首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tjalsma H 《Proteomics》2007,7(1):73-81
Proteomics-based verification of computer-assisted predictions on bacterial protein export have indicated that problems occur with the distinction between (Sec-type) signal peptides that govern protein secretion, and lipoprotein signal peptides or amino-terminal membrane anchors that cause protein retention in the membrane. Therefore, the main aim of this study was to investigate whether feature-based predictions by the SecretomeP (SecP) algorithm will aid the proteomics-based analysis of protein export in Bacillus subtilis. The SecP algorithm is trained to recognize features such as secondary structure and disordered regions, which are generally present in secreted proteins. The results showed that membrane-retained proteins receive, in general, high SecP scores, similar to the scores of secretory proteins. Importantly, the SecP algorithm aided in the re-evaluation of a class of previously identified proteins that remain attached to the membrane despite the presence of an apparent Sec-type signal peptide. These so-called 'Sec-attached' proteins receive on average a lower SecP score, and several of these proteins could be unmasked as transmembrane proteins by combined SecP and signal peptide analyses. Finally, the present study suggests that feature-based outlier analysis may provide leads towards the discovery of novel special-purpose pathways for bacterial protein export.  相似文献   

2.
Abstract Conversion of Bacillus subtilis to protoplasts resulted in the release of 70–80% of the total protease inhibitor activity. Inhibitor fractions contained a polypeptide of approx. 15 kDa which reacted with inhibitor antibody. There was no release of protease inhibitor into the medium by sporulating cells, by osmotic shock of cells nor by washing with high concentrations of salt. The release of inhibitor activity was selective in that only 10–20% of the total protein, and < 10% of the glutamine synthetase activity was found in the protoplast supernatant. The inhibitor could be localized near the cell surface and function in cell protection.  相似文献   

3.
J Millet  J Gregoire 《Biochimie》1979,61(3):385-391
A specific inhibitor of intracellular serylprotease from Bacillus subtilis has been isolated from both growing and sporulating cells. Like other protease inhibitors isolated from eukaryotic cells, the inhibitor from B. subtilis is a thermostable protein. A purification method is described. The molecular weight estimated by Biogel filtration and SDS gel electrophoresis is about 15,500. Both proteolytic and esterolytic activities of intracellular protease are equally sensitive to inhibition. With azocoll or Z-tyrosine p-nitrophenylester as substrates, noncompetitive inhibition patterns are observed. The inhibitor has no effect on the proteolytic or esterolytic activities of the extracellular serylprotease. A similar thermostable inhibitor is also present in Bacillus megaterium.  相似文献   

4.
Xiao YM  Wu Q  Wang N  Lin XF 《Carbohydrate research》2004,339(7):1279-1283
Transesterification of cyclomaltoheptaose (beta-CD) with divinyl butanedioate, divinyl hexanedioate, and divinyl decanedioate, catalyzed by the alkaline protease from Bacillus subtilis in anhydrous DMF for 5 days, furnished the corresponding vinyl-beta-CD derivatives. The products were characterized by ESI-MS, (1)H NMR, (13)C NMR, IR, and DSC. The results indicated the products to be monosubstituted esters, with monoacylation occurring at the C-2 secondary hydroxyl groups of beta-CD. The regioselectivity of the monoacylation as catalyzed by alkaline protease was not affected by the chain length of the acyl donor.  相似文献   

5.
The synthesis and proteolysis of the spore coat proteins, SpoIVA and YrbA, of Bacillus subtilis were analyzed using antisera. Almost no intact full-length proteins of either type were extracted from wild-type spores, while yabG mutant spores contained intact SpoIVA and YrbA proteins. We purified recombinant YrbA and YabG proteins from Escherichia coli transformants and found that YrbA was cleaved to the smaller moiety in the presence of YabG in vitro. These observations indicate that YabG is a protease involved in the proteolysis and maturation of SpoIVA and YrbA proteins, conserved with the cortex and/or coat assembly by B. subtilis.  相似文献   

6.
辐射过程中耐辐射奇球菌蛋白酶变化的检测与分析   总被引:1,自引:2,他引:1  
采用明胶和酪蛋白底物酶谱法以及荧光酪蛋白底物对紫外线以及γ射线辐射后恢复期耐辐射奇球菌R1(Deinococcus radiodurans R1,DRR1)的蛋白酶变化进行了检测。结果发现,DRR1存在高活性大分子量组成性表达蛋白酶,与Karlin等[16]提出的DRR1蛋白酶为预测高表达蛋白(PHX)的设想一致。DRR1包含大量分子量大于140kD 的明胶降解酶和分子量大于120kD的酪蛋白降解酶,其中活性最高的174kD明胶酶在经SDS变性处理后仍有较高活性,该蛋白酶在DRR1受紫外线辐射和电离辐射后恢复期的表达模式存在差异,在γ射线电离辐射过程中以及电离辐射后恢复的晚期活性较高。此外,还发现一些蛋白酶特异性由辐射所诱导,表明这些蛋白酶可能参与细胞信号通路中蛋白的顺序降解,也提示DRR1损伤修复过程中细胞内存在一个精确的蛋白酶系统。这些蛋白酶的表达与细胞的营养状态相关。同时对一株由本实验室从北京地区土壤中分离到的杆状耐辐射菌RR533.2的明胶和酪蛋白蛋白酶谱进行了测定,结果发现其蛋白酶谱与DRR1相类似。  相似文献   

7.
The NS3 serine protease of dengue virus is required for the maturation of the viral polyprotein and consequently represents a promising target for the development of antiviral inhibitors. However, the substrate specificity of this enzyme has been characterized only to a limited extent. In this study, we have investigated product inhibition of the NS3 protease by synthetic peptides derived from the P6-P1 and the P1'-P5' regions of the natural polyprotein substrate. N-terminal cleavage site peptides corresponding to the P6-P1 region of the polyprotein were found to act as competitive inhibitors of the enzyme with K(i) values ranging from 67 to 12 microM. The lowest K(i) value was found for the peptide representing the NS2A/NS2B cleavage site, RTSKKR. Inhibition by this cleavage site sequence was analyzed by using shorter peptides, SKKR, KKR, KR, AGRR, and GKR. With the exception of the peptide AGRR which did not inhibit the protease at a concentration of 1mM, all other peptides displayed K(i) values in the range from 188 to 22 microM. Peptides corresponding to the P1'-P5' region of the polyprotein cleavage sites had no effect on enzymatic activity at a concentration of 1mM. Molecular docking data of peptide inhibitors to a homology-based model of the dengue virus type 2 NS2B(H)-NS3p co-complex indicate that binding of the non-prime site product inhibitors is similar to ground-state binding of the corresponding substrates.  相似文献   

8.
α‐Glycosidase is a catalytic enzyme and it destroys the complex carbohydrates into simple absorbable sugar units. The natural phenolic compounds were tested for their antidiabetic properties as α‐glycosidase and α‐amylase inhibitors. The phenolic compounds investigated in this study have been used as antidiabetic common medicines. This paper aimed to consider their capability to inhibit α‐amylase and α‐glycosidase, two significant enzymes defined in serum glucose adjustment. These examination recorded impressive inhibition profiles with IC50 values in the range of 137.36–737.23 nM against α‐amylase and 29.01–157.96 nM against α‐glycosidase.  相似文献   

9.
Prolyl oligopeptidase (PREP) cleaves short peptides at the C-side of proline. Although several proline containing neuropeptides have been shown to be efficiently cleaved by PREP in vitro, the actual physiological substrates of this peptidase are still a matter of controversy. The aim of this study was to evaluate the changes in the peptidome of rat tissues caused by a repeated 4-day administration of the potent and specific PREP inhibitor KYP-2047, using our recently developed iTRAQ-based technique. We found tissue-dependent changes in the levels of specific subsets of peptides mainly derived from cytosolic proteins. Particularly in the kidney, where the levels of cytochrome c oxidase were found decreased, many of the altered peptides originated from mitochondrial proteins being involved in energy metabolism. However, in the hypothalamus, we found significant changes in peptides derived from hormone precursors. We could not confirm a role of PREP as the metabolising enzyme for β-endorphin, galanin, octadecaneuropeptide, neuropeptide–glutamic acid–isoleucine, substance P, somatostatin, enkephalin and neuropeptide Y. Furthermore, changes in the degradation patterns of some of these neuropeptides, and also most of those derived from other larger proteins, did not follow specificity to proline. After a 4-day treatment, we found a significant amount of peptides, all derived from secreted pro-proteins, being cleaved with pair of basic residue specificity. In vitro experiments indicated that PREP modifies the endogenous dibasic residue specific proteolysis, in a KYP-2047 sensitive way. These findings suggest that PREP may act indirectly within the routes leading to the specific peptide changes that we observed. The data reported here suggest a wider tissue specific physiological role of PREP rather than the mere metabolism of proline containing active peptides and hormones.  相似文献   

10.
Alpha/beta-type small, acid-soluble proteins (SASP) of dormant spores of Bacillus subtilis bind to DNA and increase its resistance to a variety of damaging agents both in vivo and in vitro. When spores germinate, degradation of alpha/beta-type SASP is rapidly initiated by a sequence-specific protease, which is termed GPR. Three mutations have been introduced into the B. subtilis sspC gene, which codes for the wild-type alpha/beta-type SASP SspCwt; all three mutations change residues in the highly conserved sequence recognized by GPR. In one mutant protein (SspCV), residue 33 (Ser) was changed to Val; in the second (SspCDL), residues 30 and 31 (Glu and Ile) were changed to Asp and Leu, respectively; and in the third mutant protein (SspCDLV), residues 30, 31, and 33 were changed to Asp, Leu, and Val. All three mutant proteins were rapidly degraded by GPR during spore germination, and SspCDL and SspCDLV were degraded by GPR in vitro at rates 8 to 9% of that for SspCwt, although not exclusively at the single site cleaved by GPR in SspCwt. These results indicate (i) that the sequence specificity of GPR is broader than originally imagined and (ii) that GPR can cleave the sequence in SspCDLV. Since the latter sequence is identical to that cleaved during the proteolytic activation of GPR, this result further supports an autoprocessing model for GPR activation during sporulation. The properties of these mutant proteins were also examined, both in vivo in B. subtilis spores and in Escherichia coli and in vitro with purified protein. SspC(v) interacted with DNA similarly to SspC(wt) in vivo, resorting UV and heat resistance to spores lacking major alpha/beta-type SASP to the same extent as SspC(wt). In contrasst, SspC(DL) had much less effect on DNA properties in vivo and bound strongly only to poly(dG) . poly(dC) in vitro; SspC(DLV) exhibited only weak binding to poly(dG).poly(dC) in vitro. These results confirm the importance of the conserved primary sequence of alpha/beta-type SASP in the binding of these proteins to spore DNA and alteration of DNA properties and show further that the GRP recognition region in alpha/beta-type SASP plays some role in DNA binding.  相似文献   

11.
The potential of Bacillus subtilis α‐amylase (BSA) as a pressure‐temperature‐time indicator (pTTI) for high pressure pasteurization processing (400–600 MPa; Ti 10–40°C; 1–15 min) was investigated. A stepwise approach was followed for the development of an enzyme‐based, extrinsic, isolated pTTI. First, based on literature data on the pressure stability, BSA was selected as a candidate indicator. Next to the accuracy and ease of the measurement of the indicator's response (residual activity) to the pressure treatment, the storage and handling stability of BSA at atmospheric pressure was verified. Second, the stability of BSA at a constant temperature (T) and time in function of pressure (p) was investigated. Solvent engineering was used to shift the inactivation window of BSA in the processing range of interest. Third, the enzyme (1 g/L BSA—MES 0.05 M pH 5.0) was kinetically calibrated under isobaric‐isothermal conditions. Time dependent changes in activity could be modeled best by a first‐order model. Except for low pressures and high temperatures, a synergistic effect between pressure and temperature could be observed. Based on the model selected to describe the combined p,T‐dependency of the inactivation rate constant, an elliptically shaped isorate contour plot could be constructed, illustrating the processing range where BSA can be used to demonstrate temperature gradients. Fourth, the validity of the kinetic model was tested successfully under dynamic conditions similar to those used in food industry. Finally, the indicator was found suitable to demonstrate nonuniformity in two‐sectional planes of a vertical, single vessel system. © 2009 American Institute of Chemical Engineers. Biotechnol. Prog., 2009  相似文献   

12.
In vivo inhibition of glutamine synthetase (GS) by l-methionine sulfoximine induces sporulation in a protease deficient mutant of Bacillus polymyxa. This induction of sporulation is accompanied by derepression of EDTA insensitive proteases(s) which seems to be specific for differentiation. Some amino acid analogues derepress proteolytic activity without inducing sporulation, but these proteases are sensitive to metal chelators like those in the vegetative cells. When the proteolytic activity is restored, the mutant cells, which are smaller than the parental strain, regain their normal size.Abbreviations GS glutamine synthetase - GYS glucose-yeast extract-salts - MSO l-methionine sulfoximine - Pr protease deficient mutant - DON 6-diazo-5-oxo-l-norleucine - EDTA ethylene-diaminetetraacetic acid - EGTA ethylene glycol-bis (-aminoethyl ether) N,N,N,N-tetraacetic acid - Tris tris-(hydroxymethyl)-aminomethane  相似文献   

13.
Regulatory proteolysis targets properly folded clients via a combination of cis-encoded degron sequences and trans-expressed specificity factors called adaptors. SmiA of Bacillus subtilis was identified as the first adaptor protein for the Lon family of proteases, but the mechanism of SmiA-dependent proteolysis is unknown. Here, we develop a fluorescence-based assay to measure the kinetics of SmiA-dependent degradation of its client SwrA and show that SmiA–SwrA interaction and the SwrA degron were both necessary, but not sufficient, for proteolysis. Consistent with a scaffolding adaptor mechanism, we found that stoichiometric excess of SmiA caused substrate-independent inhibition of LonA-dependent turnover. Furthermore, SmiA was strictly required even when SwrA levels were high suggesting that a local increase in substrate concentration mediated by the scaffold was not sufficient for proteolysis. Moreover, SmiA function could not be substituted by thermal denaturation of the substrate, consistent with a priming adaptor mechanism. Taken together, we conclude that SmiA functions via a mechanism that is a hybrid between scaffolding and priming models.  相似文献   

14.
Ligand binding to proteins often is accompanied by conformational transitions. Here, we describe a competition assay based on single molecule Förster resonance energy transfer (smFRET) to investigate the ligand-induced conformational changes of the dengue virus (DENV) NS2B-NS3 protease, which can adopt at least two different conformations. First, a competitive ligand was used to stabilize the closed conformation of the protease. Subsequent addition of the allosteric inhibitor reduced the fraction of the closed conformation and simultaneously increased the fraction of the open conformation, demonstrating that the allosteric inhibitor stabilizes the open conformation. In addition, the proportions of open and closed conformations at different concentrations of the allosteric inhibitor were used to determine its binding affinity to the protease. The KD value observed is in accordance with the IC50 determined in the fluorometric assay. Our novel approach appears to be a valuable tool to study conformational transitions of other proteases and enzymes.  相似文献   

15.
To select residues in coagulation factor XIa (FXIa) potentially important for substrate and inhibitor interactions, we examined the crystal structure of the complex between the catalytic domain of FXIa and the Kunitz protease inhibitor (KPI) domain of a physiologically relevant FXIa inhibitor, protease nexin 2 (PN2). Six FXIa catalytic domain residues (Glu(98), Tyr(143), Ile(151), Arg(3704), Lys(192), and Tyr(5901)) were subjected to mutational analysis to investigate the molecular interactions between FXIa and the small synthetic substrate (S-2366), the macromolecular substrate (factor IX (FIX)) and inhibitor PN2KPI. Analysis of all six Ala mutants demonstrated normal K(m) values for S-2366 hydrolysis, indicating normal substrate binding compared with plasma FXIa; however, all except E98A and K192A had impaired values of k(cat) for S-2366 hydrolysis. All six Ala mutants displayed deficient k(cat) values for FIX hydrolysis, and all were inhibited by PN2KPI with normal values of K(i) except for K192A, and Y5901A, which displayed increased values of K(i). The integrity of the S1 binding site residue, Asp(189), utilizing p-aminobenzamidine, was intact for all FXIa mutants. Thus, whereas all six residues are essential for catalysis of the macromolecular substrate (FIX), only four (Tyr(143), Ile(151), Arg(3704), and Tyr(5901)) are important for S-2366 hydrolysis; Glu(98) and Lys(192) are essential for FIX but not S-2366 hydrolysis; and Lys(192) and Tyr(5901) are required for both inhibitor and macromolecular substrate interactions.  相似文献   

16.
While about 80% of the cell-bound intracellular serine protease of Bacillus subtilis A-50 have been recovered in the soluble fraction upon disruption of cells, the rest of the enzyme was found to be associated with the membrane fraction. Soluble cytoplasmic intracellular serine protease, as well as membrane-bound serine protease liberated by nonionic detergent treatment, have been isolated in a pure state and shown to be identical. The same protease might also be found extracellularly, due presumably to cell lysis or altered membrane permeability. Intracellular serine protease of Bacillus subtilis A-50 was clearly related to Bacillus subtilis serine proteases W1 and bacillopeptidase F described as extracellular enzymes.Abbreviations ISP intracellular serine protease - ISP-A-Bsu A-50 and ISP-B-Bsu A-50 molecular forms A and B of B. subtilis A-50 intracellular serine protease, respectively - SDS sodium dodecyl sulfate - PMSF phenylmethyl sulfonylfluoride - pNA p-nitroanilide - Buffer A 50 mM Tris-(hydroxymethyl)aminomethane-1 mM CaCl2 adjusted to pH 8.5 with HCl  相似文献   

17.
18.
Exposure of Bacillus subtilis to a shear rate of 1,482/s leads to a rapid loss of cell viability after 10 h of growth. Biochemical and molecular evidences provided below strongly suggest that cell death under high shear results from an apoptosis-like process similar to that described in eukaryotes, with activation of a caspase-3-like protease (C(3)LP) followed by DNA fragmentation. Shear stress leads to an increase in specific intracellular reactive oxygen species (siROS), possibly through activation of NADH oxidase (NOX). The formation of siROS precedes the activation of C(3)LP and DNA fragmentation, thus establishing siROS as the molecular link between shear stress and apoptosis-like cell death. A model is proposed in which NOX is viewed as being strategically placed on the plasma membrane of B. subtilis that senses and converts a mechanical force arising from shear stress into a chemical signal leading to activation of C(3)LP, DNA fragmentation, and thus, apoptosis-like cell death.  相似文献   

19.
Summary Bacillus licheniformis S 1684 is able to produce an alkaline serine protease exocellularly. In glucose-limited chemostat cultures the specific rate of protease production was maximal at a -value of 0.22. Above this growth rate protease production was repressed. Dependent on 10–20% of the glucose input was used for exocellular product formation. The degree of reduction of exocellular products was 4.1.Maximum molar growth yields were high and indicate a high efficiency of growth. The values of Y glu max and YO 2 max were 83.8 and 53.3, respectively. When Y glu max was corrected for the amount of glucose used for product formation a value of 100.3 was obtained. These high maximum molar growth yields are most probably caused by a high Y ATP max . Anaerobic batch experiments showed a Y ATP of 14.6.Sometimes the used strain was instable in cell morphology and protease production. Non-protease producing cells most probably develop from producing cells by mutation in the rel-gene. Producing cells most probably are relaxed (rel -) and non-producing cells stringent (rel +).Glossary specific growth rate (h-1) - Y sub growth yield permol substrate (g biomass/mol) - Y max maximum molar growth yield, corrected for maintenance requirements (g biomass/mol) - Y max(corr) Y max corrected for product formation (g biomass/mol) - m sub maintenance requirements (mol/g biomass·h) - m sub(corr) maintenance requirements corrected for product formation (mol/g biomass·h) - Y c fraction of organic substrate converted in biomass - z fraction of organic substrate converted in exocellular products - d fraction of organic substrate converted in CO2 (g mol/g atom C) - Crec% carbon recovery % - average degree of reduction of exocellular products - P/O amount of ATP produced during electron-transport of 2 electrons to oxygen  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号