首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular channel proteins that mediate calcium (Ca2+) release from the endoplasmic reticulum, and they are involved in many biological processes (e.g. fertilization, secretion, and synaptic plasticity). Recent reports show that IP3R activity is strictly regulated by several interacting molecules (e.g. IP3R binding protein released with inositol 1,4,5-trisphosphate, huntingtin, presenilin, DANGER, and cytochrome c), and perturbation of this regulation causes intracellular Ca2+ elevation leading to several diseases (e.g. Huntington disease and Alzheimer disease). In this study, we identified protein kinase C substrate 80K-H (80K-H) to be a novel molecule interacting with the COOH-terminal tail of IP3Rs by yeast two-hybrid screening. 80K-H directly interacted with IP3R type 1 (IP3R1) in vitro and co-immunoprecipitated with IP3R1 in cell lysates. Immunocytochemical and immunohistochemical staining revealed that 80K-H colocalized with IP3R1 in COS-7 cells and in hippocampal neurons. We also showed that the purified recombinant 80K-H protein directly enhanced IP3-induced Ca2+ release activity by a Ca2+ release assay using mouse cerebellar microsomes. Furthermore 80K-H was found to regulate ATP-induced Ca2+ release in living cells. Thus, our findings suggest that 80K-H is a novel regulator of IP3R activity, and it may contribute to neuronal functions.  相似文献   

2.
Aortic endothelial cells (GM7372A) express a major cell adhesion molecule, CD44v10, which binds the extracellular matrix component, hyaluronan (HA), at its external domain and interacts with various signaling molecules at its cytoplasmic domain. In this study, we have determined that CD44v10 and Rho-Kinase (ROK) are physically associated as a complex in vivo. Using a recombinant fragment of ROK (in particular, the pleckstrin homology [PH] domain) and in vitro binding assays, we have detected a specific binding interaction between the PH domain of ROK and the cytoplasmic domain of CD44. Scatchard plot analysis indicates that there is a single high-affinity CD44 binding site in the PH domain of ROK with an apparent dissociation constant (Kd) of 1.76 nM, which is comparable to CD44 binding (Kd approximately 1.56 nM) to intact ROK. These findings suggest that the PH domain is the primary ROK binding region for CD44. Furthermore, HA binding to GM7372A cells promotes RhoA-mediated ROK activity, which, in turn, increases phosphorylation of three different inositol 1, 4, 5-trisphosphate receptors (IP(3)Rs) [in particular, subtype 1 (IP(3)R1), and to a lesser extent subtype 2 (IP(3)R2) and subtype 3 (IP(3)R3)] all known as IP(3)-gated Ca(2+) channels. The phosphorylated IP(3)R1 (but not IP(3)R2 or IP(3)R3) is enhanced in its binding to IP(3) which subsequently stimulates IP(3)-mediated Ca(2+) flux. Transfection of the endothelial cells with ROK's PH cDNA significantly reduces ROK association with CD44v10, and effectively inhibits ROK-mediated phosphorylation of IP(3)Rs and IP(3)R-mediated Ca(2+) flux in vitro. The PH domain of ROK also functions as a dominant-negative mutant in vivo to block HA-dependent, CD44v10-specific intracellular Ca(2+) mobilization and endothelial cell migration. Taken together, we believe that CD44v10 interaction with ROK plays a pivotal role in IP(3)R-mediated Ca(2+) signaling during HA-mediated endothelial cell migration.  相似文献   

3.
4.
The inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) are IP(3)-gated Ca(2+) channels on intracellular Ca(2+) stores. Herein, we report a novel protein, termed IRBIT (IP(3)R binding protein released with inositol 1,4,5-trisphosphate), which interacts with type 1 IP(3)R (IP(3)R1) and was released upon IP(3) binding to IP(3)R1. IRBIT was purified from a high salt extract of crude rat brain microsomes with IP(3) elution using an affinity column with the huge immobilized N-terminal cytoplasmic region of IP(3)R1 (residues 1-2217). IRBIT, consisting of 530 amino acids, has a domain homologous to S-adenosylhomocysteine hydrolase in the C-terminal and in the N-terminal, a 104 amino acid appendage containing multiple potential phosphorylation sites. In vitro binding experiments showed the N-terminal region of IRBIT to be essential for interaction, and the IRBIT binding region of IP(3)R1 was mapped to the IP(3) binding core. IP(3) dissociated IRBIT from IP(3)R1 with an EC(50) of approximately 0.5 microm, i.e. it was 50 times more potent than other inositol polyphosphates. Moreover, alkaline phosphatase treatment abolished the interaction, suggesting that the interaction was dualistically regulated by IP(3) and phosphorylation. Immunohistochemical studies and co-immunoprecipitation assays showed the relevance of the interaction in a physiological context. These results suggest that IRBIT is released from activated IP(3)R, raising the possibility that IRBIT acts as a signaling molecule downstream from IP(3)R.  相似文献   

5.
IP(3) receptors: the search for structure   总被引:4,自引:0,他引:4  
Inositol (1,4,5)-trisphosphate receptors (IP(3)R) are intracellular Ca(2+) channels that are regulated by Ca(2+) and IP(3), and are modulated by many additional signals. They thereby allow both receptors that stimulate IP(3) formation and Ca(2+) to control release of Ca(2+) from intracellular stores. IP(3)Rs share many features with their close relatives, ryanodine receptors; each provides insight into the structure and function of the other. The structural basis of IP(3)R behaviour is beginning to emerge from intermediate-resolution structures of the complete IP(3)R, a 2.2-A structure of the IP(3)-binding core and comparisons with the pore structures of other tetrameric cation channels. The binding of IP(3) to a site towards the N-terminal of each IP(3)R subunit promotes binding of Ca(2+). This destabilizes an inhibitory interaction between N-terminal residues and a C-terminal 'gatekeeper' sequence, enabling the pore to open.  相似文献   

6.
The versatility of Ca2+ as an intracellular messenger stems largely from the impressive, but complex, spatiotemporal organization of the Ca2+ signals. For example, the latter when initiated by IP3 (inositol 1,4,5-trisphosphate) in many cells manifest hierarchical recruitment of elementary Ca2+ release events ('blips' and then 'puffs') en route to global regenerative Ca2+ waves as the cellular IP3 concentration rises. The spacing of IP3Rs (IP3 receptors) and their regulation by Ca2+ are key determinants of these spatially organized Ca2+ signals, but neither is adequately understood. IP3Rs have been proposed to be pre-assembled into clusters, but their composition, geometry and whether clustering affects IP3R behaviour are unknown. Using patch-clamp recording from the outer nuclear envelope of DT40 cells expressing rat IP3R1 or IP3R3, we have recently shown that low concentrations of IP3 cause IP3Rs to aggregate rapidly and reversibly into small clusters of approximately four IP3Rs. At resting cytosolic Ca2+ concentrations, clustered IP3Rs open independently, but with lower open probability, shorter open duration and lesser IP3-sensitivity than lone IP3Rs. This inhibitory influence of clustering on IP3R is reversed when the [Ca2+]i (cytosolic free Ca2+ concentration) increases. The gating of clustered IP3Rs exposed to increased [Ca2+]i is coupled: they are more likely to open and close together, and their simultaneous openings are prolonged. Dynamic clustering of IP3Rs by IP3 thus exposes them to local Ca2+ rises and increases their propensity for a CICR (Ca2+-induced Ca2+ rise), thereby facilitating hierarchical recruitment of the elementary events that underlie all IP3-evoked Ca2+ signals.  相似文献   

7.
8.
Inositol 1,4,5-trisphosphate (IP(3)) is an important second messenger in animal cells and is central to a wide range of cellular responses. The major intracellular activity of IP(3) is to regulate release of Ca(2+) from intracellular stores through IP(3) receptors (IP(3)Rs). We describe a system for the transient disruption of IP(3) signaling in the model organism Caenorhabditis elegans. The IP(3) binding domain of the C. elegans IP(3)R, ITR-1, was expressed from heat shock-induced promoters in live animals. This results in a dominant-negative effect caused by the overexpressed IP(3) binding domain acting as an IP(3) "sponge." Disruption of IP(3) signaling resulted in disrupted defecation, a phenotype predicted by previous genetic studies. This approach also identified two new IP(3)-mediated processes. First, the up-regulation of pharyngeal pumping in response to food is dependent on IP(3) signaling. RNA-mediated interference studies and analysis of itr-1 mutants show that this process is also IP(3)R dependent. Second, the tissue-specific expression of the dominant-negative construct enabled us to circumvent the sterility associated with loss of IP(3) signaling through the IP(3)R and thus determine that IP(3)-mediated signaling is required for multiple steps in embryogenesis, including cytokinesis and gastrulation.  相似文献   

9.
Striated muscle represents one of the best models for studies on Ca(2+) signalling. However, although much is known on the localisation and molecular interactions of the ryanodine receptors (RyRs), far less is known on the localisation and on the molecular interactions of the inositol trisphosphate receptors (InsP(3)Rs) in striated muscle cells. Recently, members of the Homer protein family have been shown to cluster type 1 metabotropic glutamate receptors (mGluR1) in the plasma membrane and to interact with InsP(3)R in the endoplasmic reticulum of neurons. Thus, these scaffolding proteins are good candidates for organising plasma membrane receptors and intracellular effector proteins in signalosomes involved in intracellular Ca(2+) signalling. Homer proteins are also expressed in skeletal muscle, and the type 1 ryanodine receptor (RyR1) contains a specific Homer-binding motif. We report here on the relative sub-cellular localisation of InsP(3)Rs and Homer proteins in skeletal muscle cells with respect to the localisation of RyRs. Immunofluorescence analysis showed that both Homer and InsP(3)R proteins present a staining pattern indicative of a localisation at the Z-line, clearly distinct from that of RyR1. Consistent herewith, in sub-cellular fractionation experiments, Homer proteins and InsP(3)R were both found in the fractions enriched in longitudinal sarcoplasmic reticulum (LSR) but not in fractions of terminal cisternae that are enriched in RyRs. Thus, in skeletal muscle, Homer proteins may play a role in the organisation of a second Ca(2+) signalling compartment containing the InsP(3)R, but are apparently not involved in the organisation of RyRs at triads.  相似文献   

10.
Conventionally, myo-D-inositol 1, 4,5-trisphosphate (IP3) is thought to exert its second messenger effects through the gating of IP3R Ca2+ release channels, located in Ca2+-storage organelles like the endoplasmic reticulum. However, there is considerable indirect evidence to support the concept that IP3 might interact with other, non-IP3R proteins within cells. To explore this possibility further, the Protein Data Bank was searched using the term “IP3”. This resulted in the retrieval of 203 protein structures, the majority of which were members of the IP3R/ryanodine receptor superfamily of channels. Only 49 of these structures were complexed with IP3. These were inspected for their ability to interact with the carbon-1 phosphate of IP3, since this is the least accessible phosphate group of its precursor, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This reduced the number of structures retrieved to 35, of which 9 were IP3Rs. The remaining 26 structures represent a diverse range of proteins, including inositol-lipid metabolizing enzymes, signal transducers, PH domain containing proteins, cytoskeletal anchor proteins, the TRPV4 ion channel, a retroviral Gag protein and fibroblast growth factor 2. Such proteins may impact on IP3 signalling and its effects on cell-biology. This represents an area open for exploration in the field of IP3 signalling.  相似文献   

11.
The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC), pericytes and astrocytes controls the transport of ions, peptides and leukocytes in and out of the brain. Tight junctions (TJ) composed of TJ proteins (occludin, claudins and zonula occludens) ensure the structural integrity of the BMVEC monolayer. Neuropathologic studies indicated that the BBB was impaired in alcohol abusers; however, the underlying mechanism of BBB dysfunction remains elusive. Using primary human BMVEC, we previously demonstrated that oxidative stress induced by ethanol (EtOH) metabolism in BMVEC activated myosin light chain kinase (MLCK), resulting in the enhanced phosphorylation of either cytoskeletal or TJ proteins, and in BBB impairment. We proposed that EtOH metabolites stimulated inositol 1,4,5-triphosphate receptor (IP(3)R)-operated intracellular calcium (Ca(2+)) release, thereby causing the activation of MLCK in BMVEC. Indeed, treatment of primary human BMVEC with EtOH or its metabolites resulted in the increased expression of IP(3)R protein and IP(3)R-gated intracellular Ca(2+) release. These functional changes paralleled MLCK activation, phosphorylation of cytoskeletal/TJ proteins, loss of BBB integrity, and enhanced leukocyte migration across BMVEC monolayers. Inhibition of either EtOH metabolism or IP(3)R activation prevented BBB impairment. These findings suggest that EtOH metabolites act as signaling molecules for the activation of MLCK via the stimulation of IP(3)R-gated intracellular Ca(2+) release in BMVEC. These putative events can lead to BBB dysfunction in the setting of alcoholism, and to neuro-inflammatory disorders promoting leukocyte migration across the BBB.  相似文献   

12.
Inositol-1,4,5-triphosphate receptors (IP(3)Rs) are ligand-gated Ca(2+) channels that control Ca(2+) release from intracellular stores. They are central to a wide range of cellular responses. IP(3)Rs in Caenorhabditis elegans are encoded by a single gene, itr-1, and are widely expressed. Signaling through IP(3) and IP(3)Rs is important in ovulation, control of the defecation cycle, modulation of pharyngeal pumping rate, and embryogenesis. To further elucidate the molecular basis of the diversity of IP(3)R function, we used a yeast two-hybrid screen to search for proteins that interact with ITR-1. We identified an interaction between ITR-1 and IRI-1, a previously uncharacterized protein with homology to LIN-15B. Iri-1 is widely expressed, and its expression overlaps significantly with that of itr-1. In agreement with this observation, iri-1 functions in known itr-1-mediated processes, namely, upregulation of pharyngeal pumping in response to food and control of the defecation cycle. Knockdown of iri-1 in an itr-1 loss-of-function mutant potentiates some of these effects and sheds light on the signaling pathways that control pharyngeal pumping rate. Knockdown of iri-1 expression also results in a sterile, evl phenotype, as a consequence of failures in early Z1/Z4 lineage divisions, such that gonadogenesis is severely disrupted.  相似文献   

13.
Human neuroblastoma SH-SY5Y cells, predominantly expressing type 1 inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), were stably transfected with IP(3)R type 3 (IP(3)R3) cDNA. Immunocytochemistry experiments showed a homogeneous cytoplasmic distribution of type 3 IP(3)Rs in transfected and selected high expression cloned cells. Using confocal Ca(2+) imaging, carbachol (CCh)-induced Ca(2+) release signals were studied. Low CCh concentrations (< or = 750 nM) evoked baseline Ca(2+) oscillations. Transfected cells displayed a higher CCh responsiveness than control or cloned cells. Ca(2+) responses varied between fast, large Ca(2+) spikes and slow, small Ca(2+) humps, while in the clone only Ca(2+) humps were observed. Ca(2+) humps in the transfected cells were associated with a high expression level of IP(3)R3. At high CCh concentrations (10 microM) Ca(2+) transients in transfected and cloned cells were similar to those in control cells. In the clone exogenous IP(3)R3 lacked the C-terminal channel domain but IP(3)-binding capacity was preserved. Transfected cells mainly expressed intact type 3 IP(3)Rs but some protein degradation was also observed.We conclude that in transfected cells expression of functional type 3 IP(3)Rs causes an apparent higher affinity for IP(3). In the clone, the presence of degraded receptors leads to an efficient cellular IP(3) buffer and attenuated IP(3)-evoked Ca(2+) release.  相似文献   

14.
Deranged Ca(2+) signaling and an accumulation of aberrant proteins cause endoplasmic reticulum (ER) stress, which is a hallmark of cell death implicated in many neurodegenerative diseases. However, the underlying mechanisms are elusive. Here, we report that dysfunction of an ER-resident Ca(2+) channel, inositol 1,4,5-trisphosphate receptor (IP(3)R), promotes cell death during ER stress. Heterozygous knockout of brain-dominant type1 IP(3)R (IP(3)R1) resulted in neuronal vulnerability to ER stress in?vivo, and IP(3)R1 knockdown enhanced ER stress-induced apoptosis via mitochondria in cultured cells. The IP(3)R1 tetrameric assembly was positively regulated by the ER chaperone GRP78 in an energy-dependent manner. ER stress induced IP(3)R1 dysfunction through an impaired IP(3)R1-GRP78 interaction, which has also been observed in the brain of Huntington's disease model mice. These results suggest that IP(3)R1 senses ER stress through GRP78 to alter the Ca(2+) signal to promote neuronal cell death implicated in neurodegenerative diseases.  相似文献   

15.
Studies in the Xenopus model system have provided considerable insight into the developmental role of intracellular Ca2+ signals produced by activation of IP3Rs (inositol 1,4,5-trisphosphate receptors). However, unlike mammalian systems where three IP3R subtypes have been well characterized, our molecular understanding of the IP3Rs that underpin Ca2+ signalling during Xenopus embryogenesis relate solely to the original characterization of the 'Xenopus IP3R' cloned and purified from Xenopus laevis oocytes several years ago. In the present study, we have identified Xenopus type 2 and type 3 IP3Rs and report the full-length sequence, genomic architecture and developmental expression profile of these additional IP3R subtypes. In the light of the emerging genomic resources and opportunities for genetic manipulation in the diploid frog Xenopus tropicalis, these data will facilitate manipulations to resolve the contribution of IP3R diversity in Ca2+ signalling events observed during vertebrate development.  相似文献   

16.
We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)-mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(-)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium (release site density [RSD]) was quantified and found more elevated in SolC1(-) than in SolD(+) myotubes. Variations of membrane potential had no significant effect on this difference, and higher resting [Ca2+]i in SolC1(-) (Marchand, E., B. Constantin, H. Balghi, M.C. Claudepierre, A. Cantereau, C. Magaud, A. Mouzou, G. Raymond, S. Braun, and C. Cognard. 2004. Exp. Cell Res. 297:363-379) cannot explain alone higher RSD. The exposure with SR Ca(2+) channel inhibitors (ryanodine and 2-APB) and phospholipase C inhibitor (U73122) significantly reduced RSD in both cell types but with a stronger effect in dystrophin-deficient SolC1(-) myotubes. Immunocytochemistry allowed us to localize ryanodine receptors (RyRs) as well as IP3 receptors (IP3Rs), IP3R-1 and IP3R-2 isoforms, indicating the presence of both RyRs-dependent and IP3-dependent release systems in both cells. We previously reported evidence for the enhancement, through a Gi protein, of the IP3-mediated calcium signaling pathway in SolC1(-) as compared to SolD(+) myotubes during a high K(+) stimulation (Balghi, H., S. Sebille, B. Constantin, S. Patri, V. Thoreau, L. Mondin, E. Mok, A. Kitzis, G. Raymond, and C. Cognard. 2006. J. Gen. Physiol. 127:171-182). Here we show that, at rest, these regulation mechanisms are also involved in the modulation of calcium release activities. The enhancement of resting release activity may participate in the calcium overload observed in dystrophin-deficient myotubes, and our findings support the hypothesis of the regulatory role of mini-dystrophin on intracellular signaling.  相似文献   

17.
The inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are IP3-gated intracellular Ca2+ channels. We previously identified an IP3R binding protein, IRBIT, which binds to the IP3 binding domain of IP3R and is dissociated from IP3R in the presence of IP3. In the present study, we showed that IRBIT suppresses the activation of IP3R by competing with IP3 by [3H]IP3 binding assays, in vitro Ca2+ release assays, and Ca2+ imaging of intact cells. Multiserine phosphorylation of IRBIT was essential for the binding, and 10 of the 12 key amino acids in IP3R for IP3 recognition participated in binding to IRBIT. We propose a unique mode of IP3R regulation in which IP3 sensitivity is regulated by IRBIT acting as an endogenous "pseudoligand" whose inhibitory activity can be modulated by its phosphorylation status.  相似文献   

18.
The amount of Ca(2+) taken up in the mitochondrial matrix is a crucial determinant of cell fate; it plays a decisive role in the choice of the cell between life and death. The Ca(2+) ions mainly originate from the inositol 1,4,5-trisphosphate (IP(3))-sensitive Ca(2+) stores of the endoplasmic reticulum (ER). The uptake of these Ca(2+) ions in the mitochondria depends on the functional properties and the subcellular localization of the IP(3) receptor (IP(3)R) in discrete domains near the mitochondria. To allow for an efficient transfer of the Ca(2+) ions from the ER to the mitochondria, structural interactions between IP(3)Rs and mitochondria are needed. This review will focus on the key proteins involved in these interactions, how they are regulated, and what are their physiological roles in apoptosis, necrosis and autophagy. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

19.
《The Journal of cell biology》1993,120(5):1137-1146
Calcium release from intracellular stores is the signal generated by numerous regulatory pathways including those mediated by hormones, neurotransmitters and electrical activation of muscle. Recently two forms of intracellular calcium release channels (CRCs) have been identified. One, the inositol 1,4,5-trisphosphate receptors (IP3Rs) mediate IP3-induced Ca2+ release and are believed to be present on the ER of most cell types. A second form, the ryanodine receptors (RYRs) of the sarcoplasmic reticulum, have evolved specialized functions relevant to muscle contraction and are the major CRCs found in striated muscles. Though structurally related, IP3Rs and RYRs have distinct physiologic and pharmacologic profiles. In the heart, where the dominant mechanism of intracellular calcium release during excitation-contraction coupling is Ca(2+)-induced Ca2+ release via the RYR, a role for IP3-mediated Ca2+ release has also been proposed. It has been assumed that IP3Rs are expressed in the heart as in most other tissues, however, it has not been possible to state whether cardiac IP3Rs were present in cardiac myocytes (which already express abundant amounts of RYR) or only in non- muscle cells within the heart. This lack of information regarding the expression and structure of an IP3R within cardiac myocytes has hampered the elucidation of the significance of IP3 signaling in the heart. In the present study we have used combined in situ hybridization to IP3R mRNA and immunocytochemistry to demonstrate that, in addition to the RYR, an IP3R is also expressed in rat cardiac myocytes. Immunoreactivity and RNAse protection have shown that the IP3R expressed in cardiac myocytes is structurally similar to the IP3R in brain and vascular smooth muscle. Within cardiac myocytes, IP3R mRNA levels were approximately 50-fold lower than that of the cardiac RYR mRNA. Identification of an IP3R in cardiac myocytes provides the basis for future studies designed to elucidate its functional role both as a mediator of pharmacologic and hormonal influences on the heart, and in terms of its possible interaction with the RYR during excitation- contraction coupling in the heart.  相似文献   

20.
Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals   总被引:12,自引:0,他引:12  
Intracellular calcium signals mediated by IP(3)and ryanodine receptors (IP(3)R/RyR) play a central role in cell survival, but emerging evidence suggests that IP(3)R/RyR are also important in apoptotic cell death. Switch from the life program to the death program may involve coincident detection of proapoptotic stimuli and calcium signals or changes in the spatiotemporal pattern of the calcium signal or changes at the level of effectors activated by the calcium signal (e.g. calpain, calcineurin). The fate of the cell is often determined in the mitochondria, where calcium spikes may support cell survival through stimulation of ATP production or initiate apoptosis v ia opening of the permeability transition pore and release of apoptotic factors such as cytochrome c. The functional importance of these mitochondrial calcium signalling pathways has been underscored by the elucidation of a highly effective, local Ca(2+)coupling between IP(3)R/RyR and mitochondrial Ca(2+)uptake sites. This article will focus on the IP(3)R/RyR-dependent pathways to apoptosis, particularly on the mitochondrial phase of the death cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号