首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
—Data comparing tricarboxylic acid cycle dynamics in mitochondria from rabbit brain using [2- or 3-14C]pyruvate with and without cosubstrates (malate, α-ketoglutarate, glutamate) are reported. With a physiological concentration of an unlabelled cosubstrate, from 90-99% of the isotope remained in cycle intermediates. However, the liberation of 14CO2 and the presence of 14C in the C-1 position of α-ketoglutarate indicated that multiple turns of the cycle occurred. Entry of pyruvate into the cycle was greater with malate than with either α-ketoglutarate or glutamate as cosubstrate. With malate as cosubstrate for [14C]pyruvate the amount of [14C]citrate which accumulated averaged 30nmol/ml or 23% of the pyruvate utilized while α-ketoglutarate averaged 45 nmol/ml or 35% of the pyruvate utilized. With α-ketoglutarate as cosubstrate for [14C]pyruvate, the average amount of [14C]citrate which accumulated decreased to 8 nmol/ml or 10% of the pyruvate utilized while [14C]α-ketoglutarate increased slightly to 52 nmol/ml or an increase to 62%, largely due to a decrease in pyruvate utilization. The percentage of 14C found in α-ketoglutarate was always greater than that found in malate, irrespective of whether α-ketoglutarate or malate was the cosubstrate for either [2- or 3-14C]pyruvate. The fraction of 14CO2 produced was slightly greater with α-ketoglutarate as cosubstrate than with malate. This observation and the fact that malate had a higher specific activity than did α-ketoglutarate when α-ketoglutarate was the cosubstrate, indicated a preferential utilization of α-ketoglutarate formed within the mitochondria. When l -glutamate was a cosubstrate for [14C]pyruvate the principal radioactive product was glutamate, formed by isotopic exchange of glutamate with [14C] α-ketoglutarate. If malate was also added, [14C]citrate accumulated although pyruvate entry did not increase. Due to retention of isotope in glutamate, little [14C]succinate, malate or aspartate accumulated. When [U-14C]l -glutamate was used in conjunction with unlabelled pyruvate more 14C entered the cycle than when unlabelled glutamate was used with [14C]pyruvate and led to α-ketoglutarate, succinate and aspartate as the major isotopic products. When in addition, unlabelled malate was added, total and isotopic α-ketoglutarate increased while [14C]aspartate decreased. The increase in [14C]succinate when [14C] glutamate was used indicated an increase in the flux through α-ketoglutarate dehydrogenase and was accompanied by a decrease of pyruvate utilization as compared to experiments when either α-ketoglutarate or glutamate were present at low concentration. It is concluded that the tricarboxylic acid cycle in brain mitochondria operates in at least three open segments, (1) pyruvate plus malate (oxaloacetate) to citrate; (2) citrate to α-ketoglutarate and; (3) α-ketoglutarate to malate, and that at any given time, the relative rates of these segments depend upon the substrate composition of the environment of the mitochondria. These data suggest an approach to a steady state consistent with the kinetic properties of the tricarboxylic acid cycle within the mitochondria.  相似文献   

2.
Steer BT  Beevers H 《Plant physiology》1967,42(9):1197-1201
The rates of utilization of exogenously supplied 14C labeled acids by corn roots was compared to the utilization of these acids generated endogenously in the mitochondria from acetate-3H. 14C-labeled citrate, pyruvate, succinate, glutamate or aspartate were supplied with acetate-3H in a 15 minute pulse and the 14C and 3H contents of extracted acids were measured over a 4 hour period. It was found, in contrast to previous experiments with malate, that these exogenously added acids were used as rapidly as the endogenous forms. Apparently, therefore, these acids penetrate readily into the mitochondria and do not enter cytoplasmic pools which are not in ready equilibrium with those in the mitochondria. Small amounts of labeled glutamate were produced from succinate-2,3-3H by corn root tissue. Since glutamate would not be expected to be labeled by reactions of the tricarboxylic acid cycle it was concluded that it was produced rather directly from succinate. The minor pool of glutamate generated in this way retained its radioactivity while that generated in the cycle was rapidly lost. An extra-mitochondrial location of this pool of glutamate is therefore suggested.  相似文献   

3.
Kent SS 《Plant physiology》1979,64(1):159-161
In the higher plant Vicia faba, anomalous labeling patterns in the organic acids and related amino acids of the tricarboxylic acid cycle which result from photosynthetic 14CO2 fixation (in conjunction with an enzyme localization pattern unique to plant mitochondria) suggest that the tricarboxylic acid cycle functions primarily as a pathway leading to glutamic acid biosynthesis during autotrophic growth. The distribution of isotope in citrate indicates little recycling of oxaloacetate for the resynthesis of citrate. Rather, malate appears to provide both the C2 and C4 fragments for the synthesis of citrate, and [3H]formate and 14CO2-labeling patterns implicate serine as the ultimate C3 precursor of malate.  相似文献   

4.
The chlorophyll-based specific activity of cytochrome oxidase and three exclusively mitochondrial enzymes of the tricarboxylic acid cycle showed little variation between leaves of C3 and C4 plants or between mesophyll and bundle sheath cells of Atriplex spongiosa and Sorghum bicolor. However, a large, light-dependent transfer of label from intermediates of the tricarboxylic acid cycle to photosynthetic products was a feature of leaves of C4 plants. This light-dependent transfer of label was barely detectable in leaves of C3 plants and in leaves of F1 and F3 hybrids of Atriplex rosea (C4) and Atriplex patula spp hastata (C3). The light-dependent transfer of label to photosynthetic products in leaves of C4 plants was inhibited by the tricarboxylic acid cycle inhibitors malonate and fluoroacetate. The requirement for continued tricarboxylic acid cycle activity was also indicated in experiments with specifically labeled succinate-14C. These experiments, together with the distribution of 14C in glucose prepared from sucrose-14C formed during the metabolism of succinate-2,3-14C, confirmed that the photosynthetic metabolism of malate and aspartate derived from the tricarboxylic acid cycle, and not the refixation of respiratory CO2, was the main path of carbon from the cycle to photosynthesis.  相似文献   

5.
Long term feeding of acetate-2-14C, 14CO2, citrate-1,5-14C, fumarate-2,3-14C, and succinate-2,3-14C to mung bean (Phaseolus aureus L. var. Mungo) leaves in the dark gave labeling predominantly in tricarboxylic acid cycle intermediates. Kinetics of the intermediates during dark/light/dark transitions showed a light-induced interchange of 14C between malate and aspartate, usually resulting in an accumulation of 14C in malate and a decrease of it in aspartate. 14C-Phosphoenolpyruvate also showed a marked decrease during illumination. Changes in other intermediates of the tricarboxylic acid cycle were relatively minor. The kinetic data have been analyzed using the Chance crossover theorem to locate control points during the dark/light/dark transitions. The major apparent control points are located at malate and isocitrate dehydrogenases, and less frequently at citrate synthase and fumarase. These findings are explained in terms of the light-induced changes in adenine nucleotides and nicotinamide adenine dinucleotides.  相似文献   

6.
The cell suspension of Leishmania donovani incorporates 14CO2 resulting in the formation of [14C]-succinic acid under anaerobic conditions. The results showed that the [14C]-succinate formation from [1-14C]-glucose is much greater than that from [6-14C]-glucose. [14C-pyruvate] takes part in the production of succinic acid under anaerobic conditions without decarboxylation. The anaerobic formation of succinate appears to involve the production of malate, which is then converted to succinate via the reduction of fumarate by the reversal of the tricarboxylic acid cycle. Evidence indicated that the active species in this carboxylation reaction was CO2 although HCO3 was active to some extent.  相似文献   

7.
The accumulation and excretion of fumaric acid, and to a lesser extent malic and succinic acids, by Rhizopus arrhizus occurs under aerobic conditions in a high-glucose medium containing a limiting amount of nitrogen and a neutralizing agent (CaCO3). An overall four-carbon dicarboxylic acid molar yield of up to 145% (moles of acid produced per mole of glucose utilized) is obtained after incubation for 4 to 5 days. Evidence is presented that fumarate is synthesized from pyruvate via a carboxylation reaction yielding oxaloacetate, which is then converted to malate and further on to fumarate via the reductive reactions of the tricarboxylic acid cycle. The possible formation of fumarate from the normal (oxidative) operation of the tricarboxylic acid cycle was not excluded by the data. Yield, 13C nuclear magnetic resonance, and enzymatic activity studies were carried out in a strain of R. arrhizus which produces high levels of fumarate from glucose and carbonate. The observed high fumarate molar yield (greater than 100%) can therefore be explained in terms of the carboxylation of pyruvate and the operation of the reductive reactions of the tricarboxylic acid cycle under aerobic conditions.  相似文献   

8.
Dark Respiration during Photosynthesis in Wheat Leaf Slices   总被引:6,自引:2,他引:4       下载免费PDF全文
The metabolism of [14C]succinate and acetate was examined in leaf slices of winter wheat (Triticum aestivum L. cv Frederick) in the dark and in the light (1000 micromoles per second per square meter photosynthetically active radiation). In the dark [1,4-14C]succinate was rapidly taken up and metabolized into other organic acids, amino acids, and CO2. An accumulation of radioactivity in the tricarboxylic acid cycle intermediates after 14CO2 production became constant indicates that organic acid pools outside of the mitochondria were involved in the buildup of radioactivity. The continuous production of 14CO2 over 2 hours indicates that, in the dark, the tricarboxylic acid cycle was the major route for succinate metabolism with CO2 as the chief end product. In the light, under conditions that supported photorespiration, succinate uptake was 80% of the dark rate and large amounts of the label entered the organic and amino acids. While carbon dioxide contained much less radioactivity than in the dark, other products such as sugars, starch, glycerate, glycine, and serine were much more heavily labeled than in darkness. The fact that the same tricarboxylic acid cycle intermediates became labeled in the light in addition to other products which can acquire label by carboxylation reactions indicates that the tricarboxylic acid cycle operated in the light and that CO2 was being released from the mitochondria and efficiently refixed. The amount of radioactivity accumulating in carboxylation products in the light was about 80% of the 14CO2 release in the dark. This indicates that under these conditions, the tricarboxylic acid cycle in wheat leaf slices operates in the light at 80% of the rate occurring in the dark.  相似文献   

9.
Summary A comparison of light and dark short-term incorporation of [14C]-carbon dioxide by Rhodospirillum rubrum grown in turbidostat continuous-flow culture at two different steady states on medium containing malate has shown that the labelling of phosphate esters was the main light-dependent process. Thus, the reductive pentose phosphate cycle appears to be the major pathway of carbon dioxide assimilation in the light under these growth conditions.The labelling of glutamate was also light-dependent and was most marked in the most rapidly growing steady state culture.The assimilated [14C]carbon was transferred to metabolites of the tricarboxylic acid cycle, particularly C4-dicarboxylic acids, and the transfer involved additional carboxylations which were not light-dependent. The activity of these reactions accounted for initial high rates of carbon dioxide assimilation in the dark.In the dark assimilated [14C]carbon accumulated in succinate.  相似文献   

10.
The incorporation of 14CO2 by the cell suspensions of an extremely thermophilic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus was studied. After short time incubation of the cell suspensions with 14CO2, the radiactivity was initially present in aspartate, glutamate, succinate, phosphorylated compounds, citrate, malate and fumarate. All of these compounds except phosphorylated compounds were related to the members of the tricarboxylic acid cycle. The proportion of labelled aspartate onglutamate in total radioactivity on each chromatogram decreased with incubation time, while the percentage of the radioactivity incorporated in phosphorylated compounds increased with time up to 10 s. These indicated that aspartate and glutamate is derived from primary products of CO2 fixation.In cell-free extracts of Hydrogenobacter thermophilus, the two key enzymes in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase and phosphoribulokinase could not be detected. The key enzymes of the reductive tricarboxylic acid cycle, fumarate reductase and ATP citrate lyase were present. Activities of phosphoenolpyruvate synthetase and pyruvate carboxylase were also detected. The referse reactions (dehydrogenase reactions) of -ketoglutarate synthase and pyruvate synthase could be detected by using methyl viologen as an electron acceptor.These findings strongly suggested that a new type of the reductive tricarboxylic acid cycle operated as the CO2 fixation pathway in Hydrogenobacter thermophilus.  相似文献   

11.
Metabolic characteristics of mitochondria isolated from rabbit brain   总被引:1,自引:1,他引:0  
Abstract— Data on the metabolic characteristics of mitochondria from rabbit brain have been obtained using low concentrations (100–300 μm) of 14C-labelled substrates of the Krebs tricarboxylic acid cycle. Oxygen consumption was measured polarographically with a Clark-type electrode. Products of the reactions were separated by chromatography on Dowex-1 columns. Data are reported for relative respiratory quotients of various substrates, respiratory control ratios, accumulation of 14C in various tricarboxylic acid cycle intermediates and the effect of malate and several inhibitors on these parameters. The data have been compared with similar experiments on mitochondria from rabbit heart. Mitochondria from rabbit brain differ substantially from heart mitochondria: those from brain have a very low capacity for oxidation of acetate and other short chain fatty acids; they do not form j3-hydroxybutyrate; they produce substantial amounts of α-ketoglutarate and require added dicarboxylic acid to yield a maximum respiratory quotient. Like those from heart, brain mitochondria have a high capacity for pyruvate oxidation and a low Km for this substrate. The results have been discussed and compared with work reported by other investigators.  相似文献   

12.
Rapid direct conversion of exogenously supplied [14C]aspartate to [14C] asparagine and to tricarboxylic cycle acids was observed in alfalfa (Medicago sativa L.) nodules. Aspartate aminotransferase activity readily converted carbon from exogenously applied [14C]aspartate into the tricarboxylic acid cycle with subsequent conversion to the organic acids malate, succinate, and fumarate. Aminooxyacetate, an inhibitor of aminotransferase activity, reduced the flow of carbon from [14C]aspartate into tricarboxylic cycle acids and decreased 14CO2 evolution by 99%. Concurrently, maximum conversion of aspartate to asparagine was observed in aminooxyacetate treated nodules (30 nanomoles asparagine per gram fresh weight per hour. Metabolism of [14C]aspartate and distribution of nodulefixed 14CO2 suggest that two pools of aspartate occur in alfalfa nodules: (a) one involved in asparagine biosynthesis, and (b) another supplying a malate/aspartate shuttle. Conversion of [14C]aspartate to [14C]asparagine was not inhibited by methionine sulfoximine, a glutamine synthetase inhibitor, or azaserine, a glutmate synthetase, inhibitor. The data did not indicate that asparagine biosynthesis in alfalfa nodules has an absolute requirement for glutamine. Radioactivity in the xylem sap, derived from nodule 14CO2 fixation, was markedly decreased by treating nodulated roots with aminooxyacetate, methionine sulfoximine, and azaserine. Inhibitors decreased the [14C]aspartate and [14]asparagine content of xylem sap by greater than 80% and reduced the total amino nitrogen content of xylem sap (including nonradiolabeled amino acids) by 50 to 80%. Asparagine biosynthesis in alfalfa nodules and transport in xylem sap are dependent upon continued aminotransferase activity and an uninterrupted assimilation of ammonia via the glutamine synthetase/glutamate synthase pathway. Continued assimilation of ammonia apparently appears crucial to continued root nodule CO2 fixation in alfalfa.  相似文献   

13.
1. The contribution of Co2 fixation to the anaplerotic mechanisms in the myocardium was investigated in isolated perfused rat hearts. 2. K+-induced arrest of the heart was used to elicit a transition in the concentrations of the intermediates of the tricarboxylic acid cycle. 3. Incorporation of 14C from [14]bicarbonate into tricarboxylic acid-cycle intermediates was measured and the rates of the reactions of the cycle were estimated by means of a linear optimization program which solves the differential equations describing a simulation model of the tricarboxylic acid cycle and related reactions. 4. The results showed that the rate of CO2 fixation is dependent on the metabolic state of the myocardium. Upon a sudden diminution of cellular ATP consumption, the pool size of the tricarboxylic acid-cycle metabolites increased and the rate of label incorporation from [14C]bicarbonate into the cycle metabolites increased simultaneously. The computer model was necessary to separate the rapid equilibration between bicarbonate and some metabolites from the potentially anaplerotic reactions. The main route of anaplerosis during metabolite accumulation was through malate + oxaloacetate. Under steady-state conditions there was a constant net outward flow from the tricarboxylic acid cycle via the malate + oxaloacetate pool, with a concomitant anaplerotic flow from metabolites forming succinyl-CoA (3-carboxypropionyl-CoA).  相似文献   

14.
The ratios of incorporation and retention of tritium compared to protium into metabolites in Chlorella pyrenoidosa and in Anacystis nidulans growing in water labeled with tritium have been determined. The algae were continuously supplied during growth with CO2 labeled with 14CO2, and the 14C content of metabolites were used to determined their concentrations. The tritium/protium ratios (R) of metabolites in Chlorella were determined following growth at 10 °C, 20 °C and 25 °C.As previously reported, variations in R in Chlorella, range from 0.5–0.7 for most metabolites, to values of R around 1 for metabolites of the tricarboxylic acid pathway. The R value for fumarate has now been measured. The increased R values for tricarboxylic acid cycle intermediates and related amino acids can be accounted for in terms of specific isotope effects of several enzyme-mediated steps. Very different R values for certain metabolites were found in A. nidulans. For example, R for citrate was 1.81 (the highest value observed in these studies) while aspartate was only 0.59, comparable to other metabolites in both organisms not related to the tricarboxyclic acid cycle. This lower value for aspartate is explainable in terms of the in complete tricarboxylic acid cycle in A. nidulans.No significant differences in R values for C. pyrenoidosa grown at 20 °C and 25 °C were observed, but in cells grown at 10 °C, there was a small but significant increase in R for tricarboxylic acid cycle metabolites.If the increase in R from sugar phosphates to tricarboxylic acid cycle intermediates seen in these two types of algae may be taken as an indication of likely discriminatory retention of tritium in organisms higher in the food chain, it would appear that no serious concentration of tritium due to isotopic discrimination should occur in the biosphere. However, research workers using compounds labeled with hydrogen isotopes for studies of in vivo metabolism should take into account the likelihood of such discriminatory uptake and retention during specific metabolic steps.  相似文献   

15.
Experiments were conducted with aged nuclear-free homogenate of sheep liver and aged mitochondria in an attempt to measure both the extent of oxidation of propionate and the distribution of label from [2-14C]propionate in the products. With nuclear-free homogenate, propionate was 44% oxidized with the accumulation of succinate, fumarate, malate and some citrate. Recovery of 14C in these intermediates and respiratory carbon dioxide was only 33%, but additional label was detected in endogenous glutamate and aspartate. With washed mitochondria 30% oxidation of metabolized propionate occurred, and proportionately more citrate and malate accumulated. Recovery of 14C in dicarboxylic acids, citrate, α-oxoglutarate, glutamate, aspartate and respiratory carbon dioxide was 91%. The specific activities of the products and the distribution of label in the carbon atoms of the dicarboxylic acids were consistent with the operation solely of the methylmalonate pathway together with limited oxidation of the succinate formed by the tricarboxylic acid cycle via pyruvate. In a final experiment with mitochondria the label consumed from [2-14C]propionate was entirely recovered in the intermediates of the tricarboxylic acid cycle, glutamate, aspartate, methylmalonate and respiratory carbon dioxide.  相似文献   

16.
Succinate, fumarate, and malate are valuable four-carbon (C4) dicarboxylic acids used for producing plastics and food additives. C4 dicarboxylic acid is biologically produced by heterotrophic organisms. However, current biological production requires organic carbon sources that compete with food uses. Herein, we report C4 dicarboxylic acid production from CO2 using metabolically engineered Synechocystis sp. PCC 6803. Overexpression of citH, encoding malate dehydrogenase (MDH), resulted in the enhanced production of succinate, fumarate, and malate. citH overexpression increased the reductive branch of the open cyanobacterial tricarboxylic acid (TCA) cycle flux. Furthermore, product stripping by medium exchanges increased the C4 dicarboxylic acid levels; product inhibition and acidification of the media were the limiting factors for succinate production. Our results demonstrate that MDH is a key regulator that activates the reductive branch of the open cyanobacterial TCA cycle. The study findings suggest that cyanobacteria can act as a biocatalyst for converting CO2 to carboxylic acids.  相似文献   

17.
Aphanocapsa 6308 metabolizes both NaHCO3 and Na2CO3. The short term incorporation (5-s) metabolic pattern and the patterns of incorporation of bicarbonate for exponential versus stationary phase cultures differ, however. Cells were equilibrated for 10 min in air and distilled water prior to injection of either NaH14CO3 at pH 8.0, or Na2 14CO3 at pH 11.0. Hot ethanol extracts were analyzed via paper chromatography and autoradiography for products of CO2 fixation. At 5 s, malate (51.5%) predominates slightly as a primary bicarbonate fixation product over 3-phosphoglycerate (40.3%); 3-phosphoglycerate is the primary product of carbonate fixation. At 60 s, the carbonate and bicarbonate labelling patterns are similar. Cells in stationary phase fix in 5 s a greater proportion of bicarbonate into malate (36% vs. 14% for 3-phosphoglycerate) than do cells in exponential growth. Likewise, 60 s incorporations show a large amount of bicarbonate fixed into aspartate (30.9%) in stationary phase cells over that of exponential phase (11.6%). These data suggest an operative C4 pathway for purposes not related to carbohydrate synthesis but rather as compensation for the incomplete tricarboxylic acid cycle in cyanobacteria. The enhancement of both aspartate fixation and CO2 fixation into citrulline in stationary phase correlates with an increase in cyanophycin granule production which requires both aspartate and arginine.Nonstandard Abbreviations 3-PGA 3-phosphoglyceric acid - TCA tricarboxylic acid  相似文献   

18.
This study used in vivo13C NMR spectroscopy to directly examine bidirectional reactions of the Wood–Werkman cycle involved in central carbon metabolic pathways of dairy propionibacteria during pyruvate catabolism. The flow of [2-13C]pyruvate label was monitored on living cell suspensions of Propionibacterium freudenreichii subsp. shermanii and Propionibacterium acidipropionici under acidic conditions. P. shermanii and P. acidipropionici cells consumed pyruvate at apparent initial rates of 161 and 39 μmol min−1 g−1 (cell dry weight), respectively. The bidirectionality of reactions in the first part of the Wood–Werkman cycle was evident from the formation of intermediates such as [3-13C]pyruvate and [3-13C]malate and of products like [2-13C]acetate from [2-13C]pyruvate. For the first time alanine labeled on C2 and C3 and aspartate labeled on C2 and C3 were observed during [2-13C]pyruvate metabolism by propionibacteria. The kinetics of aspartate isotopic enrichment was evidence for its production from oxaloacetate via aspartate aminotransferase. Activities of a partial tricarboxylic acid pathway, acetate synthesis, succinate synthesis, gluconeogenesis, aspartate synthesis, and alanine synthesis pathways were evident from the experimental results.  相似文献   

19.
About ScienceDirect 《BBA》1978,504(3):466-467
Culture of Trypanosoma cruzi (Tulahuen strain) in the presence of ethidium bromide (1–20 μg/ml) resulted in dyskinetoplasty and inhibition of growth, to an extent depending on the dye concentration and the medium composition. The ethidium bromide-induced dyskinetoplasty caused a decrease of (a) the cytochrome content of epimastigotes (a,a3 and b species); (b) the rate of respiration (endogenous or supported by D-glucose); and (c) the rate of production of 14CO2 from [2-14C]acetate and [1-14C]glucose. [2-14C]Acetate oxidation to 14CO2 was affected by dyskinetoplasty more than [1-14C]glucose oxidation, particularly at the exponential growth phase. With dyskinetoplastic epimastigotes, diminution of 14CO2 production from [2-14C]acetate largely exceeded that of oxygen uptake, while with [1-14C]glucose, 14CO2production and respiration were affected to about the same extent. Dyskinetoplasty also decreased the incorporation of [2-14C]acetate carbon into intermediates of the tricarboxylic acid cycle and related amino acids, and modified the distribution pattern of 14C in accordance with the decrease of respiration. Reduction of cytochrome content of epimastigotes by restriction of heme compounds during growth decreased 14CO2 production from [2-14C]acetate, like the ethidium-induced dyskinetoplasty. The same occurred after inhibition of electron transfer by antimycin and cyanide, though to a much more significant extent, thus confirming the functional association of electron transport at the mitochondrial cytochrome system of T. cruzi and the enzymatic reactions of the tricarboxylic acid cycle.  相似文献   

20.
In vivo tracer studies with 14C have been performed to help determine pathways of incorporation of newly assimilated nitrogen into N2-fixing cells of Anabaena cylindrica. After photosynthesis in Ar:O2:14CO2 for 30 min, the addition of N2 or NH 4 + resulted in increased rates of 14CO2-incorporation both in the light and dark, and in increased incorporation of 14C into amino acids at the expense of sucrose and sugar phosphates. Evidence of enhanced sucrose catabolism and increased pyruvate kinase activity was obtained on adding nitrogen, and, of the 14C-labelling entering the tricarboxylic acid cycle, more appeared in citrate and 2-oxoglutarate than in malate and oxaloacetate. The kinetics of 14C-incorporation into various amino acids suggest that in the light and dark the most important route of primary ammonia assimilation involves glutamine synthetase and that glutamate, aspartate, glycine and probably alanine are formed secondarily from glutamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号