首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism underlying the maintenance of adaptive genetic variation is a long-standing question in evolutionary genetics. There are two concepts (mutation-selection balance and balancing selection) which are based on the phenotypic differences between alleles. Mutation - selection balance and balancing selection cannot properly explain the process of gene substitution, i.e. the molecular evolution of quantitative trait loci affecting fitness. I assume that such loci have non-essential functions (small effects on fitness), and that they have the potential to evolve into new functions and acquire new adaptations. Here I show that a high amount of neutral polymorphism at these loci can exist in real populations. Consistent with this, I propose a hypothesis for the maintenance of genetic variation in life history traits which can be efficient for the fixation of alleles with very small selective advantage. The hypothesis is based on neutral polymorphism at quantitative trait loci and both neutral and adaptive gene substitutions. The model of neutral - adaptive conversion (NAC) assumes that neutral alleles are not neutral indefinitely, and that in specific and very rare situations phenotypic (relative fitness) differences between them can appear. In this paper I focus on NAC due to phenotypic plasticity of neutral alleles. The important evolutionary consequence of NAC could be the increased adaptive potential of a population. Loci responsible for adaptation should be fast evolving genes with minimally discernible phenotypic effects, and the recent discovery of genes with such characteristics implicates them as suitable candidates for loci involved in adaptation.  相似文献   

2.
Matute DR 《Current biology : CB》2010,20(24):2229-2233
Reinforcement, the strengthening of prezygotic reproductive isolation by natural selection in response to maladaptive hybridization [1-3], is one of the few processes in which natural selection directly favors the evolution of species as discrete groups (e.g., [4-7]). The evolution of reproductive barriers via reinforcement is expected to evolve in regions where the ranges of two species overlap and hybridize as an evolutionary solution to avoiding the costs of maladaptive hybridization [2,3,8]. The role of reinforcement in speciation has, however, been highly controversial because population-genetic theory suggests that the process is severely impeded by both hybridization [8-11] and migration of individuals from outside the contact zone [12,13]. To determine whether reinforcement could strengthen the reproductive barriers between two sister species of Drosophila in the face of these impediments, I initiated experimental populations of these two species that allowed different degrees of hybridization, as well as migration from outside populations. Surprisingly, even in the face of gene flow, reinforcement could promote the evolution of reproductive isolation within only five generations. As theory predicts, high levels of hybridization (and/or strong selection against hybrids) and migration impeded this evolution. These results suggest that reinforcement can help complete the process of speciation.  相似文献   

3.
Gene flow among historically isolated populations is expected to increase genetic diversity and consequently the ability of populations to adapt to environmental changes. Few experimental studies, however, have examined the relationship between gene flow and the adaptive potential of populations. The increase in adaptive potential that occurs as a result of gene flow is expected to depend on the genetic variance among populations that undergo genetic exchange. In the present study, we compared observed and expected changes in adaptive potential (as measured by the selection response of sternopleural bristle number) that occur as a result of gene flow among experimental populations of Drosophila melanogaster. We examined the effect of limited immigration (m = 0.05 over 3 generations) among a set of experimentally isolated lineages, in addition to the effect of complete hybridization among lineages. As expected, we found that limited immigration and hybridization both yielded increases in adaptive potential. However, whereas the effect of limited immigration agreed well with theoretical expectations, the increase in adaptive potential following complete hybridization of lineages was significantly less than expected. We discuss these findings in relation to endangered species conservation efforts, particularly with respect to the goal of maximizing the retention of adaptive potential within managed populations.  相似文献   

4.
We evaluate Sewall Wright's three-phase “shifting balance” theory of evolution, examining both the theoretical issues and the relevant data from nature and the laboratory. We conclude that while phases I and II of Wright's theory (the movement of populations from one “adaptive peak” to another via drift and selection) can occur under some conditions, genetic drift is often unnecessary for movement between peaks. Phase III of the shifting balance, in which adaptations spread from particular populations to the entire species, faces two major theoretical obstacles: (1) unlike adaptations favored by simple directional selection, adaptations whose fixation requires some genetic drift are often prevented from spreading by barriers to gene flow; and (2) it is difficult to assemble complex adaptations whose constituent parts arise via peak shifts in different demes. Our review of the data from nature shows that although there is some evidence for individual phases of the shifting balance process, there are few empirical observations explained better by Wright's three-phase mechanism than by simple mass selection. Similarly, artificial selection experiments fail to show that selection in subdivided populations produces greater response than does mass selection in large populations. The complexity of the shifting balance process and the difficulty of establishing that adaptive valleys have been crossed by genetic drift make it impossible to test Wright's claim that adaptations commonly originate by this process. In view of these problems, it seems unreasonable to consider the shifting balance process as an important explanation for the evolution of adaptations.  相似文献   

5.
Divergent natural selection, adaptive divergence and gene flow may interact in a number of ways. Recent studies have focused on the balance between selection and gene flow in natural populations, and empirical work has shown that gene flow can constrain adaptive divergence, and that divergent selection can constrain gene flow. A caveat is that phenotypic diversification may be under the direct influence of environmental factors (i.e. it may be due to phenotypic plasticity), in addition to partial genetic influence. In this case, phenotypic divergence may occur between populations despite high gene flow that imposes a constraint on genetic divergence. Plasticity may dampen the effects of natural selection by allowing individuals to rapidly adapt phenotypically to new conditions, thus slowing adaptive genetic divergence. On the other hand, plasticity may promote future adaptive divergence by allowing populations to persist in novel environments. Plasticity may promote gene flow between selective regimes by allowing dispersers to adapt to alternate conditions, or high gene flow may result in the selection for increased plasticity. Here I expand frameworks for understanding relationships among selection, adaptation and gene flow to include the effects of phenotypic plasticity in natural populations, and highlight its importance in evolutionary diversification.  相似文献   

6.
Despite its role in homogenizing populations, hybridization has also been proposed as a means to generate new species. The conceptual basis for this idea is that hybridization can result in novel phenotypes through recombination between the parental genomes, allowing a hybrid population to occupy ecological niches unavailable to parental species. Here we present an alternative model of the evolution of reproductive isolation in hybrid populations that occurs as a simple consequence of selection against genetic incompatibilities. Unlike previous models of hybrid speciation, our model does not incorporate inbreeding, or assume that hybrids have an ecological or reproductive fitness advantage relative to parental populations. We show that reproductive isolation between hybrids and parental species can evolve frequently and rapidly under this model, even in the presence of substantial ongoing immigration from parental species and strong selection against hybrids. An interesting prediction of our model is that replicate hybrid populations formed from the same pair of parental species can evolve reproductive isolation from each other. This non-adaptive process can therefore generate patterns of species diversity and relatedness that resemble an adaptive radiation. Intriguingly, several known hybrid species exhibit patterns of reproductive isolation consistent with the predictions of our model.  相似文献   

7.
As humans cause the redistribution of species ranges, hybridization between previously allopatric species is on the rise. Such hybridization can have complex effects on overall fitness of native species as new allelic combinations are tested. Widespread species introductions provide a unique opportunity to study selection on introgressed alleles in independent, replicated populations. We examined selection on alleles that repeatedly introgressed from introduced rainbow trout (Oncorhynchus mykiss) into native westslope cutthroat trout (Oncorhynchus clarkii lewisi) populations in western Canada. We found that the degree of introgression of individual single nucleotide polymorphisms from the invasive species into the native is correlated between independent watersheds. A number of rainbow trout alleles have repeatedly swept to high frequency in native populations, suggesting parallel adaptive advantages. Using simulations, we estimated large selection coefficients up to 0.05 favoring several rainbow trout alleles in the native background. Although previous studies have found reduced hybrid fitness and genome‐wide resistance to introgression in westslope cutthroat trout, our results suggest that some introduced genomic regions are strongly favored by selection. Our study demonstrates the utility of replicated introductions as case studies for understanding parallel adaptation and the interactions between selection and introgression across the genome. We suggest that understanding this variation, including consideration of beneficial alleles, can inform management strategies for hybridizing species.  相似文献   

8.
Theory predicts that short-term adaptation within populations depends on additive (A) genetic effects, while gene-gene interactions 'epistasis (E)' are important only in long-term evolution. However, few data exist on the genetic architecture of adaptive variation, and the relative importance of A versus non-additive genetic effects continues to be a central controversy of evolutionary biology after more than 70 years of debate. To examine this issue directly, we conducted hybridization experiments between two populations of wild soapberry bugs that have strongly differentiated in 100 or fewer generations following a host plant shift. Contrary to expectation, we found that between-population E and dominance (D) have appeared quickly in the evolution of new phenotypes. Rather than thousands of generations, adaptive gene differences between populations have evolved in tens. Such complex genetic variation could underlie the seemingly extreme rates of evolution that are increasingly reported in many taxa. In the case of the soapberry bug, extraordinary ecological opportunity, rather than mortality, may have created hard selection for genetic variants. Because ultimate division of populations into genetic species depends on epistatic loss of hybrid compatibility, local adaptation based on E may accelerate macro-evolutionary diversification.  相似文献   

9.
Domesticated species continually escaping and interbreeding with wild relatives impose a migration load on wild populations. As domesticated stocks become increasingly different as a result of artificial and natural selection in captivity, fitness of escapees in the wild is expected to decline, reducing the effective rate of migration into wild populations. Recent theory suggest that this may alleviate and eventually eliminate the resulting migration load. I develop a multivariate model of trait and wild fitness evolution resulting from the joint effects of artificial and natural selection in the captive environment. Initially, the evolutionary trajectory is dominated by the effects of artificial selection causing a fast initial decline in fitness of escapees in the wild. In later phases, through the counteracting effects of correlational multivariate natural selection in captivity, the mean phenotype is pushed in directions of weak stabilizing selection, allowing a sustained response in the trait subject to artificial selection. Provided that there is some alignment between the adaptive landscapes in the wild and in captivity, these phases are associated with slower rates of decline in wild fitness of the domesticated stock, suggesting that detrimental effects on wild populations are likely to remain a concern in the foreseeable future.  相似文献   

10.
The role of sexual selection in speciation is investigated, addressing two main issues. First, how do sexually selected traits become species recognition traits? Theory and empirical evidence suggest that female preferences often do not evolve as a correlated response to evolution of male traits. This implies that, contrary to runaway (Fisherian) models of sexual selection, premating isolation will not arise as an automatic side effect of divergence between populations in sexually selected traits. I evaluate premating isolating mechanisms in one group, the birds. In this group premating isolation is often a consequence of sexual imprinting, whereby young birds learn features of their parents and use these features in mate choice. Song, morphology and plumage are known recognition cues. I conclude that perhaps the main role for sexual selection in speciation is in generating differences between populations in traits. Sexual imprinting then leads to these traits being used as species recognition mechanisms. The second issue addressed in this paper is the role of sexual selection in adaptive radiation, again concentrating on birds. Ecological differences between species include large differences in size, which may in themselves be sufficient for species recognition, and differences in habitat, which seem to evolve frequently and at all stages of an adaptive radiation. Differences in habitat often cause song and plumage patterns to evolve as a result of sexual selection for efficient communication. Therefore sexual selection is likely to have an important role in generating premating isolating mechanisms throughout an adaptive radiation. It is also possible that sexual selection, by creating more allopatric species, creates more opportunity for ecological divergence to occur. The limited available evidence does not support this idea. A role for sexual selection in accelerating ecological diversification has yet to be demonstrated.  相似文献   

11.
Isolated populations with novel phenotypes present an exciting opportunity to uncover the genetic basis of ecologically significant adaptation, and genomic scans have often, but not always, led to candidate genes directly related to an adaptive phenotype. However, in many cases these populations were established by a severe bottleneck, which can make identifying targets of selection problematic. Here, we simulate severe bottlenecks and subsequent selection on standing variation, mimicking adaptation after establishment of a new small population, such as an island or an artificial selection experiment. Using simulations of single loci under positive selection and population genetics theory, we examine how population size and age of the population isolate affect the ability of outlier scans for selection to identify adaptive alleles using both single‐site measures and haplotype structure. We find and explain an optimal combination of selection strength, starting frequency, and age of the adaptive allele, which we refer to as a Goldilocks zone, where adaptation is likely to occur and yet the adaptive variants are most likely to derive from a single ancestor (a ‘hard’ selective sweep); in this zone, four commonly used statistics detect selection with high power. Real‐world examples of both island colonization and experimental evolution studies are discussed. Our study provides concrete considerations to be made before embarking on whole‐genome sequencing of differentiated populations.  相似文献   

12.
Brown trout populations in the Hardanger Fjord, Norway, have declined drastically due to increased exposure to salmon lice from salmonid aquaculture. We studied contemporary samples from seven populations and historical samples (1972 and 1983) from the two largest populations, one of which has declined drastically whereas the other remains stable. We analysed 11 microsatellite loci, including one tightly linked to the UBA gene of the major histocompatibility class I complex (MHC) and another locus linked to the TAP2A gene, also associated with MHC. The results revealed asymmetric gene flow from the two largest populations to the other, smaller populations. This has important conservation implications, and we predict that possible future population recoveries will be mediated primarily by the remaining large population. Tests for selection suggested diversifying selection at UBA, whereas evidence was inconclusive for TAP2A. There was no evidence for temporally fluctuating selection. We assessed the distribution of adaptive divergence among populations. The results showed the most pronounced footprints of selection between the two largest populations subject to the least immigration. We suggest that asymmetric gene flow has an important influence on adaptive divergence and constrains local adaptive responses in the smaller populations. Even though UBA alleles may not affect salmon louse resistance, the results bear evidence of adaptive divergence among populations at immune system genes. This suggests that similar genetic differences could exist at salmon louse resistance loci, thus rendering it a realistic scenario that differential population declines could reflect differences in adaptive variation.  相似文献   

13.
During the last decade, the ecological theory of adaptive radiation, and its corollary ??ecological speciation??, has been a major research theme in evolutionary biology. Briefly, this theory states that speciation is mainly or largely the result of divergent selection, arising from niche differences between populations or incipient species. Reproductive isolation evolves either as a result of direct selection on mate preferences (e.g. reinforcement), or as a correlated response to divergent selection (??by-product speciation??). Although there are now many tentative examples of ecological speciation, I argue that ecology??s role in speciation might have been overemphasised and that non-ecological and non-adaptive alternatives should be considered more seriously. Specifically, populations and species of many organisms often show strong evidence of niche conservatism, yet are often highly reproductively isolated from each other. This challenges niche-based ecological speciation and reveals partial decoupling between ecology and reproductive isolation. Furthermore, reproductive isolation might often evolve in allopatry before ecological differentiation between taxa or possibly through learning and antagonistic sexual interactions, either in allopatry or sympatry. Here I discuss recent theoretical and empirical work in this area, with some emphasis on odonates (dragonflies and damselflies) and suggest some future avenues of research. A main message from this paper is that the ecology of species differences is not the same as ecological speciation, just like the genetics of species differences does not equate to the genetics of speciation.  相似文献   

14.
The natural history of introduced species is often unclear due to a lack of historical records. Even when historical information is readily available, important factors of the invasions such as genetic bottlenecks, hybridization, historical relationships among populations and adaptive changes are left unknown. In this study, we developed a set of nuclear, simple sequence repeat markers and used these to characterize the genetic diversity and population structure among native (Eurasian) and non-native (North and South American) populations of Centaurea solstitialis L., (yellow starthistle). We used these data to test hypotheses about the invasion pathways of the species that were based on historical and geographical records, and we make inferences about historical relationships among populations and demographic processes following invasion. We confirm that the center of diversity and the native range of the species is likely the eastern Mediterranean region in the vicinity of Turkey. From this region, the species likely proceeded to colonize other parts of Europe and Asia via a slow, stepwise range expansion. Spanish populations were the primary source of seed to invade South America via human-mediated events, as was evident from historical records, but populations from the eastern Mediterranean region were also important. North American populations were largely derived from South America, but had secondary contributors. We suggest that the introduction history of non-native populations from disparate parts of the native range have allowed not just one, but multiple opportunities first in South America then again in North America for the creation of novel genotypes via intraspecific hybridization. We propose that multiple intraspecific hybridization events may have created especially potent conditions for the selection of a noxious invader, and may explain differences in genetic patterns among North and South America populations, inferred differences in demographic processes, as well as morphological differences previously reported from common garden experiments.  相似文献   

15.
The parasite (Red Queen) hypothesis for the maintenance of sexual reproduction and genetic diversity assumes that host-parasite interactions result from tight genetic specificity. Hence, hybridization between divergent parasite populations would be expected to disrupt adaptive gene combinations, leading to reduced infectivity on exposure to parental sympatric hosts, as long as gene effects are nonadditive. In contrast, hybridization would not cause reduced infectivity on allopatric hosts unless the divergent parasite populations possess alleles that are intrinsically incompatible when they are combined. In three different experiments, we compared the infectivity of locally adapted parasite (trematode) populations with that of F(1) hybrid parasites when exposed to host (snail) populations that were sympatric to one of the two parasite populations. We tested for intrinsic genetic incompatibilities in two experiments by including one host population that was allopatric to both parasite populations. As predicted, when the target host populations were sympatric to the parasite populations, the hybrids were significantly less infective than the parental average, while hybrid parasites on allopatric hosts were not, thereby ruling out intrinsic genetic incompatibilities. The results are consistent with nonadditive gene effects and tightly specific host-driven selection underlying parasite divergence, as envisioned by coevolutionary theory and the Red Queen hypothesis.  相似文献   

16.
Using genome scans of DNA polymorphism to infer adaptive population divergence   总被引:21,自引:0,他引:21  
Storz JF 《Molecular ecology》2005,14(3):671-688
Elucidating the genetic basis of adaptive population divergence is a goal of central importance in evolutionary biology. In principle, it should be possible to identify chromosomal regions involved in adaptive divergence by screening genome-wide patterns of DNA polymorphism to detect the locus-specific signature of positive directional selection. In the case of spatially separated populations that inhabit different environments or sympatric populations that exploit different ecological niches, it is possible to identify loci that underlie divergently selected traits by comparing relative levels of differentiation among large numbers of unlinked markers. In this review I first address the question of whether diversifying selection on polygenic traits can be expected to produce predictable patterns of allelic variation at the underlying quantitative trait loci (QTL), and whether the locus-specific effects of selection can be reliably detected against the genome-wide backdrop of stochastic variability. I then review different approaches that have been developed to identify loci involved in adaptive population divergence and I discuss the relative merits of model-based approaches that rely on assumptions about population structure vs. model-free approaches that are based on empirical distributions of summary statistics. Finally, I consider the evolutionary and functional insights that might be gained by conducting genome scans for loci involved in adaptive population divergence.  相似文献   

17.
In this review, we discuss the importance of hybridization among species for the conservation of Hawaiian picture-winged Drosophila. Hybridization can be a positive evolutionary process that creates new species and increases the adaptation of populations and species through the spread of adaptive alleles and traits. Conversely, hybridization can disrupt the genetic integrity of species or populations and this may be most detrimental among taxa that are recently hybridizing due to recent ecological changes. The loss of biodiversity in Hawaiian Drosophila through hybridization may be facilitated by habitat alteration and introduced species that reduce population sizes and alter geographic distributions of native species. We briefly review the evidence for hybridization in the genus Drosophila and then focus on hybridization in the Hawaiian picture-winged Drosophila. We examine three general approaches for identifying hybrids and for assessing the factors that appear to contribute to hybridization and the potential ecological and evolutionary outcomes of hybrids in natural populations. Overall, the potential for hybridization among species will likely increase the risk of extinction for Hawaiian picture-winged Drosophila species. Thus, it is important to consider the potential for hybridization among species when developing plans for the conservation of Hawaiian Drosophila.  相似文献   

18.
The niche variation hypothesis is an adaptive explanation forvariation within populations and for, the differences in variationbetween populations in morphological, physiological or behavioraltraits. It has received only partial support from empiricaltests and has been criticized on theoretical grounds. Recentquantitative genetic models have made an advance by exploringthe effects of mutation, migration, mating pattern and selectionon phenotypic variance. These models are reviewed and theirmost important features are integrated in a new model. In thismodel population variation is in a state of balance betweenthe opposing forces of mutation and immigration, which tendto elevate variation, and selection and possibly genetic drifttending to decrease it. Populations exhibiting different levelsof variation are interpereted as having different equilibriumpoints, and it is the task of empirical studies to determinethe relative magnitudes of the opposing factors. An exampleis given from studies of Darwin's finches. Geospiza fortis variesmore than G. scandens on Isla Daphne Major, Galápagos,in several morphological traits including beak and body size.This is explained, assuming equal mutation rates in the twospecies, as the result of more frequent genetic input to theG. fortis population, through occasional hybridization withimmigrant G. fuliginosa, and relaxed stabilizing selection.Stabilizing selection is less intense on G.fortis than on G.scandens because the G. fortis population has a broader niche;there is both a within-phenotype and betweenphenotype componentto the broad niche of G. fortis. The success of theory in explainingpopulation variation is discussed, and it is concluded thatempirical studies lag far behind theory.  相似文献   

19.
Female mate choice can be an imperfect barrier against hybridization. Among the cichlid fishes of the East African great lakes, sexual selection on male nuptial coloration has been noted as being particularly important for reproductive isolation among closely related lineages. Diversification of the rock‐dwelling cichlids of Lake Mala?i has led to a repeating pattern of color morphs wherein more distantly related species may look more similar than a more closely related pair. Using members of the Metriaclima zebra group and a heterogener, I tested the hypothesis that females would spend greater time associating with males more similarly colored to her species than females would with divergently colored, although more closely related males. Experimental results were consistent with this hypothesis, thus supporting the speculation and some field observation that mate choice can fail as a barrier to hybridization if a female encounters a distantly related male that shares the nuptial coloration of males of her own species and color morph. This notion is discussed in the broader context of both the adaptive and non‐adaptive mechanisms that have been suggested to be important to the radiation of this group.  相似文献   

20.
The evolution of mutation rates: separating causes from consequences   总被引:21,自引:0,他引:21  
Natural selection can adjust the rate of mutation in a population by acting on allelic variation affecting processes of DNA replication and repair. Because mutation is the ultimate source of the genetic variation required for adaptation, it can be appealing to suppose that the genomic mutation rate is adjusted to a level that best promotes adaptation. Most mutations with phenotypic effects are harmful, however, and thus there is relentless selection within populations for lower genomic mutation rates. Selection on beneficial mutations can counter this effect by favoring alleles that raise the mutation rate, but the effect of beneficial mutations on the genomic mutation rate is extremely sensitive to recombination and is unlikely to be important in sexual populations. In contrast, high genomic mutation rates can evolve in asexual populations under the influence of beneficial mutations, but this phenomenon is probably of limited adaptive significance and represents, at best, a temporary reprieve from the continual selection pressure to reduce mutation. The physiological cost of reducing mutation below the low level observed in most populations may be the most important factor in setting the genomic mutation rate in sexual and asexual systems, regardless of the benefits of mutation in producing new adaptive variation. Maintenance of mutation rates higher than the minimum set by this "cost of fidelity" is likely only under special circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号