首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

In December 2013, the first locally-acquired chikungunya virus (CHIKV) infections in the Americas were reported in the Caribbean. As of May 16, 55,992 cases had been reported and the outbreak was still spreading. Identification of newly affected locations is paramount to intervention activities, but challenging due to limitations of current data on the outbreak and on CHIKV transmission. We developed models to make probabilistic predictions of spread based on current data considering these limitations.

Methods and Findings

Branching process models capturing travel patterns, local infection prevalence, climate dependent transmission factors, and associated uncertainty estimates were developed to predict probable locations for the arrival of CHIKV-infected travelers and for the initiation of local transmission. Many international cities and areas close to where transmission has already occurred were likely to have received infected travelers. Of the ten locations predicted to be the most likely locations for introduced CHIKV transmission in the first four months of the outbreak, eight had reported local cases by the end of April. Eight additional locations were likely to have had introduction leading to local transmission in April, but with substantial uncertainty.

Conclusions

Branching process models can characterize the risk of CHIKV introduction and spread during the ongoing outbreak. Local transmission of CHIKV is currently likely in several Caribbean locations and possible, though uncertain, for other locations in the continental United States, Central America, and South America. This modeling framework may also be useful for other outbreaks where the risk of pathogen spread over heterogeneous transportation networks must be rapidly assessed on the basis of limited information.  相似文献   

2.

Background

There is limited information on influenza and respiratory syncytial virus (RSV) seasonal patterns in tropical areas, although there is renewed interest in understanding the seasonal drivers of respiratory viruses.

Methods

We review geographic variations in seasonality of laboratory-confirmed influenza and RSV epidemics in 137 global locations based on literature review and electronic sources. We assessed peak timing and epidemic duration and explored their association with geography and study settings. We fitted time series model to weekly national data available from the WHO influenza surveillance system (FluNet) to further characterize seasonal parameters.

Results

Influenza and RSV activity consistently peaked during winter months in temperate locales, while there was greater diversity in the tropics. Several temperate locations experienced semi-annual influenza activity with peaks occurring in winter and summer. Semi-annual activity was relatively common in tropical areas of Southeast Asia for both viruses. Biennial cycles of RSV activity were identified in Northern Europe. Both viruses exhibited weak latitudinal gradients in the timing of epidemics by hemisphere, with peak timing occurring later in the calendar year with increasing latitude (P<0.03). Time series model applied to influenza data from 85 countries confirmed the presence of latitudinal gradients in timing, duration, seasonal amplitude, and between-year variability of epidemics. Overall, 80% of tropical locations experienced distinct RSV seasons lasting 6 months or less, while the percentage was 50% for influenza.

Conclusion

Our review combining literature and electronic data sources suggests that a large fraction of tropical locations experience focused seasons of respiratory virus activity in individual years. Information on seasonal patterns remains limited in large undersampled regions, included Africa and Central America. Future studies should attempt to link the observed latitudinal gradients in seasonality of viral epidemics with climatic and population factors, and explore regional differences in disease transmission dynamics and attack rates.  相似文献   

3.
Yang W  Marr LC 《PloS one》2011,6(6):e21481
There is mounting evidence that the aerosol transmission route plays a significant role in the spread of influenza in temperate regions and that the efficiency of this route depends on humidity. Nevertheless, the precise mechanisms by which humidity might influence transmissibility via the aerosol route have not been elucidated. We hypothesize that airborne concentrations of infectious influenza A viruses (IAVs) vary with humidity through its influence on virus inactivation rate and respiratory droplet size. To gain insight into the mechanisms by which humidity might influence aerosol transmission, we modeled the size distribution and dynamics of IAVs emitted from a cough in typical residential and public settings over a relative humidity (RH) range of 10-90%. The model incorporates the size transformation of virus-containing droplets due to evaporation and then removal by gravitational settling, ventilation, and virus inactivation. The predicted concentration of infectious IAVs in air is 2.4 times higher at 10% RH than at 90% RH after 10 min in a residential setting, and this ratio grows over time. Settling is important for removal of large droplets containing large amounts of IAVs, while ventilation and inactivation are relatively more important for removal of IAVs associated with droplets <5 μm. The inactivation rate increases linearly with RH; at the highest RH, inactivation can remove up to 28% of IAVs in 10 min. Humidity is an important variable in aerosol transmission of IAVs because it both induces droplet size transformation and affects IAV inactivation rates. Our model advances a mechanistic understanding of the aerosol transmission route, and results complement recent studies on the relationship between humidity and influenza's seasonality. Maintaining a high indoor RH and ventilation rate may help reduce chances of IAV infection.  相似文献   

4.
Influenza causes significant morbidity in tropical regions; however, unlike in temperate zones, influenza in the tropics is not strongly associated with a given season. We have recently shown that influenza virus transmission in the guinea pig model is most efficient under cold, dry conditions, which are rare in the tropics. Herein, we report the lack of aerosol transmission at 30 degrees C and at all humidities tested. Conversely, transmission via the contact route was equally efficient at 30 degrees C and 20 degrees C. Our data imply that contact or short-range spread predominates in the tropics and offer an explanation for the lack of a well-defined, recurrent influenza season affecting tropical and subtropical regions of the world.  相似文献   

5.
6.

Background

Studies in the literature have indicated that the timing of seasonal influenza epidemic varies across latitude, suggesting the involvement of meteorological and environmental conditions in the transmission of influenza. In this study, we investigated the link between meteorological parameters and influenza activity in 9 sub-national areas with temperate and subtropical climates: Berlin (Germany), Ljubljana (Slovenia), Castile and León (Spain) and all 6 districts in Israel.

Methods

We estimated weekly influenza-associated influenza-like-illness (ILI) or Acute Respiratory Infection (ARI) incidence to represent influenza activity using data from each country’s sentinel surveillance during 2000–2011 (Spain) and 2006–2011 (all others). Meteorological data was obtained from ground stations, satellite and assimilated data. Two generalized additive models (GAM) were developed, with one using specific humidity as a covariate and another using minimum temperature. Precipitation and solar radiation were included as additional covariates in both models. The models were adjusted for previous weeks’ influenza activity, and were trained separately for each study location.

Results

Influenza activity was inversely associated (p<0.05) with specific humidity in all locations. Minimum temperature was inversely associated with influenza in all 3 temperate locations, but not in all subtropical locations. Inverse associations between influenza and solar radiation were found in most locations. Associations with precipitation were location-dependent and inconclusive. We used the models to estimate influenza activity a week ahead for the 2010/2011 period which was not used in training the models. With exception of Ljubljana and Israel’s Haifa District, the models could closely follow the observed data especially during the start and the end of epidemic period. In these locations, correlation coefficients between the observed and estimated ranged between 0.55 to 0.91and the model-estimated influenza peaks were within 3 weeks from the observations.

Conclusion

Our study demonstrated the significant link between specific humidity and influenza activity across temperate and subtropical climates, and that inclusion of meteorological parameters in the surveillance system may further our understanding of influenza transmission patterns.  相似文献   

7.

Background

The role of relative humidity in the aerosol transmission of influenza was examined in a simulated examination room containing coughing and breathing manikins.

Methods

Nebulized influenza was coughed into the examination room and Bioaerosol samplers collected size-fractionated aerosols (<1 µM, 1–4 µM, and >4 µM aerodynamic diameters) adjacent to the breathing manikin’s mouth and also at other locations within the room. At constant temperature, the RH was varied from 7–73% and infectivity was assessed by the viral plaque assay.

Results

Total virus collected for 60 minutes retained 70.6–77.3% infectivity at relative humidity ≤23% but only 14.6–22.2% at relative humidity ≥43%. Analysis of the individual aerosol fractions showed a similar loss in infectivity among the fractions. Time interval analysis showed that most of the loss in infectivity within each aerosol fraction occurred 0–15 minutes after coughing. Thereafter, losses in infectivity continued up to 5 hours after coughing, however, the rate of decline at 45% relative humidity was not statistically different than that at 20% regardless of the aerosol fraction analyzed.

Conclusion

At low relative humidity, influenza retains maximal infectivity and inactivation of the virus at higher relative humidity occurs rapidly after coughing. Although virus carried on aerosol particles <4 µM have the potential for remaining suspended in air currents longer and traveling further distances than those on larger particles, their rapid inactivation at high humidity tempers this concern. Maintaining indoor relative humidity >40% will significantly reduce the infectivity of aerosolized virus.  相似文献   

8.

Background

Influenza transmission is often associated with climatic factors. As the epidemic pattern varies geographically, the roles of climatic factors may not be unique. Previous in vivo studies revealed the direct effect of winter-like humidity on air-borne influenza transmission that dominates in regions with temperate climate, while influenza in the tropics is more effectively transmitted through direct contact.

Methodology/Principal Findings

Using time series model, we analyzed the role of climatic factors on the epidemiology of influenza transmission in two regions characterized by warm climate: Hong Kong (China) and Maricopa County (Arizona, USA). These two regions have comparable temperature but distinctly different rainfall. Specifically we employed Autoregressive Integrated Moving Average (ARIMA) model along with climatic parameters as measured from ground stations and NASA satellites. Our studies showed that including the climatic variables as input series result in models with better performance than the univariate model where the influenza cases depend only on its past values and error signal. The best model for Hong Kong influenza was obtained when Land Surface Temperature (LST), rainfall and relative humidity were included as input series. Meanwhile for Maricopa County we found that including either maximum atmospheric pressure or mean air temperature gave the most improvement in the model performances.

Conclusions/Significance

Our results showed that including the environmental variables generally increases the prediction capability. Therefore, for countries without advanced influenza surveillance systems, environmental variables can be used for estimating influenza transmission at present and in the near future.  相似文献   

9.
We describe a multiple strain Susceptible Infected Recovered deterministic model for the spread of an influenza subtype within a population. The model incorporates appearance of new strains due to antigenic drift, and partial immunity to reinfection with related circulating strains. It also includes optional seasonal forcing of the transmission rate of the virus, which allows for comparison between temperate zones and the tropics. Our model is capable of reproducing observed qualitative patterns such as the overall annual outbreaks in the temperate region, a reduced magnitude and an increased frequency of outbreaks in the tropics, and the herald wave phenomenon. Our approach to modelling antigenic drift is novel and further modifications of this model may help improve the understanding of complex influenza dynamics.  相似文献   

10.

Background

Epidemiological studies have shown that imposing travel restrictions to prevent or delay an influenza pandemic may not be feasible. To delay an epidemic substantially, an extremely high proportion of trips (~99%) would have to be restricted in a homogeneously mixing population. Influenza is, however, strongly influenced by age-dependent transmission dynamics, and the effectiveness of age-specific travel restrictions, such as the selective restriction of travel by children, has yet to be examined.

Methods

A simple stochastic model was developed to describe the importation of infectious cases into a population and to model local chains of transmission seeded by imported cases. The probability of a local epidemic, and the time period until a major epidemic takes off, were used as outcome measures, and travel restriction policies in which children or adults were preferentially restricted were compared to age-blind restriction policies using an age-dependent next generation matrix parameterized for influenza H1N1-2009.

Results

Restricting children from travelling would yield greater reductions to the short-term risk of the epidemic being established locally than other policy options considered, and potentially could delay an epidemic for a few weeks. However, given a scenario with a total of 500 imported cases over a period of a few months, a substantial reduction in the probability of an epidemic in this time period is possible only if the transmission potential were low and assortativity (i.e. the proportion of contacts within-group) were unrealistically high. In all other scenarios considered, age-structured travel restrictions would not prevent an epidemic and would not delay the epidemic for longer than a few weeks.

Conclusions

Selectively restricting children from traveling overseas during a pandemic may potentially delay its arrival for a few weeks, depending on the characteristics of the pandemic strain, but could have less of an impact on the economy compared to restricting adult travelers. However, as long as adults have at least a moderate potential to trigger an epidemic, selectively restricting the higher risk group (children) may not be a practical option to delay the arrival of an epidemic substantially.  相似文献   

11.

Background

Influenza is a contagious respiratory disease responsible for annual seasonal epidemics in temperate climates. An understanding of how influenza spreads geographically and temporally within regions could result in improved public health prevention programs. The purpose of this study was to summarize the spatial and temporal spread of influenza using data obtained from the Pennsylvania Department of Health''s influenza surveillance system.

Methodology and Findings

We evaluated the spatial and temporal patterns of laboratory-confirmed influenza cases in Pennsylvania, United States from six influenza seasons (2003–2009). Using a test of spatial autocorrelation, local clusters of elevated risk were identified in the South Central region of the state. Multivariable logistic regression indicated that lower monthly precipitation levels during the influenza season (OR = 0.52, 95% CI: 0.28, 0.94), fewer residents over age 64 (OR = 0.27, 95% CI: 0.10, 0.73) and fewer residents with more than a high school education (OR = 0.76, 95% CI: 0.61, 0.95) were significantly associated with membership in this cluster. In addition, time series analysis revealed a temporal lag in the peak timing of the influenza B epidemic compared to the influenza A epidemic.

Conclusions

These findings illustrate a distinct spatial cluster of cases in the South Central region of Pennsylvania. Further examination of the regional transmission dynamics within these clusters may be useful in planning public health influenza prevention programs.  相似文献   

12.

Background

The Influenza A H1N1 virus can be transmitted via direct, indirect, and airborne route to non-infected subjects when an infected patient coughs, which expels a number of different sized droplets to the surrounding environment as an aerosol. The objective of the current study was to characterize the human cough aerosol pattern with the aim of developing a standard human cough bioaerosol model for Influenza Pandemic control.

Method

45 healthy non-smokers participated in the open bench study by giving their best effort cough. A laser diffraction system was used to obtain accurate, time-dependent, quantitative measurements of the size and number of droplets expelled by the cough aerosol.

Results

Voluntary coughs generated droplets ranging from 0.1 - 900 microns in size. Droplets of less than one-micron size represent 97% of the total number of measured droplets contained in the cough aerosol. Age, sex, weight, height and corporal mass have no statistically significant effect on the aerosol composition in terms of size and number of droplets.

Conclusions

We have developed a standard human cough aerosol model. We have quantitatively characterized the pattern, size, and number of droplets present in the most important mode of person-to-person transmission of IRD: the cough bioaerosol. Small size droplets (< 1 ??m) predominated the total number of droplets expelled when coughing. The cough aerosol is the single source of direct, indirect and/or airborne transmission of respiratory infections like the Influenza A H1N1 virus.

Study design

Open bench, Observational, Cough, Aerosol study  相似文献   

13.

Background

Mycoheterotrophic plants are considered to associate very specifically with fungi. Mycoheterotrophic orchids are mostly associated with ectomycorrhizal fungi in temperate regions, or with saprobes or parasites in tropical regions. Although most mycoheterotrophic orchids occur in the tropics, few studies have been devoted to them, and the main conclusions about their specificity have hitherto been drawn from their association with ectomycorrhizal fungi in temperate regions.

Results

We investigated three Asiatic Neottieae species from ectomycorrhizal forests in Thailand. We found that all were associated with ectomycorrhizal fungi, such as Thelephoraceae, Russulaceae and Sebacinales. Based on 13C enrichment of their biomass, they probably received their organic carbon from these fungi, as do mycoheterotrophic Neottieae from temperate regions. Moreover, 13C enrichment suggested that some nearby green orchids received part of their carbon from fungi too. Nevertheless, two of the three orchids presented a unique feature for mycoheterotrophic plants: they were not specifically associated with a narrow clade of fungi. Some orchid individuals were even associated with up to nine different fungi.

Conclusion

Our results demonstrate that some green and mycoheterotrophic orchids in tropical regions can receive carbon from ectomycorrhizal fungi, and thus from trees. Our results reveal the absence of specificity in two mycoheterotrophic orchid-fungus associations in tropical regions, in contrast to most previous studies of mycoheterotrophic plants, which have been mainly focused on temperate orchids.  相似文献   

14.
The effect of risk perception on the 2009 H1N1 pandemic influenza dynamics   总被引:1,自引:0,他引:1  
Poletti P  Ajelli M  Merler S 《PloS one》2011,6(2):e16460

Background

The 2009 H1N1 pandemic influenza dynamics in Italy was characterized by a notable pattern: as it emerged from the analysis of influenza-like illness data, after an initial period (September–mid-October 2009) characterized by a slow exponential increase in the weekly incidence, a sudden and sharp increase of the growth rate was observed by mid-October. The aim here is to understand whether spontaneous behavioral changes in the population could be responsible for such a pattern of epidemic spread.

Methodology/Principal Findings

In order to face this issue, a mathematical model of influenza transmission, accounting for spontaneous behavioral changes driven by cost/benefit considerations on the perceived risk of infection, is proposed and validated against empirical epidemiological data. The performed investigation revealed that an initial overestimation of the risk of infection in the general population, possibly induced by the high concern for the emergence of a new influenza pandemic, results in a pattern of spread compliant with the observed one. This finding is also supported by the analysis of antiviral drugs purchase over the epidemic period. Moreover, by assuming a generation time of 2.5 days, the initially diffuse misperception of the risk of infection led to a relatively low value of the reproductive number , which increased to in the subsequent phase of the pandemic.

Conclusions/Significance

This study highlights that spontaneous behavioral changes in the population, not accounted by the large majority of influenza transmission models, can not be neglected to correctly inform public health decisions. In fact, individual choices can drastically affect the epidemic spread, by altering timing, dynamics and overall number of cases.  相似文献   

15.

Background

Highly pathogenic avian influenza (HPAI) viruses have had devastating effects on poultry industries worldwide, and there is concern about the potential for HPAI outbreaks in the poultry industry in Great Britain (GB). Critical to the potential for HPAI to spread between poultry premises are the connections made between farms by movements related to human activity. Movement records of catching teams and slaughterhouse vehicles were obtained from a large catching company, and these data were used in a simulation model of HPAI spread between farms serviced by the catching company, and surrounding (geographic) areas. The spread of HPAI through real-time movements was modelled, with the addition of spread via company personnel and local transmission.

Results

The model predicted that although large outbreaks are rare, they may occur, with long distances between infected premises. Final outbreak size was most sensitive to the probability of spread via slaughterhouse-linked movements whereas the probability of onward spread beyond an index premises was most sensitive to the frequency of company personnel movements.

Conclusions

Results obtained from this study show that, whilst there is the possibility that HPAI virus will jump from one cluster of farms to another, movements made by catching teams connected fewer poultry premises in an outbreak situation than slaughterhouses and company personnel. The potential connection of a large number of infected farms, however, highlights the importance of retaining up-to-date data on poultry premises so that control measures can be effectively prioritised in an outbreak situation.  相似文献   

16.

Background

Unlike the epidemic of yellow fever from 2016 to 17 in Brazil mostly restricted to the States of Minas Gerais and Espirito Santo, the epidemic from 2017 to 18 mainly involved São Paulo and Rio de Janeiro and resulted in multiple international disseminations. To understand mechanisms behind this observation, the present study analyzed the distribution of imported cases from Brazil, 2018.

Methods

A statistical model was employed to capture the risk of importing yellow fever by returning international travelers from Brazil. We estimated the relative risk of importation among travelers by the extent of wealth measured by GDP per capita and the relative risk obtained by random assignment of travelers’ destination within Brazil by the relative population size.

Results

Upper-half wealthier countries had 2.1 to 3.4 times greater risk of importation than remainders. Even among countries with lower half of GDP per capita, the risk of importation was 2.5 to 2.8 times greater than assuming that the risk of travelers’ infection within Brazil is determined by the regional population size.

Conclusions

Travelers from wealthier countries were at elevated risk of yellow fever, allowing us to speculate that travelers’ local destination and behavior at high risk of infection are likely to act as a key determinant of the heterogeneous risk of importation. It is advised to inform travelers over the ongoing geographic foci of transmission, and if it appears unavoidable to visit tourist destination that has the history of producing imported cases, travelers must be strongly advised to receive vaccination in advance.
  相似文献   

17.

Background

Avian origin canine influenza virus was reported in Korea. The dog to dog contact transmission of the avian origin canine influenza virus (CIV) H3N2 and CIV H3N8 was shown by experimental contact transmission. This study was focused on viral excretion and fever in order to elucidate the epidemiological associations which might be helpful to control the disease transmissions in CIV outbreak in dogs.

Methods

An influenza seronegative 10-week-old Beagle dog was experimentally inoculated with the canine influenza virus A/canine/01/2007, subtype H3N2. Eight hours after inoculation, the infected dog was cohoused with seven uninfected Beagle dogs. Clinical signs including fever were recorded for 14 days post inoculation.

Results

The infected dog and four of seven contact dogs in the study showed clinical signs (sneezing, nasal discharge and coughing) during the study. Viral shedding occurred in all of the animals tested and began on 1 to 6 DPI in dogs with clinical signs. Elevated body temperatures above 39.5°C (geometric mean temperature of 39.86°C±0.49) were observed in all symptomatic dogs. The mean viral titer during fever was 2.99 log EID50/ml, which was significantly higher than the viral titer detected in the non fever.

Conclusions

The data show that contact dogs with a canine influenza infected dog shed different levels of virus in their nasal excretions and demonstrate that clinical signs, including fever, significantly correlate with the viral shedding.  相似文献   

18.
Anthropozoonotic (human to nonhuman animal) transmission of infectious disease poses a significant threat to wildlife. A large proportion of travelers to tropical regions are not protected against vaccine-preventable illnesses, and a majority of these travelers demonstrate poor recall of actual vaccination status. Here we characterize self-perceived vaccination status among a large sample of ecotourists at the Sepilok Orangutan Rehabilitation Centre, Sabah, Malaysia. Despite their recognized travel itinerary to view endangered animals, tourists at wildlife sanctuaries are not adequately protected against vaccine-preventable illnesses. Of 633 surveys, over half reported being currently vaccinated against tuberculosis, hepatitis A, hepatitis B, polio, and measles. Fewer participants reported current vaccination status for influenza, rabies, and chickenpox. Despite the fact that the majority of visitors to Sepilok are from temperate regions where influenza is relatively more prevalent, 67.1% of those surveyed with medical-related occupations reported not being currently vaccinated for influenza. Ecotourists concerned about environmental protection are themselves largely unaware of their potential contribution to the spread of diseases to animals. The risks of negatively affecting animal populations must be communicated to all concerned parties, and this may begin by urging travelers to examine their actual vaccination status, particularly as the ecotourism industry continues its rapid expansion, and is seen increasingly as a possible tool to save great ape populations from extinction.  相似文献   

19.

Background

The transmission of influenza viruses occurs person to person and is facilitated by contacts within enclosed environments such as households. The aim of this study was to evaluate secondary attack rates and factors associated with household transmission of laboratory-confirmed influenza A(H1N1)pdm09 in the pandemic and post-pandemic seasons.

Methods

During the 2009–2010 and 2010–2011 influenza seasons, 76 sentinel physicians in Navarra, Spain, took nasopharyngeal and pharyngeal swabs from patients diagnosed with influenza-like illness. A trained nurse telephoned households of those patients who were laboratory-confirmed for influenza A(H1N1)pdm09 to ask about the symptoms, risk factors and vaccination status of each household member.

Results

In the 405 households with a patient laboratory-confirmed for influenza A(H1N1)pdm09, 977 susceptible contacts were identified; 16% of them (95% CI 14–19%) presented influenza-like illness and were considered as secondary cases. The secondary attack rate was 14% in 2009–2010 and 19% in the 2010–2011 season (p = 0.049), an increase that mainly affected persons with major chronic conditions. In the multivariate logistic regression analysis, the risk of being a secondary case was higher in the 2010–2011 season than in the 2009–2010 season (adjusted odds ratio: 1.72; 95% CI 1.17–2.54), and in children under 5 years, with a decreasing risk in older contacts. Influenza vaccination was associated with lesser incidence of influenza-like illness near to statistical significance (adjusted odds ratio: 0.29; 95% CI 0.08–1.03).

Conclusion

The secondary attack rate in households was higher in the second season than in the first pandemic season. Children had a greater risk of infection. Preventive measures should be maintained in the second pandemic season, especially in high-risk persons.  相似文献   

20.

Background

The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance.

Methods

We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance.

Results

In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population.

Conclusions

The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号