts and phagocytized ookinetes was seen in that the former lacked vacuole membrane. Co-cultivation with Toxorhynchites amboinensis cells (TRA-284-SFG clone) permitted transformation of ookinetes into early oocysts in the medium as in the acellular culture, but no ookinete invasion nor phagocytosis by the cell was observed.  相似文献   

15.
Study of the parasite mosquito stages of Plasmodium and its use in the production of sporozoite vaccines against malaria has been hampered by the technical difficulties of in vitro development. Here, we show the complete axenic development of the parasite mosquito stages of Plasmodium yoelii. While we demonstrate that matrigel is not required for parasite development, soluble factors produced and secreted by Drosophila melanogaster S2 cells appear to be crucial for the ookinete to oocyst transition. Parasites cultured axenically are both morphologically and biologically similar to mosquito-derived ookinetes, oocysts, and sporozoites. Axenically derived sporozoites were capable of producing an infection in mice as determined by RT-PCR; however, the parasitemia was significantly much less than that produced by mosquito-derived sporozoites. Our cell free system for development of the mosquito stages of P. yoelii provides a simplified approach to generate sporozoites that may be for biological assays and genetic manipulations.  相似文献   

16.
The ookinete is a motile form of the malaria parasite that travels from the midgut lumen of the mosquito, invades the epithelial cells and settles beneath the basal lamina. The events surrounding cessation of ookinete motility and its transformation into an oocyst are poorly understood, but interaction between components of the basal lamina and the parasite surface has been implicated. Here we report that interactions occur between basal lamina constituents and ookinete proteins and that these interactions inhibit motility and are likely to be involved in transformation to an oocyst. Plasmodium berghei ookinetes bound weakly to microtitre plate wells coated with fibronectin and much more strongly to wells coated with laminin and collagen IV. A 1:1 mixture of collagen and laminin significantly enhanced binding. Binding increased with time of incubation up to 10 h and different components showed different binding profiles with time. Two parasite molecules were shown to act as ligands for basal lamina components. Western blots demonstrated that the surface molecule Pbs21 bound strongly to laminin but not to collagen IV whereas a 215 kDa molecule (possibly PbCTRP) bound to both laminin and collagen IV. Furthermore up to 90% inhibition of binding of ookinetes to collagen IV/laminin combination occurred if parasites were pre-incubated with anti-Pbs21 monoclonal antibody 13.1. Some transformation of ookinetes to oocysts occurred in wells coated with laminin or laminin/collagen IV combinations but collagen IV alone did not trigger transformation. No binding or transformation occurred in uncoated wells. Our data support the suggestion that ookinete proteins Pbs21 and a 215 kDa protein may have multiple roles including interactions with midgut basal lamina components that cause binding, inhibit motility and trigger transformation.  相似文献   

17.
We studied the effects of high temperature, 30 and 32 versus 27 C on early Plasmodium falciparum development in Anopheles gambiae experimentally infected with gametocytes from 30 volunteers with mean density of 264.1 gametocytes/microl blood (range: 16-1,536/microl). From several batches of mosquitoes, fed by membrane feeding, midguts of individual mosquitoes were dissected at 24 hr for ookinete enumeration and at 7 days to quantify oocysts. There were temperature-related differences in mean ookinete intensity per mosquito midgut, with 9.71 +/- 1.6 at 27 C, 9.85 +/- 2.32 at 30 C, and 3.89 +/- 0.81 at 32 C. The prevalence of oocyst infection decreased with an increase in temperatures from 15.9 to 8.5 to 6.4% at 27, 30, and 32 C, respectively. The average oocyst intensities for the infected mosquitoes increased with temperatures from 2.9 at 27 C to 3.5 at 30 C, and to 3.3 at 32 C. However, the success of infections was reduced at 30 and 32 C, and resulted in greater losses during consecutive inter-stage parasite development. The most significant impact of high temperatures occurred at the transition between macrogametocytes and ookinetes, whereas the transition between ookinetes and oocysts apparently was not affected. In contrast to other reports, exposure of mosquitoes infected with natural parasites to high temperatures did not eliminate preoocyst stages, as has been observed from laboratory studies using the NF-54 strain of P. falciparum. This observation of parasite resistance to high temperatures is consistent with the natural situation in tropical environments where perennial malaria transmission occurs during hot dry seasons.  相似文献   

18.
19.
Plasmodium berghei ookinetes were cultured from hamster blood as described previously (Kurtti and Munderloh, 1986). An average of 7.3 X 10(6) ookinetes was harvested from each ml of blood. Ookinetes were purified by centrifugation on first a 40% and then a 36% Percoll gradient. The final preparation comprised 32.8% of the ookinetes initially obtained, and contained 3.3 other parasite stages or blood cells per ookinete. Unpurified and purified ookinetes were resuspended in hamster blood and fed to Anopheles stephensi. There was a strong linear correlation between the concentration of purified or unpurified ookinetes and the number of oocysts formed. With unpurified ookinetes, a maximum was reached when preparations containing 1 X 10(7) ookinetes/ml were fed, and feeding preparations containing a higher concentration did not produce more oocysts. Sporozoites were found in the salivary glands of mosquitoes fed ookinetes by days 14 (unpurified) or 15 (purified) PI. Approximately 5 times as many purified as unpurified ookinetes were required to produce each oocyst.  相似文献   

20.
CTRP is essential for mosquito infection by malaria ookinetes   总被引:18,自引:0,他引:18       下载免费PDF全文
The malaria parasite suffers severe population losses as it passes through its mosquito vector. Contributing factors are the essential but highly constrained developmental transitions that the parasite undergoes in the mosquito midgut, combined with the invasion of the midgut epithelium by the malaria ookinete (recently described as a principal elicitor of the innate immune response in the Plasmodium-infected insect). Little is known about the molecular organization of these midgut-stage parasites and their critical interactions with the blood meal and the mosquito vector. Elucidation of these molecules and interactions will open up new avenues for chemotherapeutic and immunological attack of parasite development. Here, using the rodent malaria parasite Plasmodium berghei, we identify and characterize the first microneme protein of the ookinete: circumsporozoite- and TRAP-related protein (CTRP). We show that transgenic parasites in which the CTRP gene is disrupted form ookinetes that have reduced motility, fail to invade the midgut epithelium, do not trigger the mosquito immune response, and do not develop further into oocysts. Thus, CTRP is the first molecule shown to be essential for ookinete infectivity and, consequently, mosquito transmission of malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号