首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The consequences of species loss on cascading extinctions in food webs have been the focus of several recent theoretical studies, with differing results. Changes in ecosystem properties consecutive to cascading extinctions have received far less attention even though such dramatic events might strongly alter ecosystem functioning. Here we use various food web models to investigate the effects of species loss and diversity on both secondary extinctions and their associated changes in ecosystem properties. Our analysis shows that diversity has contrasting effects depending on the presence of self-limiting terms at consumer levels and, to a lower extent, on connectance and interspecific competition. Ecosystems that lose a high proportion of species through cascading extinctions exhibit the most important changes in ecosystem properties. Linking studies on cascading extinctions in food webs with studies that investigate the effects of biodiversity on ecosystem functioning appears crucial for a better understanding of the consequences of species extinctions.  相似文献   

2.
植物功能性状、功能多样性与生态系统功能: 进展与展望   总被引:1,自引:0,他引:1  
植物功能性状与生态系统功能是生态学研究的一个重要领域和热点问题。开展植物功能性状与生态系统功能的研究不仅有助于人类更好地应对全球变化情景下生物多样性丧失的生态学后果,而且能为生态恢复实践提供理论基础。近二十年来,该领域的研究迅速发展,并取得了一系列的重要研究成果,增强了人们对植物功能性状-生态系统功能关系的认识和理解。本文首先明确了植物功能性状的概念, 评述了近年来植物功能性状-生态系统功能关系领域的重要研究结果, 尤其是植物功能性状多样性-生态系统功能关系研究现状; 提出了未来植物功能性状与生态系统功能关系研究中应加强植物地上和地下性状之间关系及其与生态系统功能、植物功能性状与生态系统多功能性、不同时空尺度上植物功能性状与生态系统功能, 以及全球变化和消费者的影响等方面。  相似文献   

3.
贾鹏  杜国祯 《生命科学》2014,(2):153-157
生物多样性是生态学的核心问题。传统的多样性指数仅包含物种数和相对多度的信息,这类基于分类学的多样性指数并不能很好地帮助理解群落构建和生态系统功能。不同物种对群落构建和生态系统功能所起到的作用类型和贡献也不完全相同,且物种在生态过程中的作用和贡献往往与性状密切相关,因此功能多样性已经成为反映物种群落构建、干扰以及环境因素对群落影响的重要指标。同时,由于亲缘关系相近的物种往往具有相似的性状,系统发育多样性也可以作为功能多样性的一个替代。功能多样性和系统发育多样性各自具有优缺点,但二者均比分类多样性更能揭示群落和生态系统的构建、维持与功能。  相似文献   

4.
Species extinctions from local communities negatively affect ecosystem functioning. Ecological mechanisms underlying these impacts are well studied, but the role of evolutionary processes is rarely assessed. Using a long‐term field experiment, we tested whether natural selection in plant communities increased biodiversity effects on productivity. We re‐assembled communities with 8‐year co‐selection history adjacent to communities with identical species composition but no history of co‐selection (‘naïve communities’). Monocultures, and in particular mixtures of two to four co‐selected species, were more productive than their corresponding naïve communities over 4 years in soils with or without co‐selected microbial communities. At the highest diversity level of eight plant species, no such differences were observed. Our findings suggest that plant community evolution can lead to rapid increases in ecosystem functioning at low diversity but may take longer at high diversity. This effect was not modified by treatments simulating co‐evolutionary processes between plants and soil organisms.  相似文献   

5.
Predicting species abundance is one of the most fundamental pursuits of ecology. Combining the information encoded in functional traits and metacommunities provides a new perspective to predict the abundance of species in communities. We applied a community assembly via trait selection model to predict quadrat-scale species abundances using functional trait variation on ontogenetic stages and metacommunity information for over 490 plant species in a subtropical forest and a lowland tropical forest in Yunnan, China. The relative importance of trait-based selection, mass effects, and stochasticity in shaping local species abundances is evaluated using different null models. We found both mass effects and trait selection contribute to local abundance patterns. Trait selection was detectable at all studied spatial scales (0.04–1 ha), with its strength stronger at larger scales and in the subtropical forest. In contrast, the importance of stochasticity decreased with spatial scale. A significant mass effect of the metacommunity was observed at small spatial scales. Our results indicate that tree community assembly is primarily driven by ontogenetic traits and metacommunity effects. Our findings also demonstrate that including ontogenetic trait variation into predictive frameworks allows ecologists to infer ecological mechanisms operating in community assembly at the individual level.  相似文献   

6.
Experiments and theory in single trophic level systems dominate biodiversity and ecosystem functioning research and recent debates. All natural ecosystems contain communities with multiple trophic levels, however, and this can have important effects on ecosystem structure and functioning. Furthermore, many experiments compare assembled communities, rather than examining loss of species directly. We identify three questions around which to organise an investigation of how species loss affects the structure and functioning of multitrophic systems. 1) What is the distribution of species richness among trophic levels; 2) from which trophic levels are species most often lost; and 3) does loss of species from different trophic levels influence ecosystem functioning differently? Our analyses show that: 1) Relatively few high‐quality data are available concerning the distribution of species richness among trophic levels. A new data‐set provides evidence of a decrease in species richness as trophic height increases. 2) Multiple lines of evidence indicate that species are lost from higher trophic levels more frequently than lower trophic levels. 3) A theoretical model suggests that both the structure of food webs (occurrence of omnivory and the distribution of species richness among trophic levels) and the trophic level from which species are lost determines the impact of species loss on ecosystem functioning, which can even vary in the sign of the effect. These results indicate that, at least for aquatic systems, models of single trophic level ecosystems are insufficient for understanding the functional consequences of extinctions. Knowledge is required of food web structure, which species are likely to be lost, and also whether cascading extinctions will occur.  相似文献   

7.
8.
Our knowledge of the effects of consumer species loss on ecosystem functioning is limited by a paucity of manipulative field studies, particularly those that incorporate inter‐trophic effects. Further, given the ongoing transformation of natural habitats by anthropogenic activities, studies should assess the relative importance of biodiversity for ecosystem processes across different environmental contexts by including multiple habitat types. We tested the context‐dependency of the effects of consumer species loss by conducting a 15‐month field experiment in two habitats (mussel beds and rock pools) on a temperate rocky shore, focussing on the responses of algal assemblages following the single and combined removals of key gastropod grazers (Patella vulgata, P. ulyssiponensis, Littorina littorea and Gibbula umbilicalis). In both habitats, the removal of limpets resulted in a larger increase in macroalgal richness than that of either L. littorea or G. umbilicalis. Further, by the end of the study, macroalgal cover and richness were greater following the removal of multiple grazer species compared to single species removals. Despite substantial differences in physical properties and the structure of benthic assemblages between mussel beds and rock pools, the effects of grazer loss on macroalgal cover, richness, evenness and assemblage structure were remarkably consistent across both habitats. There was, however, a transient habitat‐dependent effect of grazer removal on macroalgal assemblage structure that emerged after three months, which was replaced by non‐interactive effects of grazer removal and habitat after 15 months. This study shows that the effects of the loss of key consumers may transcend large abiotic and biotic differences between habitats in rocky intertidal systems. While it is clear that consumer diversity is a primary driver of ecosystem functioning, determining its relative importance across multiple contexts is necessary to understand the consequences of consumer species loss against a background of environmental change. Synthesis The roles of species may vary with environmental context, making it difficult to predict how biodiversity loss affects ecosystem functioning across multiple habitats. We tested how natural algal assemblages in two distinct intertidal habitats responded to the removal of different combinations of key consumer species. Despite an initial habitat‐dependent effect of consumer loss, habitat type did not modify the longer‐term responses of algal assemblages to either the identity or number of consumer species removed. Our findings show that, in certain systems, consumer diversity remains a primary driver of ecosystem functioning across widely different environmental contexts.  相似文献   

9.
The effect of biodiversity on ecosystem functioning has proven variable both within and among manipulative studies. Species richness is the most commonly used measure of biodiversity in such studies, but the range of species’ functional traits (functional diversity), not the number of species per se, likely underpins a key mechanistic link between species richness and ecosystem functioning. However, the majority of experiments that have examined the effect of functional diversity have manipulated functional group richness, an approach recognised to suffer numerous limitations. Continuous measures of functional diversity avoid many of these limitations, but the relationship between continuous functional diversity and the magnitude of ecosystem processes has been largely untested. Using one vs two‐species mixtures of rock pool macroalgae as a model, we conducted a field experiment to determine the effect of a continuous measure of functional diversity (functional attribute diversity, FAD, the degree of functional differentiation based on four functional traits) on the magnitude of net primary productivity and overyielding, based upon two alternative null‐models. The total magnitude of productivity was largely determined by the identity of species present, not FAD. However, FAD proved to be a good predictor of overyielding (variation in productivity after the dominant effects of species identity had been accounted for). Furthermore, despite differences in the mean magnitude of the effect of combining species, the positive relationship between FAD and overyielding was consistent according to both additive and substitutive null‐models. Our findings imply that whilst knowledge of species’ independent contributions remains indispensable in the prediction of biotic effects on ecosystem functioning within a trophic level, continuous measures of functional diversity should be used as a supplementary tool to predict the magnitude of overyielding, thereby refining predictions.  相似文献   

10.
Fernandes I  Pascoal C  Cássio F 《Oecologia》2011,166(4):1019-1028
Studies investigating the impacts of biodiversity loss on ecosystem processes have often reached different conclusions, probably because insufficient attention has been paid to some aspects including (1) which biodiversity measure (e.g., species number, species identity or trait) better explains ecosystem functioning, (2) the mechanisms underpinning biodiversity effects, and (3) how can environmental context modulates biodiversity effects. Here, we investigated how species number (one to three species) and traits of aquatic fungal decomposers (by replacement of a functional type from an unpolluted site by another from a metal-polluted site) affect fungal production (biomass acumulation) and plant litter decomposition in the presence and absence of metal stress. To examine the putative mechanisms that explain biodiversity effects, we determined the contribution of each fungal species to the total biomass produced in multicultures by real-time PCR. In the absence of metal, positive diversity effects were observed for fungal production and leaf decomposition as a result of species complementarity. Metal stress decreased diversity effects on leaf decomposition in assemblages containing the functional type from the unpolluted site, probably due to competitive interactions between fungi. However, dominance effect maintained positive diversity effects under metal stress in assemblages containing the functional type from the metal-polluted site. These findings emphasize the importance of intraspecific diversity in modulating diversity effects under metal stress, providing evidence that trait-based diversity measures should be incorporated when examining biodiversity effects.  相似文献   

11.
Mike S. Fowler 《Oikos》2013,122(12):1730-1738
Forcibly removing species from ecosystems has important consequences for the remaining assemblage, leading to changes in community structure, ecosystem functioning and secondary (cascading) extinctions. One key question that has arisen from single‐ and multi‐trophic ecosystem models is whether the secondary extinctions that occur within competitive communities (guilds) are also important in multi‐trophic ecosystems? The loss of consumer–resource links obviously causes secondary extinction of specialist consumers (topological extinctions), but the importance of secondary extinctions in multi‐trophic food webs driven by direct competitive exclusion remains unknown. Here I disentangle the effects of extinctions driven by basal competitive exclusion from those caused by trophic interactions in a multi‐trophic ecosystem (basal producers, intermediate and top consumers). I compared food webs where basal species either show diffuse (all species compete with each other identically: no within guild extinctions following primary extinction) or asymmetric competition (unequal interspecific competition: within guild extinctions are possible). Basal competitive exclusion drives extra extinction cascades across all trophic levels, with the effect amplified in larger ecosystems, though varying connectance has little impact on results. Secondary extinction patterns based on the relative abundance of the species lost in the primary extinction differ qualitatively between diffuse and asymmetric competition. Removing asymmetric basal species with low (high) abundance triggers fewer (more) secondary extinctions throughout the whole food web than removing diffuse basal species. Rare asymmetric competitors experience less pressure from consumers compared to rare diffuse competitors. Simulations revealed that diffuse basal species are never involved in extinction cascades, regardless of the trophic level of a primary extinction, while asymmetric competitors were. This work highlights important qualitative differences in extinction patterns that arise when different assumptions are made about the form of direct competition in multi‐trophic food webs.  相似文献   

12.
Functional traits (FTs) integrate the ecological and evolutionary history of a species, and can potentially be used to predict its response as well as its influence on ecosystem functioning. Study of inter-specific variation in the FTs of plants aids in classifying species into plant functional types (PFTs) and provides insights into fundamental patterns and trade-offs in plant form and functioning and the effect of changing species composition on ecosystem functions. Specifically, this paper focuses on those FTs that make a species successful in the dry tropical environment. Following a brief overview, we discuss plant FTs that may be particularly relevant to tropical deciduous forests (TDFs). We consider the traits under the following categories: leaf traits, stem and root traits, reproductive traits, and traits particularly relevant to water availability. We compile quantitative information on functional traits of dry tropical forest species. We also discuss trait-based grouping of plants into PFTs. We recognize that there is incomplete knowledge about many FTs and their effects on TDFs and point out the need for further research on PFTs of TDF species, which can enable prediction of the dynamics of these forests in the face of disturbance and global climate change. Correlations between structural and ecophysiological traits and ecosystem functioning should also be established which could make it possible to generate predictions of changes in ecosystem services from changes in functional composition.  相似文献   

13.
Biodiversity-ecosystem function experiments test how species diversity influences fundamental ecosystem processes. Historically, arthropod driven functions, such as herbivory and pest-control, have been thought to be influenced by direct and indirect associations among species. Although a number of studies have evaluated how plant diversity affects arthropod communities and arthropod-mediated ecosystem processes, it remains unclear whether diversity effects on arthropods are sufficiently consistent over time such that observed responses can be adequately predicted by classical hypotheses based on associational effects. By combining existing results from a long-term grassland biodiversity experiment (Jena Experiment) with new analyses, we evaluate the consistency of consumer responses within and across taxonomic, trophic, and trait-based (i.e. vertical stratification) groupings, and we consider which changes in arthropod community composition are associated with changes in consumer-mediated ecosystem functions.Overall, higher plant species richness supported more diverse and complex arthropod communities and this pattern was consistent across multiple years. Vegetation-associated arthropods responded more strongly to changes in plant species richness than ground-dwelling arthropods. Additionally, increases in plant species richness were associated with shifts in the species-abundance distributions for many, but not all taxa. For example, highly specialized consumers showed a decrease in dominance and an increase in the number of rare species with increasing plant species richness. Most ecosystem processes investigated responded to increases in plant species richness in the same way as the trophic group mediating the process, e.g. both herbivory and herbivore diversity increase with increasing plant species richness. In the Jena Experiment and other studies, inconsistencies between predictions based on classic hypotheses of associational effects and observed relationships between plant species richness and arthropod diversity likely reflect the influence of multi-trophic community dynamics and species functional trait distributions. Future research should focus on testing a broader array of mechanisms to unravel the biological processes underlying the biodiversity-ecosystem functioning relationships.  相似文献   

14.
Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long‐term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well‐documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties.  相似文献   

15.
Phylogenetic diversity (PD) describes the total amount of phylogenetic distance among species in a community. Although there has been substantial research on the factors that determine community PD, exploration of the consequences of PD for ecosystem functioning is just beginning. We argue that PD may be useful in predicting ecosystem functions in a range of communities, from single-trophic to complex networks. Many traits show a phylogenetic signal, suggesting that PD can estimate the functional trait space of a community, and thus ecosystem functioning. Phylogeny also determines interactions among species, and so could help predict how extinctions cascade through ecological networks and thus impact ecosystem functions. Although the initial evidence available suggests patterns consistent with these predictions, we caution that the utility of PD depends critically on the strength of phylogenetic signals to both traits and interactions. We advocate for a synthetic approach that incorporates a deeper understanding of how traits and interactions are shaped by evolution, and outline key areas for future research. If these complexities can be incorporated into future studies, relationships between PD and ecosystem function bear promise in conceptually unifying evolutionary biology with ecosystem ecology.  相似文献   

16.
Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation‐dependent coexistence may explain deviations from the expected negative diversity–ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer‐resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity–ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation‐dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity–ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability.  相似文献   

17.
1. The diversity of species traits in a biological assemblage varies not only with species richness, but also with species evenness and organism density, which together influence the concentration of traits within functional guilds. Potential trait diversity at local scales is also constrained by the regional species pool. Implications of such variation for spatio-temporal variability in biodiversity-ecosystem functioning relationships are likely to be complex, but are poorly understood. 2. In microcosm experiments conducted at laboratories in Sweden, Ireland and Romania, we investigated effects of species richness, evenness and density of stream-living detritivores on two related processes: detritivore leaf-processing efficiency (LPE) and growth. Assemblage composition varied among laboratories: one taxonomic order (Plecoptera) was studied in Sweden, whereas two orders, encompassing wider trait variation, were studied in Romania (Trichoptera and Plecoptera) and Ireland (Trichoptera and Isopoda). 3. Relationships between density and both LPE and growth ranged from negative to positive across the study species, highlighting the potential for density-dependent variation in process rates to alter ecosystem functioning, but indicating that such effects depend on species identity. 4. LPE varied with species diversity in the two more heterogeneous assemblages, but whereas LPE in the Romanian study was generally enhanced as richness increased, LPE in the Irish study increased only in less-even polycultures dominated by particular species. Transgressive overyielding was detected in the Irish experiment, indicating complementary resource use and/or facilitation (complementarity). These mechanisms could not be distinguished from the selection effect in the Romanian study. 5. Growth was elevated in Romanian species mixtures, reflecting positive complementarity, but lower than expected growth in some Swedish mixtures was associated with negative complementarity, indicating interspecific interference competition. 6. Our results emphasize the potential importance of detritivore diversity for stream ecosystem functioning, but both the effects of diversity on the studied processes, and the mechanisms underlying those effects, were specific to each assemblage and process. Such variability highlights challenges in generalizing impacts of diversity change for functional integrity in streams and other ecosystems in which the occurrence of important species traits fluctuates over relatively small spatio-temporal scales.  相似文献   

18.
The relationship between plant diversity and ecosystem services is a controversial topic in ecology that may be due, at least in part, to the variety of methods used to define and quantify diversity. This study examined the relationship between plant diversity and 11 ecosystem properties of a restored wetland in northern China by considering four primary components of diversity (dominance, richness, evenness, and divergence). Each diversity component was expressed by eight taxonomic and functional diversity indices respectively. Results showed that trait-based functional diversity had a stronger correlation with ecosystem processes than non-trait taxonomic diversity did. Among the four components of diversity, dominance (in terms of mean trait value index) was the best in explaining the variation in ecosystem processing. Richness and divergence also had significant correlations with ecosystem properties in some instances. By contrast, evenness had no significant correlation with most of the studied ecosystem properties. Our results indicated that wetland ecosystem properties are significantly related to certain traits of the dominant species. Thus, the dominant species and functional traits should be considered before the number of species in managing diversity and enhancing certain ecosystem functions of wetlands, especially in the case of conservation.  相似文献   

19.
In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures.  相似文献   

20.
Revealing the links between species functional traits, interaction strength and food‐web structure is of paramount importance for understanding and predicting the relationships between food‐web diversity and stability in a rapidly changing world. However, little is known about the interactive effects of environmental perturbations on individual species, trophic interactions and ecosystem functioning. Here, we combined modelling and laboratory experiments to investigate the effects of warming and enrichment on a terrestrial tritrophic system. We found that the food‐web structure is highly variable and switches between exploitative competition and omnivory depending on the effects of temperature and enrichment on foraging behaviour and species interaction strength. Our model contributes to identifying the mechanisms that explain how environmental effects cascade through the food web and influence its topology. We conclude that considering environmental factors and flexible food‐web structure is crucial to improve our ability to predict the impacts of global changes on ecosystem diversity and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号