首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High levels of inbreeding are expected to cause a strong reduction in levels of genetic variability, effective recombination rates and in adaptation compared with related outcrossing populations. We examined patterns of DNA polymorphism at five nuclear loci and one chloroplast locus within and between four populations of the outcrossing plant Arabidopsis lyrata, a close relative of the highly self-fertilizing model species A. thaliana. The observed patterns are compared with species-wide polymorphism at orthologous loci, as well as within- and between-population patterns at other studied loci in A. thaliana. In addition to evidence for much higher average within-population diversity, species-wide levels of silent polymorphism are generally higher in A. lyrata than in A. thaliana, unlike the results from a previous study of the ADH locus. However, polymorphism is also low in the North American A. lyrata subspecies lyrata compared with the European subspecies petraea, suggesting either a population bottleneck in North American populations or recent admixture involving diverged European populations. Differentiation between the two subspecies is strong, although there are few fixed differences, suggesting that their isolation is recent. Estimates of intralocus recombination rates and analysis of haplotype structure in European A. lyrata populations indicate lower recombination than predicted based on the variability together with physical recombination rates estimated from A. thaliana. This may be due to strong population subdivision, or to recent departures from demographic equilibrium such as a bottleneck or population admixture. Alternatively, there may be consistently lower recombination rates in the outcrossing species. In contrast, estimates of recombination rates from species-wide samples of A. thaliana are close to the values expected assuming a high rate of self-fertilization. Complex population histories in both A. thaliana and A. lyrata complicate theoretical predictions and empirical tests of the effects of inbreeding on polymorphism and molecular evolution.  相似文献   

2.
Mable BK  Adam A 《Molecular ecology》2007,16(17):3565-3580
Arabidopsis lyrata is normally considered an obligately outcrossing species with a strong self-incompatibility system, but a shift in mating system towards inbreeding has been found in some North American populations (subspecies A. lyrata ssp. lyrata). This study provides a survey of the Great Lakes region of Canada to determine the extent of this mating system variation and how outcrossing rates are related to current population density, geographical distribution, and genetic diversity. Based on variation at microsatellite markers (progeny arrays to estimate multilocus outcrossing rates and population samples to estimate diversity measures) and controlled greenhouse pollinations, populations can be divided into two groups: (i) group A, consisting of individuals capable of setting selfed seed (including autogamous fruit set in the absence of pollinators), showing depressed outcrossing rates (T(m) = 0.2-0.6), heterozygosity (H(O) = 0.02-0.06) and genetic diversity (H(E) = 0.08-0.10); and (ii) group B, consisting of individuals that are predominantly self-incompatible (T(m) > 0.8), require pollinators for seeds set, and showing higher levels of heterozygosity (H(O) = 0.13-0.31) and diversity (H(E) = 0.19-0.410). Current population density is not related to the shift in mating system but does vary with latitude. Restricted gene flow among populations was evident among all but two populations (F(ST) = 0.11-0.8). Group A populations were more differentiated from one another (F(ST) = 0.78) than they were from group B populations (F(ST) = 0.59), with 41% of the variation partitioned within populations, 47% between populations, and 12% between groups. No significant relationship was found between genetic and geographical distance. Results are discussed in the context of possible postglacial expansion scenarios in relation to loss of self-incompatibility.  相似文献   

3.
Understanding the stability of the G matrix in natural populations is fundamental for predicting evolutionary trajectories; yet, the extent of its spatial variation and how this impacts responses to selection remain open questions. With a nested paternal half‐sib crossing design and plants grown in a field experiment, we examined differences in the genetic architecture of flowering time, floral display, and plant size among four Scandinavian populations of Arabidopsis lyrata. Using a multivariate Bayesian framework, we compared the size, shape, and orientation of G matrices and assessed their potential to facilitate or constrain trait evolution. Flowering time, floral display and rosette size varied among populations and significant additive genetic variation within populations indicated potential to evolve in response to selection. Yet, some characters, including flowering start and number of flowers, may not evolve independently because of genetic correlations. Using a multivariate framework, we found few differences in the genetic architecture of traits among populations. G matrices varied mostly in size rather than shape or orientation. Differences in multivariate responses to selection predicted from differences in G were small, suggesting overall matrix similarity and shared constraints to trait evolution among populations.  相似文献   

4.
5.
We describe analyses of almost full-length sequences (including both the kinase domain and the S-domain) of the putative SRK incompatibility gene of the self-incompatible plant Arabidopsis lyrata. In A. lyrata, the SRK S-domain controls the pistil recognition specificity, as in self-incompatible Brassica species. In alleles from plants derived from natural A. lyrata populations, nonsynonymous and synonymous site diversity values are very high in both domains; even in exons 3 to 7 of the kinase domain, which probably have no recognition functions, 39% of the amino acids are polymorphic. Within populations, diversity between alleles is high, as expected for an incompatibility locus, which should be under frequency-dependent selection within populations, whereas within the different putative allelic classes polymorphism is very low, as predicted from theoretical models when recombination is rare. Nonsynonymous site variability declines in the kinase domain with increasing distance from the S-domain border, although synonymous diversity remains high, and the introns are unalignable. A decline in nonsynonymous diversity is expected due to selective constraints in the kinase domain, in combination with recombination (allowing diversity to decrease at sites distant from those under balancing selection). However, it is unclear whether recombination occurs in the SRK locus, and interpretation of the observed diversity pattern is complicated by apparent gene conversion with a paralogous gene (or genes). Patterns of linkage disequilibrium in our SRK sequences do not support the conclusion that recombination occurs, which was suggested from previous analyses based on Brassica SLG sequences.  相似文献   

6.
We investigated DNA sequence diversity for loci on chromosomes 1 and 2 in six natural populations of Arabidopsis lyrata and tested for the role of natural selection in structuring genomewide patterns of variability, specifically examining the effects of recombination rate on levels of silent polymorphism. In contrast with theoretical predictions from models of genetic hitchhiking, maximum-likelihood-based analyses of diversity and divergence do not suggest reduction of diversity in the region of suppressed recombination near the centromere of chromosome 1, except in a single population from Russia, in which the pericentromeric region may have undergone a local selective sweep or demographic process that reduced variability. We discuss various possibilities that might explain why nucleotide diversity in most A. lyrata populations is not related to recombination rate, including genic recombination hotspots, and low gene density in the low recombination rate region.  相似文献   

7.
Gos G  Wright SI 《Molecular ecology》2008,17(23):4953-4962
We examined patterns of nucleotide diversity at a genomic region containing two linked candidate disease resistance (NBS-LRR) genes in seven populations of the outcrossing plant Arabidopsis lyrata. In comparison with two adjacent control genes and neutral reference genes across the genome, the NBS-LRR genes exhibited elevated nonsynonymous variation and a large number of major-effect polymorphisms causing early stop codons and/or frameshift mutations. In contrast, analysis of synonymous diversity provided no evidence that the region was subject to long-term balancing selection or recent selective sweeps in any of the seven populations surveyed. Also in contrast with earlier surveys of one of these R genes, there was no evidence that the resistance genes or the major-effect mutations were subject to elevated differentiation between populations. We suggest that conditional neutrality in the absence of the corresponding pathogen, rather than long-term balancing selection or local adaptation, may in some circumstances be a significant cause of elevated functional polymorphism at R genes. In contrast with the R genes, analysis of diversity and differentiation at the flanking FERONIA locus showed high population divergence, suggesting local adaptation on this locus controlling male-female signalling during fertilization.  相似文献   

8.
The molecular genetic basis of adaptive variation is of fundamental importance for evolutionary dynamics, but is still poorly known. Only in very few cases has the relationship between genetic variation at the molecular level, phenotype and function been established in natural populations. We examined the functional significance and genetic basis of a polymorphism in production of leaf hairs, trichomes, in the perennial herb Arabidopsis lyrata. Earlier studies suggested that trichome production is subject to divergent selection. Here we show that the production of trichomes is correlated with reduced damage from insect herbivores in natural populations, and using statistical methods developed for medical genetics we document an association between loss of trichome production and mutations in the regulatory gene GLABROUS1. Sequence data suggest that independent mutations in this regulatory gene have provided the basis for parallel evolution of reduced resistance to insect herbivores in different populations of A. lyrata and in the closely related Arabidopsis thaliana. The results show that candidate genes identified in model organisms provide a valuable starting point for analysis of the genetic basis of phenotypic variation in natural populations.  相似文献   

9.
? Premise of the study: Plant populations that face new environments adapt and diverge simultaneously, and both processes leave footprints in their genetic diversity. Arabidopsis lyrata is an excellent species for studying these processes. Pairs of populations and subspecies of A. lyrata represent different stages of divergence. These populations are also known to be locally adapted and display various stages of emerging reproductive isolation. ? Methods: We used nucleotide diversity data from 19 loci to estimate divergence times and levels of diversity among nine A. lyrata populations. Traditional distance-based methods and model-based clustering analysis were used to supplement pairwise coalescence-based analysis of divergence. ? Key results: Estimated divergence times varied from 130000 generations between North American and European subspecies to 39000 generations between central European and Scandinavian populations. In concordance with previous studies, the highest level of diversity was found in Central Europe and the lowest in North America and a diverged Russian Karhum?ki population. Local adaptation among Northern and central European populations has emerged during the last 39000 generations. Populations that are reproductively isolated by prezygotic mechanisms have been separated for a longer time period of ~70000 generations but still have shared nucleotide polymorphism. ? Conclusions: In A. lyrata, reproductively isolated populations started to diverge ~70000 generations ago and more closely related, locally adapted populations have been separate lineages for ~39000 generations. However, based on the posterior distribution of divergence times, the processes leading to reproductive isolation and local adaptation are likely to temporally coincide.  相似文献   

10.
We studied local adaptation to contrasting environments using an organism that is emerging as a model for evolutionary plant biology-the outcrossing, perennial herb Arabidopsis lyrata subsp. petraea (Brassicaceae). With reciprocal transplant experiments, we found variation in cumulative fitness, indicating adaptive differentiation among populations. Nonlocal populations did not have significantly higher fitness than the local population. Experimental sites were located in Norway (alpine), Sweden (coastal), and Germany (continental). At all sites after one year, the local population had higher cumulative fitness, as quantified by survival combined with rosette area, than at least one of the nonlocal populations. At the Norwegian site, measurements were done for two additional years, and fitness differences persisted. The fitness components that contributed most to differences in cumulative fitness varied among sites. Relatively small rosette area combined with a large number of inflorescences produced by German plants may reflect differentiation in life history. The results of the current study demonstrate adaptive population differentiation in A. lyrata along a climatic gradient in Europe. The studied populations harbor considerable variation in several characters contributing to adaptive population differentiation. The wealth of genetic information available makes A. lyrata a highly attractive system also for examining the functional and genetic basis of local adaptation in plants.  相似文献   

11.
Our understanding of the development of intrinsic reproductive isolation is still largely based on theoretical models and thorough empirical studies on a small number of species. Theory suggests that reproductive isolation develops through accumulation of epistatic genic incompatibilities, also known as Bateson–Dobzhansky–Muller (BDM) incompatibilities. We can detect these from marker transmission ratio distortion (TRD) in hybrid progenies of crosses between species or populations, where TRD is expected to result from selection against heterospecific allele combinations in hybrids. TRD may also manifest itself because of intragenomic conflicts or competition between gametes or zygotes. We studied early stage speciation in Arabidopsis lyrata by investigating patterns of TRD across the genome in F2 progenies of three reciprocal crosses between four natural populations. We found that the degree of TRD increases with genetic distance between crossed populations, but also that reciprocal progenies may differ substantially in their degree of TRD. Chromosomes AL6 and especially AL1 appear to be involved in many single- and two-locus distortions, but the location and source of TRD vary between crosses and between reciprocal progenies. We also found that the majority of single- and two-locus TRD appears to have a gametic, as opposed to zygotic, origin. Thus, while theory on BDM incompatibilities is typically illustrated with derived nuclear alleles proving incompatible in hybrid zygotes, our results suggest a prominent role for distortions emerging before zygote formation.  相似文献   

12.
Arabidopsis lyrata, a close relative of the model plant Arabidopsis thaliana, is 1 of a few plant species for which the genome is to be entirely sequenced, which promises to yield important insights into genome evolution. Only 2 sparse linkage maps have been published, and these were based solely on markers derived from the A. thaliana genome. Because the genome of A. lyrata is practically twice as large as that of A. thaliana, the extent of map coverage of the A. lyrata genome remains uncertain. In this study, a 2-way pseudo-testcross strategy was used to construct genetic linkage maps of A. lyrata subsp. petraea and A. lyrata subsp. lyrata, using simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) markers from the A. thaliana genome, and anonymous amplified fragment length polymorphism (AFLP) markers that could potentially uncover regions unique to the A. lyrata genome. The SSR and CAPS markers largely confirmed the relationships between linkage groups in A. lyrata and A. thaliana. AFLP markers slightly increased the coverage of the A. lyrata maps, but mostly increased marker density on the linkage groups. We noted a much lower level of polymorphism and a greater segregation distortion in A. lyrata subsp. lyrata markers. The implications of these findings for the sequencing of the A. lyrata genome are discussed.  相似文献   

13.
Transitions from outcrossing to selfing have been a frequent evolutionary shift in plants and clearly play a role in species divergence. However, many questions remain about the initial mechanistic basis of reproductive isolation during the evolution of selfing. For instance, how important are pre-zygotic pre-pollination mechanisms (e.g. changes in phenology and pollinator visitation) in maintaining reproductive isolation between newly arisen selfing populations and their outcrossing ancestors? To test whether changes in phenology and pollinator visitation isolate selfing populations of Arabidopsis lyrata from outcrossing populations, we conducted a common garden experiment with plants from selfing and outcrossing populations as well as their between-population hybrids. Specifically, we asked whether there was isolation between outcrossing and selfing plants and their between-population hybrids through differences in (1) the timing or intensity of flowering; and/or (2) pollinator visitation. We found that phenology largely overlapped between plants from outcrossing and selfing populations. There were also no differences in pollinator preference related to mating system. Additionally, pollinators preferred to visit flowers on the same plant rather than exploring nearby plants, creating a large opportunity for self-fertilization. Overall, this suggests that pre-zygotic pre-pollination mechanisms do not strongly reproductively isolate plants from selfing and outcrossing populations of Arabidopsis lyrata.  相似文献   

14.
The genetic variation that underlies the glucosinolate phenotype of Arabidopsis lyrata ssp. petraea was investigated between and within populations. A candidate glucosinolate biosynthetic locus (MAM, containing methylthioalkylmalate synthase genes) was mapped in A. lyrata to a location on linkage group 6 corresponding to the homologous location for MAM in A. thaliana. In A. thaliana MAM is responsible for side chain elongation in aliphatic glucosinolates, and the MAM phenotype can be characterized by the ratios of long- to short-chain glucosinolates. A quantitative trait loci (QTL) analysis of glucosinolate ratios in an A. lyrata interpopulation cross found one QTL at MAM. Additional QTL were identified for total indolic glucosinolates and for the ratio of aliphatic to indolic glucosinolates. MAM was then used as the candidate gene for a within-population cosegregation analysis in a natural A. lyrata population from Germany. Extensive variation in microsatellite markers at MAM was found and this variation cosegregated with the same glucosinolate ratios as in the QTL study. The combined results indicate that both between- and within-population genetic variation in the MAM region determines phenotypic variation in glucosinolate side chains in A. lyrata.  相似文献   

15.
The strength of plant‐herbivore interactions varies spatially and through plant ontogeny, which may result in variable selection on plant defense, both among populations and life‐history stages. To test whether populations have diverged in herbivore resistance at an early plant stage, we quantified oviposition preference and larval feeding by Plutella xylostella (L.) (Lepidoptera: Plutellidae) on young (5–6 weeks old) Arabidopsis lyrata (L.) O'Kane & Al‐Shehbaz (Brassicaceae) plants, originating from 12 natural populations, six from Sweden and six from Norway. Arabidopsis lyrata can be trichome‐producing or glabrous, with glabrous plants usually receiving more damage from insect herbivores in natural populations. We used the six populations polymorphic for trichome production to test whether resistance against P. xylostella differs between the glabrous and the trichome‐producing morph among young plants. There was considerable variation among populations in the number of eggs received and the proportion of leaf area consumed by P. xylostella, but not between regions (Sweden vs. Norway) or trichome morphs. Rosette size explained a significant portion of the variation in oviposition and larval feeding. The results demonstrate that among‐population variation in resistance to insect herbivory can be detected among very young individuals of the perennial herb A. lyrata. They further suggest that trichome densities are too low at this plant developmental stage to contribute to resistance, and that the observed among‐population variation in resistance is related to differences in other plant traits.  相似文献   

16.
Species share homologous genes to a large extent, but it isnot yet known to what degree the same loci have been targetsfor natural selection in different species. Natural variationin flowering time is determined to a large degree by 2 genes,FLOWERING LOCUS C and FRIGIDA, in Arabidopsis thaliana. Here,we examine whether FRIGIDA has a role in differences in floweringtime between and within natural populations of Arabidopsis lyrata,a close outcrossing perennial relative of A. thaliana. We found2 FRIGIDA sequence variants producing potentially functionalproteins but with a length difference of 14 amino acids. Thesevariants conferred a 15-day difference in flowering time inan association experiment in 2 Scandinavian populations. Thedifference in flowering time between alleles was confirmed withtransformation to A. thaliana. Because the north European late-floweringpopulations harbor both late- and early sequence variants atintermediate frequencies and the late-flowering variant is mostfrequent in the southern early flowering European population,other genetic factors must be responsible for the floweringtime differences between the populations. The length polymorphismoccurs at high frequencies also in several North American populations.The occurrence of functional variants at intermediate frequenciesin several populations suggests that the variation may be maintainedby balancing selection. This is in contrast to A. thaliana,where independent loss-of-function mutations at the FRIGIDAgene are responsible for differences between populations andlocal adaptation.  相似文献   

17.
18.
Nucleotide variation at the alcohol dehydrogenase locus (Adh) was studied in the outcrossing Arabidopsis lyrata, a close relative of the selfing Arabidopsis thaliana. Overall, estimated nucleotide diversity in the North American ssp. lyrata and two European ssp. petraea populations was 0.0038, lower than the corresponding specieswide estimate for A. thaliana at the same set of nucleotide sites. The distribution of segregating sites across the gene differed between the two species. Estimated sequence diversity within an A. lyrata population with a large sample size (0.0023) was much higher than has previously been observed for A. thaliana. This North American population has an excess of sites at intermediate frequencies compared with neutral expectation (Tajima's D = 2.3, P < 0.005), suggestive of linked balancing selection or a recent population bottleneck. In contrast, an excess of rare polymorphisms has been found in A. thaliana. Polymorphism within A. lyrata and divergence from A. thaliana appear to be correlated across the Adh gene sequence. The geographic distribution of polymorphism was quite different from that of A. thaliana, for which earlier studies of several genes found low within-population nucleotide site polymorphism and no overall continental differentiation of variation despite large differences in site frequencies between local populations. Differences between the outcrossing A. lyrata and the selfing A. thaliana reflect the impact of differences in mating system and the influence of bottlenecks in A. thaliana during rapid colonization on DNA sequence polymorphism. The influence of additional variability-reducing mechanisms, such as background selection or hitchhiking, may not be discernible.  相似文献   

19.
Identification and characterization of the self-incompatibility genes in Brassicaceae species now allow typing of self-incompatibility haplotypes in natural populations. In this study we sampled and mapped all 88 individuals in a small population of Arabidopsis lyrata from Iceland. The self-incompatibility haplotypes at the SRK gene were typed for all the plants and some of their progeny and used to investigate the realized mating patterns in the population. The observed frequencies of haplotypes were found to change considerably from the parent generation to the offspring generation around their deterministic equilibria as determined from the known dominance relations among haplotypes. We provide direct evidence that the incompatibility system discriminates against matings among adjacent individuals. Multiple paternity is very common, causing mate availability among progeny of a single mother to be much larger than expected for single paternity.  相似文献   

20.
Hermaphroditic plants can potentially self‐fertilize, but most possess adaptations that promote outcrossing. However, evolutionary transitions to higher selfing rates are frequent. Selfing comes with a transmission advantage over outcrossing, but self‐progeny may suffer from inbreeding depression, which forms the main barrier to the evolution of higher selfing rates. Here, we assessed inbreeding depression in the North American herb Arabidopsis lyrata, which is normally self‐incompatible, with a low frequency of self‐compatible plants. However, a few populations have become fixed for self‐compatibility and have high selfing rates. Under greenhouse conditions, we estimated mean inbreeding depression per seed (based on cumulative vegetative performance calculated as the product of germination, survival and aboveground biomass) to be 0.34 for six outcrossing populations, and 0.26 for five selfing populations. Exposing plants to drought and inducing defences with jasmonic acid did not magnify these estimates. For outcrossing populations, however, inbreeding depression per seed may underestimate true levels of inbreeding depression, because self‐incompatible plants showed strong reductions in seed set after (enforced) selfing. Inbreeding‐depression estimates incorporating seed set averaged 0.63 for outcrossing populations (compared to 0.30 for selfing populations). However, this is likely an overestimate because exposing plants to 5% CO2 to circumvent self‐incompatibility to produce selfed seed might leave residual effects of self‐incompatibility that contribute to reduced seed set. Nevertheless, our estimates of inbreeding depression were clearly lower than previous estimates based on the same performance traits in outcrossing European populations of A. lyrata, which may help explain why selfing could evolve in North American A. lyrata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号