首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenolic extract of Acalypha leaves inhibited growth of Gloeophyllum sepiarium and Pleurotus sp. (test wood-rot fungi) in potato dextrose agar, starch agar, starch glucose agar, carboxyl methyl cellulose agar and carboxyl methyl cellulose glucose agar. Fungicidal or fungistatic concentration of the extract (10–14 mg/ml) depended on the medium. However a lower concentration of the extract (8–10 mg/ml) in combination with Trichoderma viride culture filtrate caused a similar inhibitory pattern. Degradation of obeche (Triplochiton scleroxylon), mahogany (Khaya ivorensis) and walnut (Lovoa trichilioides) by the test fungi was limited or prevented by extract treatment of 8–10 mg/g wood. A similar inhibitory effect again occurred when a combination of T. viride filtrate and lower extract concentration (6–8 mg extract per gram of wood) was used. On-going wood decay was limited or halted by a combined treatment involving 8–12 mg extract per gram of wood depending on the fungal residence period. Treated stakes exposed to 6 months of tropical wet season retained resistance to fungal attack including soft rot. The phenolic extract of A. hispida may prove useful in an integrated chemical and biological approach to wood treatment.  相似文献   

2.
A plate assay using the Fe(II) selective dye, ferrozine, for detecting wood-rot fungi with Fe(III) reductive abilities, was developed. The assay is fast, simple and, in most cases, more sensitive than the corresponding liquid medium test. The brown rot fungi, Gloeophyllum trabeum and Laetiporeus sulphureus, displayed higher iron reductive capabilities than white rot fungi, Trametes versicolor, Ganoderma australe and Ceriporiopsis subvermispora.  相似文献   

3.
Production and Degradation of Oxalic Acid by Brown Rot Fungi   总被引:4,自引:3,他引:1       下载免费PDF全文
Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted 14C-labeled oxalic acid to CO2 during cellulose depolymerization. The other brown rot fungi also oxidized 14C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay. Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize 14C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi.  相似文献   

4.
Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot.  相似文献   

5.
A previous paper reported on the establishment of a field and fungal cellar trial set up to determine the biocontrol potential of a specific Trichoderma isolate against wood decay fungi. This paper reports on the analyses used to examine the protective effect of the selected isolate, and presents results indicating an initial protective effect against both basidiomycetes and soft rot fungi. The parameters assessed in the field and fungal cellar trials were soft rot decay, basidiomycete decay, Trichoderma colonisation, moisture content and nitrogen content. The results of these analyses show that the introduction of a biological control agent has had a significant effect on moisture content, decay and nitrogen content. A protective effect has been observed against soft rot and basidiomycete decay fungi in field samples.  相似文献   

6.
It is often proposed that brown rot basidiomycetes use extracellular reactive oxygen species (ROS) to accomplish the initial depolymerization of cellulose in wood, but little evidence has been presented to show that the fungi produce these oxidants in physiologically relevant quantities. We used [(14)C]phenethyl polyacrylate as a radical trap to estimate extracellular ROS production by two brown rot fungi, Gloeophyllum trabeum and Postia placenta, that were degrading cellulose. Both fungi oxidized aromatic rings on the trap to give monohydroxylated and more polar products in significant yields. All of the cultures contained 2,5-dimethoxyhydroquinone, a fungal metabolite that has been shown to drive Fenton chemistry in vitro. These results show that extracellular ROS occur at significant levels in cellulose colonized by brown rot fungi, and suggest that hydroquinone-driven ROS production may contribute to decay by diverse brown rot species.  相似文献   

7.
Dead wood is an important habitat for forest organisms, and wood decay fungi are the principal agents determining the dead wood properties that influence the communities of organisms inhabiting dead wood. In this study, we investigated the effects of wood decomposer fungi on the communities of myxomycetes and bryophytes inhabiting decayed logs. On 196 pine logs, 72 species of fungi, 34 species and seven varieties of myxomycetes, and 16 species of bryophytes were identified. Although white rot was the dominant decay type in sapwood and heartwood, brown and soft rots were also prevalent, particularly in sapwood. Moreover, white rot and soft rot were positively and brown rot negatively correlated with wood pH. Ordination analyses clearly showed a succession of cryptogam species during log decomposition and showed significant correlations of communities with the pH, water content, and decay type of wood. These analyses indicate that fungal wood decomposer activities strongly influence the cryptogam communities on dead wood.  相似文献   

8.
Importance of boron compounds in wood preservation is increasing due to their low environmental impact, high efficacy and the fact that many other active ingredients have been removed from the market after the introduction of the Biocidal Products Directive. The most important drawback of boron is prominent leaching in wet environment. In order to improve their fixation, and performance against wood decay fungi, boric acid was combined with montan wax emulsion. Possible synergistic effects of boric acid and montan wax were determined according to modified EN 113 procedure. Norway spruce and beech wood specimens were exposed to three white rot (Trametes versicolor, Pleurotus ostreatus and Hypoxylon fragiforme) and brown rot wood decay fungi (Gloeophyllum trabeum, Antrodia vaillantii and Serpula lacrymans) for 12 weeks. Boron leaching from vacuum/pressure treated Norway spruce wood was determined according to the continuous (EN 84 and ENV 1250-2) and non-continuous (OECD and prCEN/TS 15119-1) procedures. Boron was determined with ICP mass spectrometry in collected leachates. The results of the fungicidal tests clearly showed that montan wax emulsion and boric acid act synergistically against tested wood decay fungi. Approximately 50% lower boric acid retentions are required in combination with montan wax emulsions to achieve sufficient protection against wood rotting fungi. However, it is even more important that all leaching tests performed proved that the addition of montan wax decreased boron leaching from impregnated specimens for 20% up to 50%.  相似文献   

9.
大兴安岭林区火烧迹地木腐菌主要类群的初步研究   总被引:4,自引:0,他引:4  
对大兴安岭林区火烧迹地的17种主要木腐菌进行了报道,并就它们的生态习性和生态功能进行探讨.通过对火烧林分和非过火林分主要木腐菌类群变化的研究,确定在火烧迹地森林生态系统演替过程中的先锋菌物主要有8种,常见菌4种,以及在寒温带针叶林生态系统中的珍稀和濒危的木腐菌3种,并探讨了珍稀或濒危菌物的保护对策.  相似文献   

10.
Methanol and ethanol extracts of mansonia wood inhibited the growth of three wood-rotting fungi, Pleurotus ostreatus, Gloeophyllum sepiarium and Gloeophyllum sp. An aqueous extract only inhibited the growth of P. ostreatus. Extracted obeche wood impregnated with ethanol extracts of mansonia showed significant improvement in decay resistance. Impregnation with methanol extracts only significantly retarded decay by P. ostreatus and the aqueous extracts did not increase obeche wood resistance to any of the test fungi.  相似文献   

11.
We focused in selecting four fungi, naturally living in Eucalyptus sp. fields, for application in accelerating stump decay. The wood-rot fungi Pycnoporus sanguineus (Ps), Lentinus bertieri (Lb) and Xylaria sp. (Xa) were isolated from Eucalyptus sp. field and the fungus Lentinula edodes (Led) was obtained from a commercial strain. All fungi were studied according to their capacity to degrade eucalyptus urograndis wood. In order to evaluate mass losses of seven years old eucalyptus urograndis' wood test blocks from heartwood were prepared added to glass flasks with red clay soil. The humidity of the soil was adjusted with 50 and 100% of its water retention capacity. Mass loss evaluations occurred at 30 until 120 days after eucalyptus wood degradation. Chemical analysis and soil pH were measured only in the last evaluation. Mycelial growth assays with potato-dextrose-agar, malt-agar and sawdust-dextrose-agar at three temperatures was carried out in order to get information about the best conditions of fungi growth. On the 120th day, Ps and Lb showed good capacity of wood degradation by leading to a high mass loss in soil with highest humidity. These fungi were the best consumers of lignin, hemicellulose, cellulose and extractives, caused acidification in the soil. Ps and Lb had faster mycelial growth in sawdust-dextrose-agar, especially in high temperature, comparing to Xa and Led. Xa and Led are not good eucalyptus urograndis heartwood degraders, because they consume preferentially hemicellulose.  相似文献   

12.
The ability of Penicillium sp. and Trichoderma viride to retard the decay of obeche (Triplochiton scleroxylon) wood in the field for 11 months (January–November) covering dry and wet seasons in a tropical environment was investigated using the ‘graveyard’ method. Inoculation of stakes with Gloeophyllum sp. or G. sepiarium (decay fungi) 24 h after treatment with T. viride or Penicillium sp. in January (dry season) did not increase decay after 11 months. Total inhibition of the decay fungi was indicated since the low weight losses of stakes was not markedly different from losses in control stakes biologically treated but not exposed to decay fungi. Inhibition of the activities of other unidentified field fungi was also indicated because weight losses were greater in uninoculated and untreated stakes. However, decay occurred in stakes biologically treated in January but later exposed to decay fungi in May, after the dry season. A repeat application of T. viride treatment in May, to stakes earlier treated in January, markedly reduced decay following exposure to decay fungi in September (wet season). A similar Penicillium sp. application was not as effective as T. viride application because unlike the T. viride protected stakes, decay was greater in stakes twice protected with Penicillium sp. but not exposed to decay fungi. The results indicate that repeated application of biocontrol agents may be important for controlling wood decay following the adverse effect of the dry season.  相似文献   

13.
In forest ecosystems, fungi are the key actors in wood decay. They have the capability to degrade lignified substrates and the woody biomass of coniferous forests, with brown rot fungi being common colonizers. Brown rots are typically involved in the earliest phase of lignocellulose breakdown, which therefore influences colonization by other microorganisms. However, few studies have focused on the impact of introducing decayed wood into forest environments to gauge successional colonization by natural bacterial and fungal communities following partial decay. This study aimed to address this issue by investigating the bacterial and fungal colonization of Norway spruce (Picea abies) wood, after intermediate and advanced laboratory-based, pre-decay, by the brown rot fungus Gloeophyllum trabeum. Using Illumina metabarcoding, the in situ colonization of the wood blocks was monitored 70 days after the blocks were placed on the forest floor and covered with litter. We observed significant changes in the bacterial and fungal communities associated with the pre-decayed stage. Further, the wood substrate condition acted as a gatekeeper by reducing richness for both microbial communities and diversity of fungal communities. Our data also suggest that the growth of some fungal and bacterial species was driven by similar environmental conditions.  相似文献   

14.
The degradation of wood by brown rot fungi has been studied intensely for many years in order to facilitate the preservation of in-service wood. In this work we used X-ray diffraction to examine changes in wood cellulose crystallinity caused by the brown rot fungi Gloeophyllum trabeum, Coniophora puteana, and two isolates of Serpula lacrymans. All fungi increased apparent percent crystallinity early in the decay process while decreasing total amounts of both crystalline and amorphous material. Data also showed an apparent decrease of approximately 0.05 Å in the average spacing of the crystal planes in all degraded samples after roughly 20% weight loss, as well as a decrease in the average observed relative peak width at 2θ = 22.2°. These results may indicate a disruption of the outer most semi-crystalline cellulose chains comprising the wood microfibril. X-ray diffraction analysis of wood subjected to biological attack by fungi may provide insight into degradative processes and wood cellulose structure.  相似文献   

15.
Several analytical methods were compared to evaluate characteristic wood decaying fungi for their potential to depolymerise lignin on spruce wood particles. Wood samples were treated with the white rot fungi Phlebia brevispora, Ceriporiopsis subvermispora, Merulius tremellosus, Pycnoporus sanguineus, Trametes pubescens and with the brown rot fungus Gloeophyllum trabeum. The UV absorbancies of crude ethanol extracts, total extractives content from sequential extraction, ligninolytic enzyme activities, lignin solubilisation and decrease of lignin content were compared. It was shown, that, in early decay stages, UV absorbancies of crude ethanol extracts and total extractives content correlate well with lignin degradation, increase of acid soluble lignin and increased production of ligninolytic enzymes (total peroxidase). Lignin content was determined using FT-NIR spectroscopy as well as by wet-chemical analysis, indicating a very good correlation between the two methods. According to the different analytical methods, the tested fungi can be classified into three categories based on their characteristic behaviour: brown rot, “slow” and “fast” white rot.  相似文献   

16.
This study analyzes the accumulation and translocation of metal ions in wood during the degradation performed by one strain of each of the three brown rot fungi; Serpula lacrymans, Meruliporia incrassata and Coniophora puteana. These fungi species are inhabitants of the built environment where the prevention and understanding of fungal decay is of high priority. This study focuses on the influence of various building materials in relation to fungal growth and metal uptake. Changes in the concentration of iron, manganese, calcium and copper ions in the decayed wood were analyzed by induced coupled plasma spectroscopy and related to wood weight loss and oxalic acid accumulation. Metal transport into the fungal inoculated wood was found to be dependent on the individual strain/species. The S. lacrymans strain caused a significant increase in total iron whereas the concentration of copper ions in the wood appeared decreased after 10 weeks of decay. Wood inoculated with the M. incrassata isolate showed the contrary tendency with high copper accumulation and low iron increase despite similar weight losses for the two strains. However, significantly lower oxalic acid accumulation was recorded in M. incrassata degraded wood. The addition of a building material resulted in increased weight loss in wood degraded by C. puteana in the soil-block test; however, this could not be directly linked specifically to the accumulation of any of the four metals recorded. The accumulation of oxalic acid seemed to influence the iron uptake. The study assessing the influence of the presence of soil and glass in the soil-block test revealed that soil contributed the majority of the metals for uptake by the fungi and contributed to increased weight loss. The varying uptake observed among the three brown rot fungi strains toward the four metals analyzed may be related to the specific non-enzymatic and enzymatic properties including bio-chelators employed by each of the species during wood decay.  相似文献   

17.
Natural decay resistance of teak wood grown in home-garden forestry and the factors influencing decay resistance were determined in comparison with that of a typical forest plantation. Accelerated laboratory tests were conducted on 1800 wood samples drawn from 15 trees of three planted sites. Analysis of variance based on a univariate mixed model showed that planted site, fungal species, and their interaction terms were important sources of variation in decay resistance. With increasing decay resistance from centre to periphery of the heartwood, radial position was a critical factor and the interaction effect of fungal species × radial position was significant in influencing the durability. No significant differences were found in decay resistance either between the opposite radii or due to the various possible interaction terms of radii with the site, fungal species and radial position. There were significant differences in decay resistance against brown-rot fungi between wet and dry sites of home-garden teak although differences against white-rot fungi were non-significant among the three planted sites. Polyporus palustris was the more aggressive brown-rot fungus than Gloeophyllum trabeum. The higher susceptibility of wet site home-garden teak to brown-rot decay was associated with a paler colour of the wood and lower extractive content.  相似文献   

18.
Brown rot fungi uniquely degrade wood by creating modifications thought to aid in the selective removal of polysaccharides by an incomplete cellulase suite. This naturally successful mechanism offers potential for current bioprocessing applications. To test the efficacy of brown rot cellulases, southern yellow pine wood blocks were first degraded by the brown rot fungus Gloeophyllum trabeum for 0, 2, 4, and 6 weeks. Characterization of the pine constituents revealed brown rot decay patterns, with selective polysaccharide removal as lignin compositions increased. G. trabeum liquid and solid state cellulase extracts, as well as a commercial Trichoderma reesei extract (Celluclast 1.5 L), were used to saccharify this pretreated material, using β-glucosidase amendment to remove limitation of cellobiose-to-glucose conversion. Conditions varied according to source and concentration of cellulase extract and to pH (3.0 vs. 4.8). Hydrolysis yields were maximized using solid state G. trabeum extracts at a pH of 4.8. However, the extent of glucose release was low and was not significantly altered when cellulase loading levels were increased threefold. Furthermore, Celluclast 1.5 L continually outperformed G. trabeum cellulase extracts, although extent of glucose release never exceeded 22.0%. Results suggest methodological advances for utilizing crude G. trabeum cellulases and imply that the suboptimal hydrolysis levels obtained with G. trabeum and Celluclast 1.5 L cellulases, even at high loading levels, may be due to brown rot modifications insufficiently distributed throughout the pretreated material.  相似文献   

19.
We incubated 196 large-diameter aspen (Populus tremuloides), birch (Betula papyrifera), and pine (Pinus taeda) logs on the FACE Wood Decomposition Experiment encompassing eight climatically-distinct forest sites in the United States. We sampled dead wood from these large-diameter logs after 2 to 6 y of decomposition and determined wood rot type as a continuous variable using the lignin loss/density loss ratio (L/D) and assessed wood-rotting fungal guilds using high-throughput amplicon sequencing (HTAS) of the ITS-2 marker. We found L/D values in line with a white rot dominance in all three tree species, with pine having lower L/D values than aspen and birch. Based on HTAS data, white rot fungi were the most abundant and diverse wood-rotting fungal guild, and soft rot fungi were more abundant and diverse than brown rot fungi in logs with low L/D values. For aspen and birch logs, decay type was related to the wood density at sampling. For the pine logs, decay type was associated with the balance between white and brown/soft rot fungi abundance and OTU richness. Our results demonstrate that decay type is governed by biotic and abiotic factors, which vary by tree species.  相似文献   

20.
The Gloeophyllales is a recently described order of Agaricomycotina containing a morphologically diverse array of polypores (Gloeophyllum), agarics (Neolentinus, Heliocybe) and resupinate fungi (Veluti-Veluticeps, Boreostereum, Chaetodermella), most of which have been demonstrated to produce a brown-rot mode of wood decay and are found preferentially on coniferous substrates. Multiple phylogenetic studies have included taxa of Gloeophyllales, but none have sampled the order thoroughly, and so far only ribosomal RNA genes have been used. Consequently the limits and higher level placement of the Gloeophyllales are obscure. We obtained sequence data for three protein-coding genes (rpb2, atp6, tef1) and three rRNA regions (nuc-ssu, nuc-lsu, 5.8S) in 19 species of Gloeophyllales representing seven genera and analyzed them together with a diverse set of Agaricomycotina, emphasizing Polyporales. Boreostereum, which is suspected to produce a white rot, is the sister group of the rest of the Gloeophyllales, all of which produce a brown rot. Gloeophyllum contains at least two independent clades, one of which might correspond to the genus Osmoporus. White rot and resupinate fruiting bodies appear to be plesiomorphic in Gloeophyllales. Relaxed molecular clock analyses suggest that the Gloeophyllales arose in the Cretaceous, after the origin of Pinaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号