首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Since the emergence of the ‘microbial loop’ concept, heterotrophic flagellates have received particular attention as grazers in aquatic ecosystems. These microbes have historically been regarded incorrectly as a homogeneous group of bacterivorous protists in aquatic systems. More recently, environmental rDNA surveys of small heterotrophic flagellates in the pelagic zone of freshwater ecosystems have provided new insights. (i) The dominant phyla found by molecular studies differed significantly from those known from morphological studies with the light microscope, (ii) the retrieved phylotypes generally belong to well-established eukaryotic clades, but there is a very large diversity within these clades and (iii) a substantial part of the retrieved sequences cannot be assigned to bacterivorous but can be assigned instead to parasitic and saprophytic organisms, such as zoosporic true fungi (chytrids), fungus-like organisms (stramenopiles), or virulent alveolate parasites (Perkinsozoa and Amoebophrya sp.). All these microorganisms are able to produce small zoospores to assure dispersal in water during their life-cycles. Based on the existing literature on true fungi and fungus-like organisms, and on the more recently published eukaryotic rDNA environmental studies and morphological observations, we conclude that previously overlooked microbial diversity and related ecological potentials require intensive investigation (i) for an improved understanding of the roles of heterotrophic flagellates in pelagic ecosystems and (ii) to properly integrate the concept of ‘the microbial loop’ into modern pelagic microbial ecology.  相似文献   

3.
Invasive species provide unique and useful systems by which to examine various ecological and evolutionary issues, both in terms of the effects on native environments and the subsequent evolutionary impacts. While biological invasions are an increasing agent of change in aquatic systems, alien species also act as vectors for new parasites and diseases. To date, colonizations by hosts and parasites have not been treated and reviewed together, although both are usually interwoven in various ways and may have unpredictable negative consequences. Fish are widely introduced worldwide and are convenient organisms to study parasites and diseases. We report a global overview of fish invasions with associated parasitological data. Data available on marine and freshwater are in sharp contrast. While parasites and diseases of inland freshwater fish, ornamental, reared and anadromous fish species are well documented, leading to the emergence of several evolutionary hypotheses in freshwater ecosystems during the last decade, the transfer of such organisms are virtually unexplored in marine ecosystems. The paucity of information available on the parasites of introduced marine fish reflects the paucity of information currently available on parasites of non-indigenous species in marine ecosystems. However, such information is crucial as it can allow estimations of the extent to which freshwater epidemiology/evolution can be directly transferred to marine systems, providing guidelines for adapting freshwater control to the marine environment.  相似文献   

4.
Many species of zoosporic heterotrophic parasites, saprotrophs and mutualists in the Phyla Perkinsozoa (dinoflagellates), Oomycota, Hyphochytriomycota, Labyrinthulomycota and Phyomyxea share morphological characteristics with zoosporic true fungi especially with some of the Chytridiomycota and with fungus-like organisms in the Phyla Mesomycetozoea, Chytridiomycota and Aphelidae. These characteristics include chemotactic motile zoospores, zoosporangia which produce zoospores, thick walled resistant cysts, rhizoid-like structures, hyphal-like structures and cell walls surrounding the cells in several phases of their life cycle. These assemblages also inhabit both marine and freshwater ecosystems in which aquatic fungi and fungus-like organisms are found, have similar life cycles, grow on similar substrates, use similar infection strategies and infect some of the same host plants and animals. Many of these species were once included in the aquatic phycomycetes, an ecological assemblage of microorganisms but not a valid taxonomic group. Some of the shared characteristics are discussed in this review.  相似文献   

5.
Aquatic fungi are increasingly recognized for their contribution to carbon cycling in aquatic ecosystems, both as saprotrophs and parasites. Their quantification in mixed communities is crucial to assess their ecological significance but remains challenging. We characterized the phospholipid-derived fatty acid (PLFA) composition of fifteen aquatic fungal isolates from Chytridiomycota (chytrids) and Dikarya. Additionally, we identified PLFA patterns of chytrids infecting phytoplankton and their zoospores. PLFA composition of zoospores was highly similar among different taxa, but were distinct from their respective sporangial life-stage. Finally, we applied a fatty acid-based Bayesian mixed model (FASTAR) and tested its potential to quantify fungi in complex mixtures with bacteria and phytoplankton using PLFA profiles. While the quantification of chytrid biomass in low quantities was rather imprecise, the model predicted the contribution of filamentous fungi and other components with fair accuracy, supporting the suitability of this approach to quantify fungal biomass in aquatic environments.  相似文献   

6.
In aquatic environments heterotrophic flagellates are an important component within the microbial loop and the food web, owing to their involvement in the energy transfer and flux and as an intermediate link between bacteria and primary producers, and greater organisms, such as other protists and metazoan consumers. In the microbial loop heterotrophic flagellates highly contribute to fast biomass and nutrient recycling and to the production in aquatic environments. In fact, these protists consume efficiently viruses, bacteria, cyanobacteria and picophytoplankton, and are grazed mainly by other protists, rotifers and small crustaceans. In this paper the knowledge about these unicellular organisms is reviewed, taking into particular account their ecological relationships and trophic role within the plankton community of marine and freshwater environments.  相似文献   

7.
Recently, molecular environmental surveys of the eukaryotic microbial community in lakes have revealed a high diversity of sequences belonging to uncultured zoosporic fungi commonly known as chytrids. These microorganisms have two different stages in their life cycle and are known as algal parasites (i.e. host-attached infective sporangia) and as food sources for zooplankton (i.e. free-living zooflagellate propagules) in aquatic systems. However, because of their small size and their lack of distinctive morphological features, traditional microscopy does not allow the detection of chytrids, particularly of zoospores which have probably been misidentified as phagotrophic flagellates in previous studies. Hence, quantitative data on chytrids in natural environments is missing. We have adapted a clone-FISH approach known from prokaryotes to optimize the hybridization conditions of a designed oligonucleotidic probe specific to Chytridiales (i.e. the largest group of the true-fungal division of Chytridiomycota), before application to natural samples using the CARD-FISH approach. When these conditions were applied, the CARD-FISH assay demonstrated high specificity and sensitivity, and offers a promising tool for quantitative assessment of natural zoosporic fungi, primarily of zoospores which contributed up to 60% of the total abundance of heterotrophic flagellates. Although the field results from the CARD-FISH approach were considered preliminary and mainly as ‘proof of concept’, findings were consistent with ecological considerations known from pelagic habitats and host versus parasite populations, with recurrent ecological patterns in two contrasting lake ecosystems. We conclude that this approach will contribute to a better understanding of the ecological significance of zoosporic organisms in microbial food webs of pelagic ecosystems.  相似文献   

8.
Plants in terrestrial and aquatic environments contain a diverse microbiome. Yet, the chloroplast and mitochondria organelles of the plant eukaryotic cell originate from free‐living cyanobacteria and Rickettsiales. This represents a challenge for sequencing the plant microbiome with universal primers, as ~99% of 16S rRNA sequences may consist of chloroplast and mitochondrial sequences. Peptide nucleic acid clamps offer a potential solution by blocking amplification of host‐associated sequences. We assessed the efficacy of chloroplast and mitochondria‐blocking clamps against a range of microbial taxa from soil, freshwater and marine environments. While we found that the mitochondrial blocking clamps appear to be a robust method for assessing animal‐associated microbiota, Proteobacterial 16S rRNA binds to the chloroplast‐blocking clamp, resulting in a strong sequencing bias against this group. We attribute this bias to a conserved 14‐bp sequence in the Proteobacteria that matches the 17‐bp chloroplast‐blocking clamp sequence. By scanning the Greengenes database, we provide a reference list of nearly 1500 taxa that contain this 14‐bp sequence, including 48 families such as the Rhodobacteraceae, Phyllobacteriaceae, Rhizobiaceae, Kiloniellaceae and Caulobacteraceae. To determine where these taxa are found in nature, we mapped this taxa reference list against the Earth Microbiome Project database. These taxa are abundant in a variety of environments, particularly aquatic and semiaquatic freshwater and marine habitats. To facilitate informed decisions on effective use of organelle‐blocking clamps, we provide a searchable database of microbial taxa in the Greengenes and Silva databases matching various n‐mer oligonucleotides of each PNA sequence.  相似文献   

9.
10.
Protists, the most diverse eukaryotes, are largely considered to be free‐living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High‐throughput sequencing (HTS) approaches now commonly replace cultivation‐based approaches in studying soil protists, but insights into common biases associated with this method are limited to aquatic taxa and samples. We created a mock community of common free‐living soil protists (amoebae, flagellates, ciliates), extracted DNA and amplified it in the presence of metazoan DNA using 454 HTS. We aimed at evaluating whether HTS quantitatively reveals true relative abundances of soil protists and at investigating whether the expected protist community structure is altered by the co‐amplification of metazoan‐associated protist taxa. Indeed, HTS revealed fundamentally different protist communities from those expected. Ciliate sequences were highly over‐represented, while those of most amoebae and flagellates were under‐represented or totally absent. These results underpin the biases introduced by HTS that prevent reliable quantitative estimations of free‐living protist communities. Furthermore, we detected a wide range of nonadded protist taxa probably introduced along with metazoan DNA, which altered the protist community structure. Among those, 20 taxa most closely resembled parasitic, often pathogenic taxa. Therewith, we provide the first HTS data in support of classical observational studies that showed that potential protist parasites are hosted by soil metazoa. Taken together, profound differences in amplification success between protist taxa and an inevitable co‐extraction of protist taxa parasitizing soil metazoa obscure the true diversity of free‐living soil protist communities.  相似文献   

11.
This study presents an original 18S rRNA PCR survey of the freshwater picoeukaryote community, and was designed to detect unidentified heterotrophic picoflagellates (size range 0.6-5 microm) which are prevalent throughout the year within the heterotrophic flagellate assemblage in Lake Pavin. Four clone libraries were constructed from samples collected in two contrasting zones in the lake. Computerized statistic tools have suggested that sequence retrieval was representative of the in situ picoplankton diversity. The two sampling zones exhibited similar diversity patterns but shared only about 5% of the operational taxonomic units (OTUs). Phylogenetic analysis clustered our sequences into three taxonomic groups: Alveolates (30% of OTUs), Fungi (23%) and Cercozoa (19%). Fungi thus substantially contributed to the detected diversity, as was additionally supported by direct microscopic observations of fungal zoospores and sporangia. A large fraction of the sequences belonged to parasites, including Alveolate sequences affiliated to the genus Perkinsus known as zooparasites, and chytrids that include host-specific parasitic fungi of various freshwater phytoplankton species, primarily diatoms. Phylogenetic analysis revealed five novel clades that probably include typical freshwater environmental sequences. Overall, from the unsuspected fungal diversity unveiled, we think that fungal zooflagellates have been misidentified as phagotrophic nanoflagellates in previous studies. This is in agreement with a recent experimental demonstration that zoospore-producing fungi and parasitic activity may play an important role in aquatic food webs.  相似文献   

12.
Heterotrophic flagellates (HF) are known as most important grazers of bacteria in many aquatic ecosystem. HF cannot be treated as a black box since HF generally contain a diverse community of species significantly differing in their feeding behaviour and other ecological properties. Today it seems that the dominant taxonomic groups among heterotrophic nano- and microflagellate communities within different marine, brackish and limnetic pelagic communities (heterokont taxa, dinoflagellates, choanoflagellates, kathablepharids) and benthic communities (euglenids, bodonids, thaumatomonads, apusomonads, cercomonads) are relatively similar. HF among protista incertae sedis, often neglected in ecological studies, are abundant bacterivores in all investigated habitats. Recent studies of flagellate feeding processes indicated that there are significant species-specific differences and individual variability regarding the food uptake and food selection of bacterivorous flagellates: Variability of bacterivory is discussed regarding the prevailing feeding modes, the energy budgets, the considerable importance of slight deviations in the time budgets of feeding phases, the ingestion rates and the feeding microhabitat, respectively. The significant flexibility of the grazing impact of bacterivorous flagellate communities creates a complex top-down pressure on bacteria which should have lead to the evolution of efficient predator avoidance mechanisms in bacteria and should be at least partly responsible for the diversity of present bacteria. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
del Campo J  Massana R 《Protist》2011,162(3):435-448
In recent years, a substantial amount of data on aquatic protists has been obtained from culture-independent molecular approaches, unveiling a large diversity and the existence of new lineages. However, sequences affiliated with minor groups (in terms of clonal abundance) have often been under-analyzed, and this hides a potentially relevant source of phylogenetic information. Here we have searched public databases for 18S rDNA sequences of chrysophytes, choanoflagellates and bicosoecids retrieved from molecular surveys of protists. These three groups are often considered to account for most of the heterotrophic flagellates, an important functional component in microbial food webs. They represented a significant fraction of clones in freshwater studies, whereas their relative clonal abundance was low in marine studies. The novelty displayed by this dataset was notable. Most environmental sequences were distant to sequences of cultured organisms, indicating a significant bias in the representation of taxa in culture. Moreover, they were often distant to sequences from other molecular surveys, suggesting an insufficient sequencing effort to characterize the in situ diversity of these groups. Phylogenetic trees with complete sequences present the most accurate representation of the diversity of these groups, with the emergence of several new clades formed exclusively by environmental sequences. Exhaustive data mining in sequence databases allowed the identification of new diversity hidden inside chrysophytes, choanoflagellates and bicosoecids.  相似文献   

14.
Fungi from the Ceratobasidiaceae family have important ecological roles as pathogens, saprotrophs, non-mycorrhizal endophytes, orchid mycorrhizal and ectomycorrhizal symbionts, but little is known about the distribution and evolution of these nutritional modes. All public ITS sequences of Ceratobasidiaceae were downloaded from databases, annotated with ecological and taxonomic metadata, and tested for the non-random phylogenetic distribution of nutritional modes. Phylogenetic analysis revealed six main clades within Ceratobasidiaceae and a poor correlation between molecular phylogeny and morphological–cytological characters traditionally used for taxonomy. Sequences derived from soil (representing putative saprotrophs) and orchid mycorrhiza clustered together, but remained distinct from pathogens. All nutritional modes were phylogenetically conserved in the Ceratobasidiaceae based on at least one index. Our analyses suggest that in general, autotrophic orchids form root symbiosis with available Ceratobasidiaceae isolates in soil. Ectomycorrhiza-forming capability has evolved twice within the Ceratobasidiaceae and it had a strong influence on the evolution of mycoheterotrophy and host specificity in certain orchid taxa.  相似文献   

15.
Recently, molecular environmental surveys of the eukaryotic microbial community in lakes have revealed a high diversity of sequences belonging to uncultured zoosporic fungi. Although they are known as saprobes and algal parasites in freshwater systems, zoosporic fungi have been neglected in microbial food web studies. Recently, it has been suggested that zoosporic fungi, via the consumption of their zoospores by zooplankters, could transfer energy from large inedible algae and particulate organic material to higher trophic levels. However, because of their small size and their lack of distinctive morphological features, traditional microscopy does not allow the detection of fungal zoospores in the field. Hence, quantitative data on fungal zoospores in natural environments is missing. We have developed a quantitative PCR (qPCR) assay for the quantification of fungal zoospores in lakes. Specific primers were designed and qPCR conditions were optimized using a range of target and non-target plasmids obtained from previous freshwater environmental 18S rDNA surveys. When optimal DNA extraction protocol and qPCR conditions were applied, the qPCR assay developed in this study demonstrated high specificity and sensitivity, with as low as 100 18S rDNA copies per reaction detected. Although the present work focuses on the design and optimization of a new qPCR assay, its application to natural samples indicated that qPCR offers a promising tool for quantitative assessment of fungal zoospores in natural environments. We conclude that this will contribute to a better understanding of the ecological significance of zoosporic fungi in microbial food webs of pelagic ecosystems.  相似文献   

16.
Heterotrophic marine flagellates (HF) are ubiquitous in the world''s oceans and represented in nearly all branches of the domain Eukaryota. However, the factors determining distributions of major taxonomic groups are poorly known. The Arctic Ocean is a good model environment for examining the distribution of functionally similar but phylogenetically diverse HF because the physical oceanography and annual ice cycles result in distinct environments that could select for microbial communities or favor specific taxa. We reanalyzed new and previously published high-throughput sequencing data from multiple studies in the Arctic Ocean to identify broad patterns in the distribution of individual taxa. HF accounted for fewer than 2% to over one-half of the reads from the water column and for up to 60% of reads from ice, which was dominated by Cryothecomonas. In the water column, many HF phylotypes belonging to Telonemia and Picozoa, uncultured marine stramenopiles (MAST), and choanoflagellates were geographically widely distributed. However, for two groups in particular, Telonemia and Cryothecomonas, some species level taxa showed more restricted distributions. For example, several phylotypes of Telonemia favored open waters with lower nutrients such as the Canada Basin and offshore of the Mackenzie Shelf. In summary, we found that while some Arctic HF were successful over a range of conditions, others could be specialists that occur under particular conditions. We conclude that tracking species level diversity in HF not only is feasible but also provides a potential tool for understanding the responses of marine microbial ecosystems to rapidly changing ice regimes.  相似文献   

17.
Fungi in the phylum Cryptomycota have been recovered in numerous environmental DNA (eDNA) surveys but are only known from five described genera of intracellular parasites. These fungi are common in aquatic and soil habitats, but little is known about their relative diversity and specificity among particular habitats. We surveyed Cryptomycota from 80 eDNA samples including freshwater, soil, and marine habitats using Cryptomycota-preferential primers coupled with long-amplicon PacBio sequencing (1.2 kb of the 18S rRNA gene region). We found that freshwater samples were the most diverse, comprising 175 operational taxonomic units (OTUs) of Cryptomycota and also showed a high abundance of the related algae-parasitic group Aphelidiomycota, while marine samples were the least diverse with 25 OTUs. The composition of Cryptomycota communities was influenced by habitat, with freshwater and soil showing statistically distinct communities. Phylogenetic analyses showed that the present survey recovered most previously sampled major clades of Cryptomycota, but most (61%) OTUs were novel to this study, indicative of an extensive diversity of the group that remains largely uncharacterized.  相似文献   

18.
In freshwater systems, parasitological studies have mainly been carried out on vertebrates and molluscs, but little is known about parasites of aquatic insects. We describe the trematodes and nematodes parasitizing the benthic insects of an Andean Patagonian stream and the presence of parasites in the terrestrial adult stages. Members of 3 of 20 insect taxa were found to be parasitized by larval nematodes, and members of six taxa harbored metacercariae of digeneans. In benthic samples, chironomids, simuliids (Order Diptera), and baetids (Order Ephemeroptera) harbored mermithid larvae (Nematoda). The stonefly Antarctoperla michaelseni (Order Plecoptera), the caddisfly Smicridea annulicornis (Order Trichoptera), a watersnipe fly (Order Diptera: Athericidae), and three species of leptophlebiid mayflies (Order Ephemeroptera) were parasitized by encysted plagiorchiid metacercariae (Order Plagiorchiida). Most metacercariae were found in the three species of mayflies with prevalences ranging 15–63% and mean intensities ranging 1.2–4.9. Prevalence declined from summer to early winter, probably because of the emergence of infected nymphs and the recruitment of uninfected new cohorts. The imagos had live metacercariae with higher prevalences and intensities of infection than nymphs. We suggest that these plagiorchiids have an allogenic life cycle, involving a terrestrial definitive host.  相似文献   

19.
The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [3H]thymidine or [3H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degrees C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physiochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms.  相似文献   

20.
Spatial autocorrelation and dispersal limitation in freshwater organisms   总被引:2,自引:0,他引:2  
Dispersal can limit the ranges of species and the diversity of communities. Despite its importance, little is known about its role in freshwater habitats and its relation to habitat type (lentic vs. lotic), especially for organisms with cryptic dispersal methods such as plankton. Poor dispersers are expected to show more clumped distributions or greater spatial autocorrelation (SA) in community composition than good dispersers. We examined patterns of SA across freshwater taxa with different dispersal modes (active vs. passive) and their association with habitat type (lake vs. stream) using 18 spatially explicit community composition data sets. We found significant relationships between SA and body size among taxa in lake habitats, but not in streams. However, the increase in SA with body size in lakes was driven entirely by fishes—organisms ranging in size from diatoms to macro-invertebrates showed equivalent levels of SA. These results support the idea that large organisms are less effective dispersers in aquatic environments, resulting in greater SA in community structure over broad scales. Streams may be effectively more connected than lakes as patterns of SA and body size were weaker in lotic habitats. Our data suggest that the critical threshold where greater body size increases dispersal limitation seems to come at the juncture between invertebrates and vertebrates rather than that between unicellular and multicellular organisms as has been previously suggested. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号