首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations have been created in the Saccharomyces cerevisiae 18S rRNA gene that correspond to those known to be involved in the control of translational fidelity or antibiotic resistance in prokaryotes. Yeast strains, in which essentially all chromosomal rDNA repeats are deleted and all cellular rRNAs are encoded by plasmid, have been constructed that contain only mutant 18S rRNA. In Escherichia coli, a C-->U substitution at position 912 of the small subunit rRNA causes streptomycin resistance. Eukaryotes normally carry U at the corresponding position and are naturally resistant to streptomycin. We show that a U-->C transition (rdn-4) at this position of the yeast 18S rRNA gene decreases resistance to streptomycin. The rdn-4 mutation also increases resistance to paromomycin and G-418, and inhibits nonsense suppression induced by paromomycin. The same phenotypes, as well as a slow growth phenotype, are also associated with rdn-2, whose prokaryotic counterpart, 517 G-->A, manifests itself as a suppressor rather than an antisuppressor. Neither rdn-2- nor rdn-4-related phenotypes could be detected in the presence of the normal level of wild-type rDNA repeats. Our data demonstrate that eukaryotic rRNA is involved in the control of translational fidelity, and indicate that rRNA features important for interactions with aminoglycosides have been conserved throughout evolution.  相似文献   

2.
3.
A strain of Escherichia coli which was derived from a gentamicin-resistant clinical isolate was found to be cross-resistant to neomycin and streptomycin. The molecular nature of the genetic defect was found to be an insertion of two GC base pairs in the uncG gene of the mutant. The insertion led to the production of a truncated gamma subunit of 247 amino acids in length instead of the 286 amino acids that are present in the normal gamma subunit. A plasmid which carried the ATP synthase genes from the mutant produced resistance to aminoglycoside antibiotics when it was introduced into a strain with a chromosomal deletion of the ATP synthase genes. Removal of the genes coding for the beta and epsilon subunits abolished antibiotic resistance coded by the mutant plasmid. The relationship between antibiotic resistance and the gamma subunit was investigated by testing the antibiotic resistance of plasmids carrying various combinations of unc genes. The presence of genes for the F0 portion of the ATP synthase in the presence or absence of genes for the gamma subunit was not sufficient to cause antibiotic resistance. alpha, beta, and truncated gamma subunits were detected on washed membranes of the mutant by immunoblotting. The first 247 amino acid residues of the gamma subunit may be sufficient to allow its association with other F1 subunits in such a way that the proton gate of F0 is held open by the mutant F1.  相似文献   

4.
The sensitivity of Escherichia coli to several aminoglycoside antibiotics was examined with E. coli DR112 transformed by the gene for polyamine-induced protein (oligopeptide-binding [OppA] protein) or polyamine transport proteins. The results clearly showed that sensitivity to aminoglycoside antibiotics (gentamicin, isepamicin, kanamycin, neomycin, paromomycin, and streptomycin) increased due to the highly expressed OppA protein. When the gene for OppA protein was deleted, sensitivity to aminoglycoside antibiotics was greatly decreased. It was also shown that isepamicin could bind to OppA protein with a binding affinity constant of 8.5 x 10(3) M-1 under the ionic conditions of 50 mM K+ and 1 mM Mg2+ at pH 7.5, and isepamicin uptake into cells was greatly stimulated by the OppA protein. These results, taken together, show that the OppA protein increases the uptake of aminoglycoside antibiotics. In addition, the OppA protein increased the transport of spermidine and an oligopeptide (Gly-Leu-Tyr). The uptake of isepamicin into cells was partially inhibited by spermidine, suggesting that the binding site for isepamicin overlaps that for spermidine on the OppA protein. Spermidine uptake activity by the OppA protein was less than 1% of that of the ordinary spermidine uptake system. Aminoglycoside antibiotics neither stimulated the synthesis of OppA protein nor increased spermidine uptake.  相似文献   

5.
Previous reports have suggested that Escherichia coli K12 mutants defective in the expression of oligogopeptide permease protein A (OppA) exhibit reduced sensitivity to aminoglycosides due to altered permeability of the cell envelope. In this work, the role of the OppA protein, and the oligogopeptide permease (Opp) transport system has been evaluated, in the resistance to aminoglycosides using derivatives of the E. coli K12 SS320 strain selected for triornithine resistance or with a deletion of the complete opp operon. All tested mutants were defective in the uptake of tri- and tetra-peptides but did not expressed resistance to aminoglycosides. Additionally, complementation tests carried out with a plasmid encoding the OppA protein did not affect the sensitivity of the strains to these antibiotics. Taken together, these evidences indicate that the Opp uptake system, as well as the OppA protein, does not play a direct role in the sensitivity to aminoglycosides in E. coli K12.  相似文献   

6.
The isolation and properties of nitrofurantoin- and nitrofurazone-resistant mutants have been compared. Nitrofurantoin-resistant mutants were easier to obtain and showed a higher resistance level. There was some cross-resistance at lower drug concentrations but not at higher levels. There was no difference in the UV resistance of most of the mutants obtained although a recB strain, AB2470, did yield nitrofurantoin-resistant mutants with increased UV resistance. This was however the only repair-defective strain which could be mutated to nitrofurantoin resistance. It is suggested that there is a mechanism for nitrofurantoin resistance in Escherichia coli K12 which does not confer resistance to nitrofurazone and which may be associated with the repair of damaged DNA. This mechanism is in addition to that which also confers resistance to nitrofurazone.  相似文献   

7.
Here, we report a resistance mechanism that is induced through the modulation of 16S ribosomal RNA (rRNA) processing on the exposure of Escherichia coli cells to aminoglycoside antibiotics. We observed decreased expression levels of RNase G associated with increased RNase III activity on rng mRNA in a subgroup of E. coli isolates that transiently acquired resistance to low levels of kanamycin or streptomycin. Analyses of 16S rRNA from the aminoglycoside-resistant E. coli cells, in addition to mutagenesis studies, demonstrated that the accumulation of 16S rRNA precursors containing 3–8 extra nucleotides at the 5’ terminus, which results from incomplete processing by RNase G, is responsible for the observed aminoglycoside resistance. Chemical protection, mass spectrometry analysis and cell-free translation assays revealed that the ribosomes from rng-deleted E. coli have decreased binding capacity for, and diminished sensitivity to, streptomycin and neomycin, compared with wild-type cells. It was observed that the deletion of rng had similar effects in Salmonella enterica serovar Typhimurium strain SL1344. Our findings suggest that modulation of the endoribonucleolytic activity of RNase III and RNase G constitutes a previously uncharacterized regulatory pathway for adaptive resistance in E. coli and related gram-negative bacteria to aminoglycoside antibiotics.  相似文献   

8.
9.
Mutant strains of Escherichia coli were screened for the ability to grow on L agar plates containing 3.4 or 4.6 mM sodium azide. Most mutants had mutations located in the leucine region, presumably at the azi locus. Two of these mutants were found to have a mutation in the secA gene, but expression of the resistance phenotype also required the presence of upstream gene X. While a plasmid carrying the X-secA mutant gene pair was able to confer azide resistance to a sensitive host, a similar plasmid harboring the wild-type secA allele rendered a resistant strain sensitive to azide, indicating codominance of the two alleles. That azide inhibits SecA is consistent with the fact that SecA has ATPase activity, an activity that is often prone to inhibition by azide.  相似文献   

10.
A novel endopeptidase degrading the peptide cross-links in sacculi has been isolated from Escherichia coli and purified to homogeneity. The enzyme has a molecular weight of 30,000 and, in contrast to already known enzymes of similar specificity, remains fully active in the presence of beta-lactam antibiotics. In addition, it is exceptional in being inhibited by single-stranded deoxyribonucleic acid and by some polynucleotides. The possible role of the enzyme in cell division is discussed.  相似文献   

11.
12.
目的探讨临床分离大肠埃希菌对碳青霉烯类抗生素的耐药机制及流行情况,为临床用药和院内感染监控提供依据。方法收集2012年8月至2013年7月温州医科大学附属第二医院厄他培南不敏感的大肠埃希菌10株,采用VITEK Compact2全自动微生物分析仪检测18种常用抗菌药物的MIC值;改良Hodge试验检测碳青霉烯酶,PCR扩增包括碳青霉烯酶基因在内的多种B.内酰胺酶基因;应用脉冲场凝胶电泳(PFGE)分析菌株同源性。结果分离菌株来自不同病区无聚集现象,标本来源以尿液为主;菌株对广谱青霉素、三代、四代头孢菌素、氟喹诺酮类和酶抑制剂复合物耐药严重,对氨基糖苷类抗生素较为敏感;PCR扩增几乎所有菌株携带ESBL基因,只有一株除外,其中主要是blarsm和、blactx-mo3株blaNOM-1基因阳性,未检出其他碳青霉烯酶基因;脉冲场凝胶电泳分析表明,菌株之间没有克隆关系。结论该院分离10株大肠埃希菌对碳青霉烯类耐药主要是存在NDM-1金属酶联合ESBL,菌株间未发现克隆传播。  相似文献   

13.
14.
The interdependency of protein and RNA syntheses was studied comparatively in bacteria confronted with amino acid starvation or treated separately with various aminoglycoside antibiotics. By contrast with the concomitant inhibition of macromolecular syntheses in cells deprived of an essential amino acid, RNA production was found to continue in drug-treated cells while protein synthesis was arrested. Such uncoupling process was also observed in bacteria subjected simultaneously to amino acid starvation and treatment with certain antibiotics (neomycin, gentamicin, spectinomycin and kasugamycin) but not with others (streptomycin and kanamycin). These results were related to the intracellular concentration of guanosine polyphosphates, ppGpp and pppGpp. They were discussed in terms of interaction of aminoglycosides with ribosomes.  相似文献   

15.
16.
The yield of induced mutations to streptomycin resistance (Str) in E. coli, UV-irradiated and temporarily incubated in liquid medium not permitting protein synthesis, depends upon the conditions of preirradiation growth and preirradiation treatment of the bacteria, i.e. on their physiological state at the moment of irradiation. This fact is not readily reconciled with a model postulating mutation production in the structural genes of E. coli during excision repair. A preferred explanation is offered, based on the assumption that the efficiency of mutagenesis at the rpsL (strA) locus is determined by interference of antimutagenic (generalized excision repair and MFD) and promutagenic (mutation fixation of excision repair) events. The participation of macromolecular syntheses in Str mutation fixation is suggested.  相似文献   

17.
Plasmid-controlled resistance to copper in Escherichia coli.   总被引:17,自引:6,他引:11  
The copper resistance of a strain of Escherichia coli isolated from the effluent of a piggery where pigs were fed a diet supplemented with copper sulfate was controlled by a conjugative 78-megadalton plasmid designated pRJ1004. Plasmid pRJ1004 exhibited surface exclusion and incompatibility with standard plasmids belonging to incompatibility groups I1 and K. Sensitive strains of E. coli K-12 were unable to form colonies on nutrient agar containing more than 4 mM copper, whereas transconjugants which harbored pRJ1004 were able to form colonies on medium containing up to 20 mM copper.  相似文献   

18.
A clinical isolate of Escherichia coli which was resistant to the disinfectant formaldehyde was investigated. The strain harboured a plasmid of 62 MDa size. It was shown by conjugation, transformation and plasmid-curing experiments that the formaldehyde resistance is plasmid-mediated and transferable to other strains.  相似文献   

19.
20.
Antibiotic-resistant Escherichia coli strains including extended-spectrum β-lactamase (ESBL) isolates are globally widespread in medical, food, and environmental sources. Some of these strains are considered the most pathogenic bacteria in humans. The present work examined the predominance of antibiotic resistance in E. coli strains in wound infections comparing with E. coli strains isolated from a raw milk as a potential source of those strains. The wound infections included abdomen, anus, arm, back, buttock, chest, foot, hand, head, leg, lung, mouth, neck, penis, thigh, toe, and vagina infections. In total, 161 and 153 isolates identified as E. coli were obtained from wound infections and raw milk, respectively. A Vitek 2 system innovated by bioMérieux, France was applied to perform the identification and susceptibility tests. The E. coli isolates that have ability to produce ESBL were detected by an ESBL panel and NO45 card (bioMérieux). Over half of the E. coli were from abdomen, back, and buttock wound infections. More than 50%of the E. coli isolates obtained from wound infections were resistant to cefazolin, ampicillin, cefuroxime, ciprofloxacin, mezlocillin, moxifloxacin, piperacillin, and tetracycline; 70% of the isolates from wound infections and 0% of the isolates from raw milk were E. coli isolates produced ESBL. The data showed that the strains resistance to multi-antibiotic and produced ESBL are more widespread among wound infections than in raw milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号