首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sixty-four birds of 43 species were caught at six localities in Colombia during the dry season in March 1998 and investigated for hematozoa by microscopic examination of stained blood films. Haemoproteus coatneyi, Plasmodium vaughani, Leucocytozoon sp., and microfilariae were identified. The overall prevalence of infection was 8%. Prevalences of infection for Haemoproteus spp., Plasmodium spp., Leucocytozoon spp., and microfilariae were 3%, 2%, 2%, and 3%, respectively. All hemosporidian infections encountered were of low intensity (< 1% of infected erythrocytes). The low prevalences and intensities of hemosporidian parasites in this study are in accord with other records from the Neotropics.  相似文献   

2.
One-hundred and eighty yellow wagtails Motacilla flava belonging to 3 subspecies (Motacilla flava feldegg, Motacilla flava flava, Motacilla flava thunbergi) were caught during the spring migration in south Kazakhstan and investigated by microscopic examination of stained blood smears. Haemoproteus anthi, Haemoproteus motacillae, Leucocytozoon fringillinarum, Leucocytozoon majoris, Plasmodium relictum, Plasmodium polare, Atoxoplasma sp., Trypanosoma sp., and microfilariae were identified. The overall prevalence of infection was 47.8%. Prevalences of Haemoproteus spp. (27.2%), Plasmodium spp. (25.0%), Leucocytozoon spp. (8.9%), Atoxoplasma spp. (4.4%), Trypanosoma spp. (1.1%), and microfilariae (0.6%) were recorded. No differences were discernible in parasite fauna or intensities of infection between males and females or between different subspecies. However, prevalence of infection of Haemoproteus, Leucocytozoon, and Plasmodium spp. was different in different host subspecies. These differences can be explained by differences in geographical location of breeding areas of these birds.  相似文献   

3.
Blood parasites may act as modulators of their hosts' ecology, life histories and fitness. We studied the prevalence of Plasmodium sp., Haemoproteus sp. and Leucocytozoon sp. and their effects on morphological, biochemical and haematological variables and on breeding effort of Great Tits Parus major . Total prevalence (percentage of individuals infected by any parasite) ranged from 7.7% to 61.1%. There was an overall positive association in prevalence between the three haematozoan parasites. No effect of sex or age on infection status was observed. Negative impacts of infection on physiological condition depended largely on year and/or season and included effects on body condition index, plasma protein and haemoglobin index. There were also indications that parasite infection increased immune response and stress levels and activated antioxidant defence mechanisms. Males with higher fledging success had a higher probability of Haemoproteus infection, and females laying heavier eggs had a higher probability of Plasmodium infection. However, clutch size was negatively associated with the probability of infection by Leucocytozoon and Haemoproteus . Surprisingly, males raising second broods had a lower prevalence of both Haemoproteus and Leucocytozoon . Only 5.7% of first-brood nestlings were infected, but those in infected nestboxes had a lower heterophil/lymphocyte ratio. This study confirms the pathogenicity of blood parasites to the host by demonstrating negative effects of infection on both physiology and breeding performance.  相似文献   

4.
The occurrence and seasonal patterns of transmission of the blood protozoa of wild turkeys (Meleagris gallopavo silvestris) were studied at Tallahala Wildlife Management Area (TWMA) (Jasper County, Mississippi, USA). Blood smears obtained from wild turkeys in winter, spring and summer, and from sentinel domestic turkeys throughout the year were examined for Haemoproteus meleagridis and Leucocytozoon smithi. Whole blood from wild turkeys captured in summer was subinoculated into malaria-free domestic turkey poults and recipient birds were examined for Plasmodium spp. The prevalence of H. meleagridis and L. smithi were not different (P greater than 0.05) between adults and juveniles or between male and female turkeys in any season. Leucocytozoon smithi was not detected in poults in summer or in juveniles examined in winter. Sentinel studies and information from wild birds revealed that transmission of H. meleagridis and L. smithi did not overlap. Haemoproteus meleagridis was transmitted from May through November, while L. smithi was transmitted only from January through April. The onset of transmission of H. meleagridis coincided with peak hatching (mid-May) and brood-rearing (May-November) of turkey poults. Plasmodium spp. were not found in turkeys from TWMA (n = 27) nor in birds from three widely separated counties (n = 28) in Mississippi.  相似文献   

5.
SYNOPSIS. Blood and tissue smears from 156 yellow-billed magpies showed infection with hematozoa in 154 (99%). Leucocytozoon berestneffi was found in 149 (96%), Haemoproteus picae in 40 (26%), Plasmodium relictum , in 32 (21%), Trypanosoma sp. in 3 (2%), and microfilariae in 42 (27%). Fifty-two birds were infected with two genera of parasites, 27 with 3, and 4 with 4. Leucocytozoon, Plasmodium and microfilariae showed a higher incidence in tissue than in blood smears.  相似文献   

6.
To test the hypothesis that migrants infected with blood parasites arrive on the northern coast of the Gulf of Mexico in poorer condition than uninfected birds, we examined 1705 migrant passerine birds representing 54 species of 11 families from 2 Gulf Coast sites for blood parasites. Three hundred and sixty (21.1%) were infected with 1 or more species of 4 genera of blood parasites. The prevalence of parasites was as follows: Haemoproteus spp. (11.7%), Plasmodium spp. (6.7%), Leucocytozoon spp. (1.3%), and Trypanosoma spp. (1.2%). Both prevalence and density of Haemoproteus spp. infection varied among species. We found no relationship of gender or age with the prevalence of Haemoproteus spp. infection or Plasmodium spp. infection, with the exception of the orchard oriole (Icterus spurius) for which older birds were more likely to be infected with Haemoproteus spp. than younger birds. We also found that scarlet tanagers and summer tanagers infected with species of Haemoproteus have lower fat scores than uninfected individuals and that rose-breasted grosbeaks and Baltimore orioles infected with Haemoproteus spp. have a smaller mean body mass than uninfected individuals. Blood parasites do seem to pose a physiological cost for Neotropical migrant passerines and may be important components of the ecology of these species.  相似文献   

7.
Many bird species host several lineages of apicomplexan blood parasites (Protista spp., Haemosporida spp.), some of which are shared across different host species. To understand such complex systems, it is essential to consider the fact that different lineages, species, and families of parasites can occur in the same population, as well as in the same individual bird, and that these parasites may compete or interact with each other. In this study, we present a new polymerase chain reaction (PCR) protocol that, for the first time, enables simultaneous typing of species from the 3 most common avian blood parasite genera (Haemoproteus, Plasmodium, and Leucocytozoon). By combining the high detection rate of a nested PCR with another PCR step to separate species of Plasmodium and Haemoproteus from Leucocytozoon, this procedure provides an easy, rapid, and accurate method to separate and investigate these parasites within a blood sample. We have applied this method to bird species with known infections of Leucocytozoon spp., Plasmodium spp., and Haemoproteus spp. To obtain a higher number of parasite lineages and to test the repeatability of the method, we also applied it to blood samples from bluethroats (Luscinia svecica), for which we had no prior knowledge regarding the blood parasite infections. Although only a small number of different bird species were investigated (6 passerine species), we found 22 different parasite species lineages (4 Haemoproteus, 8 Plasmodium, and 10 Leucocytozoon).  相似文献   

8.
We examined the prevalence and host fidelity of avian haemosporidian parasites belonging to the genera Haemoproteus, Leucocytozoon and Plasmodium in the central Philippine islands by sampling 23 bird families (42 species). Using species-specific PCR assays of the mitochondrial cytochrome b gene (471base pairs, bp), we detected infections in 91 of the 215 screened individuals (42%). We also discriminated between single and multiple infections. Thirty-one infected individuals harbored a single Haemoproteus lineage (14%), 18 a single Leucocytozoon lineage (8%) and 12 a single Plasmodium lineage (6%). Of the 215 screened birds, 30 (14%) presented different types of multiple infections. Intrageneric mixed infections were generally more common (18 Haemoproteus/Haemoproteus, 3 Leucocytozoon/Leucocytozoon, and 1 Plasmodium/Plasmodium) than intergeneric mixed infections (7 Haemoproteus/Leucocytozoon and 1 Haemoproteus/Leucocytozoon/Plasmodium). We recovered 81 unique haemosporidian mitochondrial haplotypes. These clustered in three strongly supported monophyletic clades that correspond to the three haemosporidian genera. Related lineages of Haemoproteus and Leucocytozoon were more likely to derive from the same host family than predicted by chance; however, this was not the case for Plasmodium. These results indicate that switches between host families are more likely to occur in Plasmodium. We conclude that Haemoproteus has undergone a recent diversification across well-supported host-family specific clades, while Leucocytozoon shows a longer association with its host(s). This study supports previous evidence of a higher prevalence and stronger host-family specificity of Haemoproteus and Leucocytozoon compared to Plasmodium.  相似文献   

9.
One of many uncertainties concerning the epidemiology of avian malaria in wild bird populations is the age at first infection. While nestlings, being naked and presumably immunologically na?ve would seem a likely stage of first infection, most age-stratified prevalence studies have not examined the nestling cohort, whereas those that have use relatively insensitive blood smear examination to diagnose infection. In the study presented here, we used sensitive nested polymerase chain reaction methods to screen blood samples from 195, 14-day-old blue tit (Cyanistes caeruleus) nestlings for avian malaria parasites (species of Plasmodium and Haemoproteus). Adults in this population are commonly infected with Plasmodium spp. (prevalence c. 30%). No avian malaria infections were found in nestlings, but a single positive identification of the related hematozoan parasite, Leucocytozoon sp., was made. Our results suggest either that the nestlings were infected but the disease had not yet reached patency, or that young birds in the nest are not bitten by the insect vectors of the disease.  相似文献   

10.
We describe a reliable and relatively inexpensive method for detecting and differentiating between the commonly studied avian blood parasite genera Haemoproteus, Plasmodium, and Leucocytozoon. The assay takes advantage of a Haemoproteus-specific restriction site identified by sequencing full mitochondrial genomes from two Haemoproteus and three Plasmodium lineages and an adjacent, genus-specific restriction site identified in Leucocytozoon spp. The assay was sensitive to simulated parasitemias of approximately 8 x 10(-6) per erythrocyte and was 100% accurate in differentiating between parasite genera isolated from a broad geographical and taxonomic sampling of infected hosts.  相似文献   

11.
Blood smears from 259 birds of 12 species, representing four families of raptors, from New Jersey, Pennsylvania, Delaware, and Virginia were examined for blood parasites. Infected birds constituted 59.1% of the total. Birds were infected with one or more of the following genera of protozoa: Leucocytozoon (43.2%); Haemoproteus (21.6%); Plasmodium (1.2%); and Trypanosoma (1.2%). Blood culture of 142 raptors of 11 species for Trypanosoma revealed a prevalence of 41.5%. Plasmodium circumflexum is reported for the first time in Accipiter striatus, and Trypanosoma sp. in Buteo jamaicensis.  相似文献   

12.
During spring-summer 2003-2004, the avian community was surveyed for hemosporidian parasites in an oak (Quercus spp.) and madrone (Arbutus spp.) woodland bordering grassland and chaparral habitats at a site in northern California, a geographic location and in habitat types not previously sampled for these parasites. Of 324 birds from 46 species (21 families) sampled (including four species not previously examined for hemosporidians), 126 (39%) were infected with parasites identified as species of one or more of the genera Plasmodium (3% of birds sampled), Haemoproteus (30%), and Leucocytozoon (11%). Species of parasite were identified by morphology in stained blood smears and were consistent with one species of Plasmodium, 11 species of Haemoproteus, and four species of Leucocytozoon. We document the presence of one of the parasite genera in seven new host species and discovered 12 new parasite species-host species associations. Hatching-year birds were found infected with parasites of all three genera. Prevalence of parasites for each genus differed significantly for the entire sample, and prevalence of parasites for the most common genus, Haemoproteus, differed significantly among bird families. Among families with substantial sample sizes, the Vireonidae (63%) and Emberizidae (70%) were most often infected with Haemoproteus spp. No evidence for parasite between-genus interaction, either positive or negative, was found. Overall prevalence of hemosporidians at the northern California sites and predominance of Haemoproteus spp. was similar to that reported in most other surveys for the USA, Canada, and the Caribbean islands.  相似文献   

13.
Land use changes including deforestation, road construction and agricultural encroachments have been linked to the increased prevalence of several infectious diseases. In order to better understand how deforestation affects the prevalence of vector-borne infectious diseases in wildlife, nine paired sites were sampled (disturbed vs. undisturbed habitats) in Southern Cameroon. We studied the diversity, prevalence and distribution of avian malaria parasites ( Plasmodium spp.) and other related haemosporidians (species of Haemoproteus and Leucocytozoon ) from these sites in two widespread species of African rainforest birds, the yellow-whiskered greenbul ( Andropadus latirostris , Pycnonotidae) and the olive sunbird ( Cyanomitra olivacea , Nectariniidae). Twenty-six mitochondrial cytochrome b lineages were identified: 20 Plasmodium lineages and 6 Haemoproteus lineages. These lineages showed no geographic specificity, nor significant differences in lineage diversity between habitat types. However, we found that the prevalence of Leucocytozoon and Haemoproteus infections were significantly higher in undisturbed than in deforested habitats ( Leucocytozoon spp. 50.3% vs. 35.8%, Haemoproteus spp. 16.3% vs. 10.8%). We also found higher prevalence for all haemosporidian parasites in C. olivacea than in A. latirostris species (70.2% vs. 58.2%). Interestingly, we found one morphospecies of Plasmodium in C. olivacea , as represented by a clade of related lineages, showed increased prevalence at disturbed sites, while another showed a decrease, testifying to different patterns of transmission, even among closely related lineages of avian malaria, in relation to deforestation. Our work demonstrates that anthropogenic habitat change can affect host–parasite systems and result in opposing trends in prevalence of haemosporidian parasites in wild bird populations.  相似文献   

14.
Hematocrit (Hct), hemoglobin concentration, RBC count, and blood parasite loads (Plasmodium, Leucocytozoon, Haemoproteus, Trypanosoma, microfilariae) were measured in 688 passerine birds captured at four sites in the US and Belize, C.A., to assess physiological consequences of parasitemia. Parasite loads were low overall: 80% of birds had <5 parasites/10000 RBCs; median infection intensity was 1 per 10000 RBCs. Infection prevalence and intensity were higher in Belize than in the US. Analyses across and within taxa revealed no significant linear correlations between hematology values and parasite load, though infected birds were more likely to be anemic. Neotropical migrants reaching the southern US had lower parasite loads than migrants wintering in Belize. Mean Hct was significantly elevated among infected migrants (but not uninfected migrants) reaching the US relative to migrants in Belize. Long-distance migration thus appears to act as a filter for heavily parasitized and anemic birds. Geographic and seasonal variations in hematology indices were similar within and between taxa, suggesting that community-wide factors, rather than phylogenetic attributes or species-specific pathogens, account for the majority of hematological variation. The low parasite loads and weak correlation between parasite load and hematology indices have implications for attempts to test the version of the 'good genes' hypothesis.  相似文献   

15.
To date, limited surveys have been conducted on the endemic avifauna of Madagascar with regard to hematozoa. Wild-caught birds from the Vangidae, endemic to Madagascar and the Comoros Islands, were mist-netted, and blood smears were made. Slides were examined for the presence of hematozoa at x100, x160, and x1000 using a light microscope. Parasites were measured using established techniques, and morphometrics were compared. On the basis of their distinctive morphologies and morphometrics, 4 new species of avian hematozoa are described in this study. Haemoproteus vangii n. sp. and Leucocytozoon lairdi n. sp. occur in the blue vanga (Cyanolanius madagascarinus), whereas Haemoproteus madagascariensis n. sp. and Leucocytozoon bennetti n. sp. are described from the hook-billed vanga (Vanga curvirostris). These represent the first hematozoa described from this family.  相似文献   

16.
A total of 135 birds of 26 species in 13 families was examined for blood parasites; 43 birds (31.9%) of 13 species were infected; species of the Ploceidae were the most heavily infected. Species of Haemoproteus occurred most commonly 29 birds) while Leucocytozoon and Plasmodium species were virtually absent. There was no significant difference in the prevalence of hematozoa in birds from the mature rainforest and those in a savannah-urban setting.  相似文献   

17.
Avian blood parasites have been intensively studied using morphological methods with limited information on their host specificity and species taxonomic status. Now the analysis of gene sequences, especially the mitochondrial cytochrome b gene of the avian haemosporidian species of Haemoproteus, Plasmodium, and Leucocytozoon, offers a new tool to review the parasite specificity and status. By comparing morphological and genetic techniques, we observed nearly the same overall prevalence of haemosporidian parasites by microscopy (19.8%) and polymerase chain reaction (PCR) (21.8%) analyses. However, in contrast to the single valid Leucocytozoon species (L. toddi) in the Falconiformes we detected 4 clearly distinctive strains by PCR screening. In the Strigiformes, where the only valid Leucocytozoon species is L. danilewskyi, we detected 3 genetically different strains of Leucocytozoon spp. Two strains of Haemoproteus spp. were detected in the birds of prey and owls examined, whereas the strain found in the tawny owl belonged to the morphospecies Haemoproteus noctuae. Three Plasmodium spp. strains that had already been found in Passeriformes were also detected in the birds of prey and owls examined here, supporting previous findings indicating a broad and nonspecific host spectrum bridging different bird orders.  相似文献   

18.
A total of 316 anatids (5 species) from Serendip Wildlife Research Station, Lara, Victoria, were examined for blood parasites. Twenty-two of the ducks (all five species) harbored Haemoproteus nettionis and one also harbored Plasmodium relictum. None of 12 dusky moorhens (Gallinula tenebrosa) were infected. There was no significant difference in the prevalence of H. nettionis between species or age groups of ducks. No evidence of infection with Leucocytozoon, Trypanosoma or microfilaria was obtained.  相似文献   

19.
Canvasback ducks wintering on Chesapeake Bay had a 6% incidence of Leucocytozoon simondi and 2% incidence of Haemoproteus. Subinoculation of whole blood into Pekin ducklings produced a Plasmodium infection rate of 31%. Females were more frequently infected (12/22) than males (15/68). The parasite was identified as P. circumflexum.  相似文献   

20.
The use of new powerful nested polymerase chain reaction (PCR) techniques to identify and screen for prevalence of parasites has a huge potential. It allows for the detection and identification of low-intensity infections, but its high sensitivity and technical setup may also induce problems. Here, we report a cautionary note regarding misleading amplification of avian malaria species (Haemoproteus and Plasmodium) during Leucocytozoon spp. detection. We used a previously described nested PCR method for the molecular detection of avian malaria and Leucocytozoon spp. In the first step of the PCR protocol, these parasites are detected simultaneously; in the second PCR, Haemoproteus and Plasmodium spp. are separated from Leucocytozoon spp. However, in certain cases when a bird was infected with avian malaria, we obtained a slightly longer PCR product during the detection of Leucocytozoon spp. Our data imply that these "false" Leucocytozoon fragments are the consequences of strong amplification of certain malaria lineages in the first PCR, which can also be detected after the second PCR amplification that is specific to Leucocytozoon spp. parasites. Because these "false" Leucocytozoon fragments are slightly longer than the normal Leucocytozoon fragments, we suggest the use of well-separating agarose gels, several positive controls, and molecular standards to facilitate their separation. If one obtains a fragment that differs in length from the one expected for Leucocytozoon spp., sequencing is essential. More generally, in order to limit this type of problem with nested PCR protocols, we suggest that the first and the second primer pair be chosen so that they have different annealing temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号