首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: The bacterial cell wall and the enzymes that synthesize it are targets of glycopeptide antibiotics (vancomycins and teicoplanins) and beta-lactams (penicillins and cephalosporins). Biosynthesis of cell wall peptidoglycan requires a crosslinking of peptidyl moieties on adjacent glycan strands. The D-alanine-D-alanine transpeptidase, which catalyzes this crosslinking, is the target of beta-lactam antibiotics. Glycopeptides, in contrast, do not inhibit an enzyme, but bind directly to D-alanine-D-alanine and prevent subsequent crosslinking by the transpeptidase. Clinical resistance to vancomycin in enterococcal pathogens has been traced to altered ligases producing D-alanine-D-lactate rather than D-alanine-D-alanine. RESULTS: The structure of a D-alanine-D-lactate ligase has been determined by multiple anomalous dispersion (MAD) phasing to 2.4 A resolution. Co-crystallization of the Leuconostoc mesenteroides LmDdl2 ligase with ATP and a di-D-methylphosphinate produced ADP and a phosphinophosphate analog of the reaction intermediate of cell wall peptidoglycan biosynthesis. Comparison of this D-alanine-D-lactate ligase with the known structure of DdlB D-alanine-D-alanine ligase, a wild-type enzyme that does not provide vancomycin resistance, reveals alterations in the size and hydrophobicity of the site for D-lactate binding (subsite 2). A decrease was noted in the ability of the ligase to hydrogen bond a substrate molecule entering subsite 2. CONCLUSIONS: Structural differences at subsite 2 of the D-alanine-D-lactate ligase help explain a substrate specificity shift (D-alanine to D-lactate) leading to remodeled cell wall peptidoglycan and vancomycin resistance in Gram-positive pathogens.  相似文献   

2.
Reduced susceptibility to penicillin G in Neisseria meningitidis is directly correlated with alterations in the penA gene, which encodes the penicillin-binding protein 2 (PBP2). Using purified PBP2s from different backgrounds, we confirmed that the reduced susceptibility to penicillin G is associated with a decreased affinity of altered PBP2s for penicillin G. Infrared spectroscopy analysis using isogenic penicillin-susceptible strains and strains with reduced susceptibility to penicillin G suggested that the meningococcal cell wall is also modified in a penA-dependent manner. Moreover, reverse-phase high pressure liquid chromatography and mass spectrometry analysis of these meningococcal strains confirmed the modifications of peptidoglycan components and showed an increase in the peaks corresponding to pentapeptide-containing muropeptides. These results suggest that the D,D-transpeptidase and/or D,D-carboxypeptidase activities of PBP2 are modified by the changes in penA gene.  相似文献   

3.
Upon ingestion of contaminated food, Listeria monocytogenes can cause serious infections in humans that are normally treated with β‐lactam antibiotics. These target Listeria's five high molecular weight penicillin‐binding proteins (HMW PBPs), which are required for peptidoglycan biosynthesis. The two bi‐functional class A HMW PBPs PBP A1 and PBP A2 have transglycosylase and transpeptidase domains catalyzing glycan chain polymerization and peptide cross‐linking, respectively, whereas the three class B HMW PBPs B1, B2 and B3 are monofunctional transpeptidases. The precise roles of these PBPs in the cell cycle are unknown. Here we show that green fluorescent protein (GFP)‐PBP fusions localized either at the septum, the lateral wall or both, suggesting distinct and overlapping functions. Genetic data confirmed this view: PBP A1 and PBP A2 could not be inactivated simultaneously, and a conditional double mutant strain is largely inducer dependent. PBP B1 is required for rod‐shape and PBP B2 for cross‐wall biosynthesis and viability, whereas PBP B3 is dispensable for growth and cell division. PBP B1 depletion dramatically increased β‐lactam susceptibilities and stimulated spontaneous autolysis but had no effect on peptidoglycan cross‐linkage. Our in vitro virulence assays indicated that the complete set of all HMW PBPs is required for maximal virulence.  相似文献   

4.
Ceftizoxime, a beta-lactam antibiotic with high selective affinity for penicillin-binding protein 2 (PBP2) of Staphylococcus aureus, was used to select a spontaneous resistant mutant of S. aureus strain 27s. The stable resistant mutant ZOX3 had an increased ceftizoxime MIC and a decreased affinity of its PBP2 for ceftizoxime and produced peptidoglycan in which the proportion of highly cross-linked muropeptides was reduced. The pbpB gene of ZOX3 carried a single C-to-T nucleotide substitution at nucleotide 1373, causing replacement of a proline with a leucine at amino acid residue 458 of the transpeptidase domain of the protein, close to the SFN conserved motif. Experimental proof that this point mutation was responsible for the drug-resistant phenotype, and also for the decreased PBP2 affinity and reduced cell wall cross-linking, was provided by allelic replacement experiments and site-directed mutagenesis. Disruption of pbpD, the structural gene of PBP4, in either the parental strain or the mutant caused a large decrease in the highly cross-linked muropeptide components of the cell wall and in the mutant caused a massive accumulation of muropeptide monomers as well. Disruption of pbpD also caused increased sensitivity to ceftizoxime in both the parental cells and the ZOX3 mutant, while introduction of the plasmid-borne mecA gene, the genetic determinant of the beta-lactam resistance protein PBP2A, had the opposite effects. The findings provide evidence for the cooperative functioning of two native S. aureus transpeptidases (PBP2 and PBP4) and an acquired transpeptidase (PBP2A) in staphylococcal cell wall biosynthesis and susceptibility to antimicrobial agents.  相似文献   

5.
Analysis of the peptidoglycan of Rickettsia prowazekii.   总被引:1,自引:0,他引:1       下载免费PDF全文
In the present study, peptidoglycan from Rickettsia prowazekii, an obligate intracellular bacterium, was purified. The rickettsial peptidoglycan is like that of gram-negative bacteria; that is, it is sodium dodecyl sulfate insoluble, lysozyme sensitive, and composed of glutamic acid, alanine, and diaminopimelic acid in a molar ratio of 1.0:2.3:1.0. The small amount of lysine found in the peptidoglycan preparation suggests that a peptidoglycan-linked lipoprotein(s) may be present in the rickettsiae. D-Cycloserine, a D-alanine analog which inhibits the biosynthesis of bacterial cell walls, prevented rickettsial growth in mouse L929 cells at a high concentration and altered the morphology of the rickettsiae at a low concentration. These effects were prevented by the addition of D-alanine. This suggests that R. prowazekii contains D-alanine in the peptidoglycan and has D-Ala-D-Ala ligase and alanine racemase activities.  相似文献   

6.
All clinical isolates of methicillin-resistant Staphylococcus aureus contain an extra penicillin binding protein (PBP) 2A in addition to four PBPs present in all staphylococcal strains. This extra PBP is thought to be a transpeptidase essential for the continued cell wall synthesis and growth in the presence of beta-lactam antibiotics. As an approach of testing this hypothesis we compared the muropeptide composition of cell walls of a highly methicillin-resistant S. aureus strain containing PBP2A and its isogenic Tn551 derivative with reduced methicillin resistance, which contained no PBP2A because of the insertional inactivation of the PBP2A gene. Purified cell walls were hydrolyzed into muropeptides which were subsequently resolved by reversed-phase high-performance liquid chromatography and identified by chemical and mass spectrometric analysis. The peptidoglycan composition of the two strains were identical. Both peptidoglycans were highly cross-linked mainly through pentaglycine cross-bridges, although other, chemically distinct peptide cross-bridges were also present including mono-, tri-, and tetraglycine; alanine; and alanyl-tetraglycine. Our experiments provided no experimental data for a unique transpeptidase activity associated with PBP2A.  相似文献   

7.
Most bacteria possess a peptidoglycan cell wall that determines their morphology and provides mechanical robustness during osmotic challenges. The biosynthesis of this structure is achieved by a large set of synthetic and lytic enzymes with varying substrate specificities. Although the biochemical functions of these proteins are conserved and well‐investigated, the precise roles of individual factors and the regulatory mechanisms coordinating their activities in time and space remain incompletely understood. Here, we comprehensively analyze the autolytic machinery of the alphaproteobacterial model organism Caulobacter crescentus, with a specific focus on LytM‐like endopeptidases, soluble lytic transglycosylases and amidases. Our data reveal a high degree of redundancy within each protein family but also specialized functions for individual family members under stress conditions. In addition, we identify two lytic transglycosylases and an amidase as new divisome components that are recruited to midcell at distinct stages of the cell cycle. The midcell localization of these proteins is affected by two LytM factors with degenerate catalytic domains, DipM and LdpF, which may serve as regulatory hubs coordinating the activities of multiple autolytic enzymes during cell constriction and fission respectively. These findings set the stage for in‐depth studies of the molecular mechanisms that control peptidoglycan remodeling in C. crescentus.  相似文献   

8.
We have used atomic-force microscopy (AFM) to probe the effect of peptidoglycan crosslinking reduction on the elasticity of the Staphylococcus aureus cell wall, which is of particular interest as a target for antimicrobial chemotherapy. Penicillin-binding protein 4 (PBP4) is a nonessential transpeptidase, required for the high levels of peptidoglycan crosslinking characteristic of S. aureus. Importantly, this protein is essential for β-lactam resistance in community-acquired, methicillin-resistant S. aureus (MRSA) strains but not in hospital-acquired MRSA strains. Using AFM in a new mode for recording force/distance curves, we observed that the absence of PBP4, and the concomitant reduction of the peptidoglycan crosslinking, resulted in a reduction in stiffness of the S. aureus cell wall. Importantly, the reduction in cell wall stiffness in the absence of PBP4 was observed both in community-acquired and hospital-acquired MRSA strains, indicating that high levels of peptidoglycan crosslinking modulate the overall structure and mechanical properties of the S. aureus cell envelope in both types of clinically relevant strains. Additionally, we were able to show that the applied method enables the separation of cell wall properties and turgor pressure.  相似文献   

9.
We have used atomic-force microscopy (AFM) to probe the effect of peptidoglycan crosslinking reduction on the elasticity of the Staphylococcus aureus cell wall, which is of particular interest as a target for antimicrobial chemotherapy. Penicillin-binding protein 4 (PBP4) is a nonessential transpeptidase, required for the high levels of peptidoglycan crosslinking characteristic of S. aureus. Importantly, this protein is essential for β-lactam resistance in community-acquired, methicillin-resistant S. aureus (MRSA) strains but not in hospital-acquired MRSA strains. Using AFM in a new mode for recording force/distance curves, we observed that the absence of PBP4, and the concomitant reduction of the peptidoglycan crosslinking, resulted in a reduction in stiffness of the S. aureus cell wall. Importantly, the reduction in cell wall stiffness in the absence of PBP4 was observed both in community-acquired and hospital-acquired MRSA strains, indicating that high levels of peptidoglycan crosslinking modulate the overall structure and mechanical properties of the S. aureus cell envelope in both types of clinically relevant strains. Additionally, we were able to show that the applied method enables the separation of cell wall properties and turgor pressure.  相似文献   

10.
Listeria monocytogenes and other pathogenic bacteria modify their peptidoglycan to protect it against enzymatic attack through the host innate immune system, such as the cell wall hydrolase lysozyme. During our studies on GpsB, a late cell division protein that controls activity of the bi‐functional penicillin binding protein PBP A1, we discovered that GpsB influences lysozyme resistance of L. monocytogenes as mutant strains lacking gpsB showed an increased lysozyme resistance. Deletion of pbpA1 corrected this effect, demonstrating that PBP A1 is also involved in this. Susceptibility to lysozyme mainly depends on two peptidoglycan modifying enzymes: The peptidoglycan N‐deacetylase PgdA and the peptidoglycan O‐acetyltransferase OatA. Genetic and biochemical experiments consistently demonstrated that the increased lysozyme resistance of the ΔgpsB mutant was PgdA‐dependent and OatA‐independent. Protein‐protein interaction studies supported the idea that GpsB, PBP A1 and PgdA form a complex in L. monocytogenes and identified the regions in PBP A1 and PgdA required for complex formation. These results establish a physiological connection between GpsB, PBP A1 and the peptidoglycan modifying enzyme PgdA. To our knowledge, this is the first reported link between a GpsB‐like cell division protein and factors important for escape from the host immune system.  相似文献   

11.
Bacillus subtilis mutants with altered penicillin-binding proteins (PBPs), or altered expression of PBPs, were isolated by screening for changes in susceptibility to beta-lactam antibiotics. Mutations affecting only PBPs 2a, 2b and 3 were isolated. Cell shape and peptidoglycan metabolism were examined in representative mutants. Cells of a PBP 2a mutant (UB8521) were usually twisted whereas PBP 2b (UB8524) and 3 (UB8525) mutants produced helices, particularly after growth at 41 degrees C. The PBP 2a mutant (UB8521) had a higher peptidoglycan synthetic activity than its parent strain whereas the opposite applied to the PBP 2b mutant UB8524. The PBP 3 mutant (UB8525) had a similar peptidoglycan synthetic activity to that of the parent strain when grown at 37 degrees C, but 40% higher activity after growth at 41 degrees C. The PBP 2a mutant (UB8521) exhibited the same wall thickening activity as the parent, but the PBP 2b and 3 mutants (UB8524 and UB8525) were partially defective in this respect. The changes in the susceptibility of PBP 2a, 2b and 3 mutants to beta-lactam antibiotics imply that these PBPs are killing targets, consistent with the fact that these PBPs are also important for shape determination and peptidoglycan synthesis.  相似文献   

12.
The bacterial peptidoglycan, the main component of the cell wall, is synthesized by the penicillin-binding proteins (PBPs). We used immunofluorescence microscopy to determine the cellular localization of all the high molecular weight PBPs of the human pathogen Streptococcus pneumoniae, for a wild type and for several PBP-deficient strains. Progression through the cell cycle was investigated by the simultaneous labelling of DNA and the FtsZ protein. Our main findings are: (i) the temporal dissociation of cell wall synthesis, inferred by the localization of PBP2x and PBP1a, from the constriction of the FtsZ-ring; (ii) the localization of PBP2b and PBP2a at duplicated equatorial sites indicating the existence of peripheral peptidoglycan synthesis, which implies a similarity between the mechanism of cell division in bacilli and streptococci; (iii) the abnormal localization of some class A PBPs in PBP-defective mutants which may explain the apparent redundancy of these proteins in S. pneumoniae.  相似文献   

13.
Bacterial cell growth and division require coordinated cell wall hydrolysis and synthesis, allowing for the removal and expansion of cell wall material. Without proper coordination, unchecked hydrolysis can result in cell lysis. How these opposing activities are simultaneously regulated is poorly understood. In Mycobacterium tuberculosis, the resuscitation-promoting factor B (RpfB), a lytic transglycosylase, interacts and synergizes with Rpf-interacting protein A (RipA), an endopeptidase, to hydrolyze peptidoglycan. However, it remains unclear what governs this synergy and how it is coordinated with cell wall synthesis. Here we identify the bifunctional peptidoglycan-synthesizing enzyme, penicillin binding protein 1 (PBP1), as a RipA-interacting protein. PBP1, like RipA, localizes both at the poles and septa of dividing cells. Depletion of the ponA1 gene, encoding PBP1 in M. smegmatis, results in a severe growth defect and abnormally shaped cells, indicating that PBP1 is necessary for viability and cell wall stability. Finally, PBP1 inhibits the synergistic hydrolysis of peptidoglycan by the RipA-RpfB complex in vitro. These data reveal a post-translational mechanism for regulating cell wall hydrolysis and synthesis through protein–protein interactions between enzymes with antagonistic functions.  相似文献   

14.
Chlamydiaceae are obligate intracellular bacteria that do not synthesise detectable peptidoglycan although they possess an almost complete arsenal of genes encoding peptidoglycan biosynthetic activities. In this paper, the murF gene from Chlamydia trachomatis was shown to be capable of complementing a conditional Escherichia coli mutant impaired in UDP-MurNAc-tripeptide:D-Ala-D-Ala ligase activity. Recombinant MurF from C. trachomatis was overproduced and purified from E. coli. It exhibited ATP-dependent UDP-MurNAc-X-γ-D-Glu-meso-A(2)pm:D-Ala-D-Ala ligase activity in vitro. No significant difference of kinetic parameters was seen when X was L-Ala, L-Ser or Gly. The L-Lys-containing UDP-MurNAc-tripeptide was a poorer substrate as compared to the meso-A(2)pm-containing one. Based on the respective substrate specificities of the chlamydial MurC, MurE, MurF and Ddl enzymes, a sequence L-Ala/L-Ser/Gly-γ-D-Glu-meso-A(2)pm-D-Ala-D-Ala is expected for the chlamydial pentapeptide stem, with Gly at position 1 being less likely.  相似文献   

15.
I A Lessard  V L Healy  I S Park  C T Walsh 《Biochemistry》1999,38(42):14006-14022
Bacteria with either intrinsic or inducible resistance to vancomycin make peptidoglycan (PG) precursors of lowered affinity for the antibiotic by switching the PG-D-Ala-D-Ala termini that are the antibiotic-binding target to either PG-D-Ala-D-lactate or PG-D-Ala-D-Ser as a consequence of altered specificity of the D-Ala-D-X ligases in the cell wall biosynthetic pathway. The VanA ligase of vancomycin-resistant enterococci, a D-Ala-D-lactate depsipeptide ligase, has the ability to recognize and activate the weak nucleophile D-lactate selectively over D-Ala(2) to capture the D-Ala(1)-OPO(3)(2)(-) intermediate in the ligase active site. To ensure this selectivity in catalysis, VanA largely rejects the protonated (NH(3)(+)) form of D-Ala at subsite 2 (K(M2) of 210 mM at pH 7.5) but not at subsite 1. In contrast, the deprotonated (NH(2)) form of D-Ala (K(M2) of 0.66 mM, k(cat) of 550 min(-)(1)) is a 17-fold better substrate compared to D-lactate (K(M) of 0.69 mM, k(cat) of 32 min(-)(1)). The low concentration of the free amine form of D-Ala at physiological conditions (i.e., 0.1% at pH 7.0) explains the inefficiency of VanA in dipeptide synthesis. Mutational analysis revealed a residue in the putative omega-loop region, Arg242, which is partially responsible for electrostatically repelling the protonated form of D-Ala(2). The VanA enzyme represents a subfamily of D-Ala-D-X ligases in which two key active-site residues (Lys215 and Tyr216) in the active-site omega-loop of the Escherichia coli D-Ala-D-Ala ligase are absent. To look for functional complements in VanA, we have mutated 20 residues and evaluated effects on catalytic efficiency for both D-Ala-D-Ala dipeptide and D-Ala-D-lactate depsipeptide ligation. Mutation of Asp232 caused substantial defects in both dipeptide and depsipeptide ligase activity, suggesting a role in maintaining the loop position. In contrast, the H244A mutation caused an increase in K(M2) for D-lactate but not D-Ala, indicating a differential role for His244 in the recognition of the weaker nucleophile D-lactate. Replacement of the VanA omega-loop by that of VanC2, a D-Ala-D-Ser ligase, eliminated D-Ala-D-lactate activity while improving by 3-fold the catalytic efficacy of D-Ala-D-Ala and D-Ala-D-Ser activity.  相似文献   

16.
Staphylococcus simulans secretes lysostaphin, a bacteriolytic enzyme that specifically binds to the cell wall envelope of Staphylococcus aureus and cleaves the pentaglycine cross bridges of peptidoglycan, thereby killing staphylococci. The study of S. aureus mutants with resistance to lysostaphin-mediated killing has revealed biosynthetic pathways for cell wall assembly. To identify additional genes involved in cell wall envelope biosynthesis, we have screened a collection of S. aureus strain Newman transposon mutants for lysostaphin resistance. Bursa aurealis insertion in SAV2335, encoding a polytopic membrane protein with predicted protease domain, caused a high degree of lysostaphin resistance, similar to the case for a previously described femAB promoter mutant. In contrast to the case for this femAB mutant, transposon insertion in SAV2335, herein named lyrA (lysostaphin resistance A), did not cause gross alterations of cell wall cross bridges such as truncations of pentaglycine to tri- or monoglycine. Also, inactivation of LyrA in a methicillin-resistant S. aureus strain did not precipitate a decrease in beta-lactam resistance as observed for fem (factor essential for methicillin resistance) mutants. Lysostaphin bound to the cell wall envelopes of lyrA mutants in a manner similar to that for wild-type staphylococci. Lysostaphin resistance of lyrA mutants is attributable to altered cell wall envelope properties and may in part be due to increased abundance of altered cross bridges. Other lyr mutants with intermediate lysostaphin resistance carried bursa aurealis insertions in genes specifying GTP pyrophosphokinase or enzymes of the purine biosynthetic pathway.  相似文献   

17.
18.
Recently, for the first time in the history of this bacterial species, methicillin-resistant Staphylococcus aureus (MRSA) carrying the enterococcal vanA gene complex and expressing high level resistance to vancomycin was identified in clinical specimens (CDC (2002) MMWR 51, 565-567). The purpose of our studies was to understand how vanA is expressed in the heterologous background of S. aureus and how it interacts with the mecA-based resistance mechanism, which is also present in these strains and is targeted on cell wall biosynthesis. The vanA-containing staphylococcal plasmid was transferred from the clinical vancomycin-resistant S. aureus (VRSA) strain HIP11714 (CDC (2002) MMWR 51, 565-567) to the methicillin-resistant S. aureus (MRSA) strain COL for which extensive genetic and biochemical information is available on staphylococcal cell wall biochemistry and drug resistance mechanisms. The transconjugant named COLVA showed high and homogeneous resistance to both oxacillin and vancomycin. COLVA grown in vancomycin-containing medium produced an abnormal peptidoglycan: all pentapeptides were replaced by tetrapeptides, and the peptidoglycan contained at least 22 novel muropeptide species that frequently showed a deficit or complete absence of pentaglycine branches. The UDP-MurNAc-pentapeptide, the major component of the cell wall precursor pool in vancomycin-sensitive cells was replaced by UDP-MurNAc-depsipeptide and UDP-MurNAc-tetrapeptide. Transposon inactivation of the beta-lactam resistance gene mecA caused complete loss of beta-lactam resistance but had no effect on the expression of vancomycin resistance. The two major antibiotic resistance mechanisms encoded by mecA and vanA residing in the same S. aureus appear to use different sets of enzymes for the assembly of cell walls.  相似文献   

19.
Cell wall peptidoglycan assembly is a tightly regulated process requiring the combined action of multienzyme complexes. In this study we provide direct evidence showing that substrate transformations occurring at the different stages of this process play a crucial role in the spatial and temporal coordination of the cell wall synthesis machinery. Peptidoglycan substrate alteration was investigated in the Gram-positive bacterium Lactococcus lactis by substituting the peptidoglycan precursor biosynthesis genes of this bacterium for those of the vancomycin-resistant bacterium Lactobacillus plantarum. A set of L. lactis mutant strains in which the normal d-Ala-ended precursors were partially or totally replaced by d-Lac-ended precursors was generated. Incorporation of the altered precursor into the cell wall induced morphological changes arising from a defect in cell elongation and cell separation. Structural analysis of the muropeptides confirmed that the activity of multiple enzymes involved in peptidoglycan synthesis was altered. Optimization of this altered pathway was necessary to increase the level of vancomycin resistance conferred by the utilization of d-Lac-ended peptidoglycan precursors in the mutant strains. The implications of these findings on the control of bacterial cell morphogenesis and the mechanisms of vancomycin resistance are discussed.  相似文献   

20.
As one of the final steps in the bacterial growth cycle, daughter cells must be released from one another by cutting the shared peptidoglycan wall that separates them. In Escherichia coli, this delicate operation is performed by several peptidoglycan hydrolases, consisting of multiple amidases, lytic transglycosylases, and endopeptidases. The interactions among these enzymes and the molecular mechanics of how separation occurs without lysis are unknown. We show here that deleting the endopeptidase PBP 4 from strains lacking AmiC produces long chains of unseparated cells, indicating that PBP 4 collaborates with the major peptidoglycan amidases during cell separation. Another endopeptidase, PBP 7, fulfills a secondary role. These functions may be responsible for the contributions of PBPs 4 and 7 to the generation of regular cell shape and the production of normal biofilms. In addition, we find that the E. coli peptidoglycan amidases may have different substrate preferences. When the dd-carboxypeptidase PBP 5 was deleted, thereby producing cells with higher levels of pentapeptides, mutants carrying only AmiC produced a higher percentage of cells in chains, while mutants with active AmiA or AmiB were unaffected. The results suggest that AmiC prefers to remove tetrapeptides from peptidoglycan and that AmiA and AmiB either have no preference or prefer pentapeptides. Muropeptide compositions of the mutants corroborated this latter conclusion. Unexpectedly, amidase mutants lacking PBP 5 grew in long twisted chains instead of straight filaments, indicating that overall septal morphology was also defective in these strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号