首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
Initial trajectories of dorsal root ganglion (DRG) axons are shaped by chemorepulsive signals from surrounding tissues. Although we have previously shown that axonin-1/SC2 expression on DRG axons is required to mediate a notochord-derived chemorepulsive signal, Dev. Biol. 224, 112-121), other molecules involved in the non-target-derived repulsive signals are largely unknown. Using coculture assays composed of tissues derived from the chick embryo or mutant mice treated with function-blocking antibodies and phosphatidylinositol-specific phospholipase C, we report here that the chemorepellent semaphorin 3A (Sema3A) and its receptor neuropilin-1 are required for mediating the dermamyotome- and notochord-derived, but not the ventral spinal cord-derived, chemorepulsive signal for DRG axons. The dermamyotome-derived chemorepulsion is exclusively dependent on Sema3A/neuropilin-1, whereas other molecules are also involved in the notochord-derived chemorepulsion. Chemorepulsion from the ventral spinal cord does not depend on Sema3A/neuropilin-1 but requires axonin-1/SC2 to repel DRG axons. Thus, differential chemorepulsive signals help shape the initial trajectories of DRG axons and are critical for the proper wiring of the nervous system.  相似文献   

2.
Quorum sensing (QS) enables bacterial multicellularity and selective advantage for communicating populations. While genetic "switching" phenomena are a common feature, their mechanistic underpinnings have remained elusive. The interplay between circuit components and their regulation are intertwined and embedded. Observable phenotypes are complex and context dependent. We employed a combination of experimental work and mathematical models to decipher network connectivity and signal transduction in the autoinducer-2 (AI-2) quorum sensing system of E. coli. Negative and positive feedback mechanisms were examined by separating the network architecture into sub-networks. A new unreported negative feedback interaction was hypothesized and tested via a simple mathematical model. Also, the importance of the LsrR regulator and its determinant role in the E. coli QS "switch", normally masked by interfering regulatory loops, were revealed. Our simple model allowed mechanistic understanding of the interplay among regulatory sub-structures and their contributions to the overall native functioning network. This "bottom up" approach in understanding gene regulation will serve to unravel complex QS network architectures and lead to the directed coordination of emergent behaviors.  相似文献   

3.
Directed cell migration is critical for normal development, immune responses, and wound healing and plays a prominent role in tumor metastasis. In eukaryotes, cell orientation is biased by an external chemoattractant gradient through a spatial contrast in chemoattractant receptor-mediated signal transduction processes that differentially affect cytoskeletal dynamics at the cell front and rear. Mechanisms of spatial gradient sensing and chemotaxis have been studied extensively in the social amoeba Dictyostelium discoideum and mammalian leukocytes (neutrophils), which are similar in their remarkable sensitivity to shallow gradients and robustness of response over a broad range of chemoattractant concentration. Recently, we have quantitatively characterized a different gradient sensing system, that of platelet-derived growth factor-stimulated fibroblasts, an important component of dermal wound healing. The marked differences between this system and the others have led us to speculate on the diversity of gradient sensing mechanisms and their biological implications.  相似文献   

4.
We show that the chemotactic movements of colonies of the starving amoeba Dictyostelium discoideum are driven by a force that depends on both the direction of propagation (directional sensing) of reaction-diffusion chemotactic waves and on the gradient of the concentration of the chemoattractant, solving the chemotactic wave paradox. It is shown that the directional sensing of amoebae is due to the sensitivity of the cells to the time variation of the concentration of the chemoattractant combined with its spatial gradient. It is also shown that chemotaxis exclusively driven by local concentration gradient leads to unstable local motion, preventing cells from aggregation. These findings show that the formation of mounds, which initiate multicellularity in Dictyostelium discoideum, is caused by the sensitivity of the amoebae due to three factors, namely, to the direction of propagation of the chemoattractant, to its spatial gradient, and to the emergence of cAMP “emitting centres”, responsible for the local accumulation of the amoebae.  相似文献   

5.
The etiology of neuropsychiatric disorders, including schizophrenia and autism, has been linked to a failure to establish the intricate neural network comprising excitatory pyramidal and inhibitory interneurons during neocortex development. A large proportion of cortical inhibitory interneurons originate in the medial ganglionic eminence (MGE) of the ventral telencephalon and then migrate through the ventral subventricular zone, across the corticostriatal junction, into the embryonic cortex. Successful navigation of newborn interneurons through the complex environment of the ventral telencephalon is governed by spatiotemporally restricted deployment of both chemorepulsive and chemoattractive guidance cues which work in concert to create a migratory corridor. Despite the expanding list of interneuron guidance cues, cues responsible for preventing interneurons from re-entering the ventricular zone of the ganglionic eminences have not been well characterized. Here we provide evidence that the chemorepulsive axon guidance cue, RGMa (Repulsive Guidance Molecule a), may fulfill this function. The ventricular zone restricted expression of RGMa in the ganglionic eminences and the presence of its receptor, Neogenin, in the ventricular zone and on newborn and maturing MGE-derived interneurons implicates RGMa-Neogenin interactions in interneuron differentiation and migration. Using an in vitro approach, we show that RGMa promotes interneuron differentiation by potentiating neurite outgrowth. In addition, using in vitro explant and migration assays, we provide evidence that RGMa is a repulsive guidance cue for newborn interneurons migrating out of the ganglionic eminence ventricular zone. Intriguingly, the alternative Neogenin ligand, Netrin-1, had no effect on migration. However, we observed complete abrogation of RGMa-induced chemorepulsion when newborn interneurons were simultaneously exposed to RGMa and Netrin-1 gradients, suggesting a novel mechanism for the tight regulation of RGMa-guided interneuron migration. We propose that during peak neurogenesis, repulsive RGMa-Neogenin interactions drive interneurons into the migratory corridor and prevent re-entry into the ventricular zone of the ganglionic eminences.  相似文献   

6.
In Dictyostelium discoideum, the secreted proteins AprA and CfaD function as reporters of cell density and regulate cell number by inhibiting proliferation at high cell densities. AprA also functions to disperse groups of cells at high density by acting as a chemorepellent. However, the signal transduction pathways associated with AprA and CfaD are not clear, and little is known about how AprA affects the cytoskeleton to regulate cell movement. We found that the p21-activated kinase (PAK) family member PakD is required for both the proliferation-inhibiting activity of AprA and CfaD and the chemorepellent activity of AprA. Similar to cells lacking AprA or CfaD, cells lacking PakD proliferate to a higher cell density than wild-type cells. Recombinant AprA and CfaD inhibit the proliferation of wild-type cells but not cells lacking PakD. Like AprA and CfaD, PakD affects proliferation but does not significantly affect growth (the accumulation of mass) on a per-nucleus basis. In contrast to wild-type cells, cells lacking PakD are not repelled from a source of AprA, and colonies of cells lacking PakD expand at a slower rate than wild-type cells, indicating that PakD is required for AprA-mediated chemorepulsion. A PakD-GFP fusion protein localizes to an intracellular punctum that is not the nucleus or centrosome, and PakD-GFP is also occasionally observed at the rear cortex of moving cells. Vegetative cells lacking PakD show excessive actin-based filopodia-like structures, suggesting that PakD affects actin dynamics, consistent with previously characterized roles of PAK proteins in actin regulation. Together, our results implicate PakD in AprA/CfaD signaling and show that a PAK protein is required for proper chemorepulsive cell movement in Dictyostelium.  相似文献   

7.
Members of the Slit family are large extracellular glycoproteins that may function as chemorepellents in axon guidance and neuronal cell migration. Their actions are mediated through members of the Robo family that act as their receptors. In vertebrates, Slit causes chemorepulsion of embryonic olfactory tract, spinal motor, hippocampal and retinal ganglion cell axons. Since Slits are expressed in the septum and floor plate during the period when these tissues cause chemorepulsion of olfactory tract and spinal motor axons respectively, it has been proposed that Slits function as guidance cues. We have tested this hypothesis in collagen gel co-cultures using soluble Robo/Fc chimeras, as competitive inhibitors, to disrupt Slit interactions. We find that the addition of soluble Robo/Fc has no effect on chemorepulsion of olfactory tract and spinal motor axons when co-cultured with septum or floor plate respectively. Thus, we conclude that although Slits are expressed in the septum and floor plate, their proteins do not contribute to the major chemorepulsive activities emanating from these tissues which cause repulsion of olfactory tract and spinal motor axons.  相似文献   

8.
Gradient perception describes the process by which information about the chemoattractant concentration field surrounding a cell is transformed into an internal signal which is responsible for directed cell motion. Recently, many important biochemical details in immobilized and mobile Dictyostelium cells have been uncovered regarding the roles of enzymes regulating phosphoinositide lipids on the cell membrane which are responsible for gradient perception. We report on a modeling framework that describes the relationship between the membrane concentration of the primary 3'phosphoinositide lipids and the enzymes which regulate them. The model takes the form of partial differential equations describing the membrane concentration of these lipids. Working within this framework, we describe mechanisms which can be responsible for spatial amplification of these lipids and which do not employ lipid-enzyme feedback. An analysis of a basic module underlying this process is also performed.  相似文献   

9.
Epithelial to mesenchymal transition (EMT) plays an important role in embryonic development, tissue regeneration, and cancer metastasis. Whereas several feedback loops have been shown to regulate EMT, it remains elusive how they coordinately modulate EMT response to TGF-β treatment. We construct a mathematical model for the core regulatory network controlling TGF-β-induced EMT. Through deterministic analyses and stochastic simulations, we show that EMT is a sequential two-step program in which an epithelial cell first is converted to partial EMT then to the mesenchymal state, depending on the strength and duration of TGF-β stimulation. Mechanistically the system is governed by coupled reversible and irreversible bistable switches. The SNAIL1/miR-34 double-negative feedback loop is responsible for the reversible switch and regulates the initiation of EMT, whereas the ZEB/miR-200 feedback loop is accountable for the irreversible switch and controls the establishment of the mesenchymal state. Furthermore, an autocrine TGF-β/miR-200 feedback loop makes the second switch irreversible, modulating the maintenance of EMT. Such coupled bistable switches are robust to parameter variation and molecular noise. We provide a mechanistic explanation on multiple experimental observations. The model makes several explicit predictions on hysteretic dynamic behaviors, system response to pulsed stimulation, and various perturbations, which can be straightforwardly tested.  相似文献   

10.
Prion-like proteins can undergo conformational rearrangements from an intrinsically disordered to a highly ordered amyloid state. This ability to change conformation is encoded in distinctive domains, termed prion domains (PrDs). Previous work suggests that PrDs change conformation to affect protein function and create phenotypic diversity. More recent work shows that PrDs can also undergo many weak interactions when disordered, allowing them to organize the intracellular space into dynamic compartments. However, mutations within PrDs and altered aggregation properties have also been linked to age-related diseases in humans. Thus, the physiological role of prion-like proteins, the mechanisms regulating their conformational promiscuity and the links to disease are still unclear. Here, we summarize recent work with prion-like proteins in Dictyostelium discoideum. This work was motivated by the finding that D. discoideum has the highest content of prion-like proteins of all organisms investigated to date. Surprisingly, we find that endogenous and exogenous prion-like proteins remain soluble in D. discoideum and do not misfold and aggregate. We provide evidence that this is due to specific adaptations in the protein quality control machinery, which may allow D. discoideum to tolerate its highly aggregation-prone proteome. We predict that D. discoideum will be an important model to study the function of prion-like proteins and their mechanistic links to disease.KEYWORDS: amyloid, Hsp104, prion, molecular chaperone, phase separation, protein aggregate, protein misfolding, ubiquitin/proteasome system  相似文献   

11.
We present a cellular model of lipid biosynthesis in the plasma membrane that couples biochemical and biophysical features of the enzymatic network of the cell-wall-less Mycoplasma Acholeplasma laidlawii. In particular, we formulate how the stored elastic energy of the lipid bilayer can modify the activity of curvature-sensitive enzymes through the binding of amphipathic α-helices. As the binding depends on lipid composition, this results in a biophysical feedback mechanism for the regulation of the stored elastic energy. The model shows that the presence of feedback increases the robustness of the steady state of the system, in the sense that biologically inviable nonbilayer states are less likely. We also show that the biophysical and biochemical features of the network have implications as to which enzymes are most efficient at implementing the regulation. The network imposes restrictions on the steady-state balance between bilayer and nonbilayer lipids and on the concentrations of particular lipids. Finally, we consider the influence of the length of the amphipathic α-helix on the efficacy of the feedback and propose experimental measurements and extensions of the modeling framework.  相似文献   

12.
Ishihara D  Dovas A  Park H  Isaac BM  Cox D 《PloS one》2012,7(1):e30033
Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor that is required for macrophages to directionally migrate towards various chemoattractants. The chemotaxis defect of WASp-deficient cells and its activation by Cdc42 in vivo suggest that WASp plays a role in directional sensing, however, its precise role in macrophage chemotaxis is still unclear. Using shRNA-mediated downregulation of WASp in the murine monocyte/macrophage cell line RAW/LR5 (shWASp), we found that WASp was responsible for the initial wave of actin polymerization in response to global stimulation with CSF-1, which in Dictyostelium discoideum amoebae and carcinoma cells has been correlated with the ability to migrate towards chemoattractants. Real-time monitoring of shWASp cells, as well as WASp−/− bone marrow-derived macrophages (BMMs), in response to a CSF-1 gradient revealed that the protrusions from WASp-deficient cells were directional, showing intact directional sensing. However, the protrusions from WASp-deficient cells demonstrated reduced persistence compared to their respective control shRNA and wild-type cells. Further examination showed that tyrosine phosphorylation of WASp was required for both the first wave of actin polymerization following global CSF-1 stimulation and proper directional responses towards CSF-1. Importantly, the PI3K, Rac1 and WAVE2 proteins were incorporated normally in CSF-1 – elicited protrusions in the absence of WASp, suggesting that membrane protrusion driven by the WAVE2 complex signaling is intact. Collectively, these results suggest that WASp and its phosphorylation play critical roles in coordinating the actin cytoskeleton rearrangements necessary for the persistence of protrusions required for directional migration of macrophages towards CSF-1.  相似文献   

13.
Eukaryotic cells sense and move towards a chemoattractant gradient, a cellular process referred as chemotaxis. Chemotaxis plays critical roles in many physiological processes, such as embryogenesis, neuron patterning, metastasis of cancer cells, recruitment of neutrophils to sites of inflammation, and the development of the model organism Dictyostelium discoideum. Eukaryotic cells sense chemo-attractants using G protein-coupled receptors. Visual chemotaxis assays are essential for a better understanding of how eukaryotic cells control chemoattractant-mediated directional cell migration. Here, we describe detailed methods for: 1) real-time, high-resolution monitoring of multiple chemotaxis assays, and 2) simultaneously visualizing the chemoattractant gradient and the spatiotemporal dynamics of signaling events in neutrophil-like HL60 cells.  相似文献   

14.
Epithelial to mesenchymal transition (EMT) plays an important role in embryonic development, tissue regeneration, and cancer metastasis. Whereas several feedback loops have been shown to regulate EMT, it remains elusive how they coordinately modulate EMT response to TGF-β treatment. We construct a mathematical model for the core regulatory network controlling TGF-β-induced EMT. Through deterministic analyses and stochastic simulations, we show that EMT is a sequential two-step program in which an epithelial cell first is converted to partial EMT then to the mesenchymal state, depending on the strength and duration of TGF-β stimulation. Mechanistically the system is governed by coupled reversible and irreversible bistable switches. The SNAIL1/miR-34 double-negative feedback loop is responsible for the reversible switch and regulates the initiation of EMT, whereas the ZEB/miR-200 feedback loop is accountable for the irreversible switch and controls the establishment of the mesenchymal state. Furthermore, an autocrine TGF-β/miR-200 feedback loop makes the second switch irreversible, modulating the maintenance of EMT. Such coupled bistable switches are robust to parameter variation and molecular noise. We provide a mechanistic explanation on multiple experimental observations. The model makes several explicit predictions on hysteretic dynamic behaviors, system response to pulsed stimulation, and various perturbations, which can be straightforwardly tested.  相似文献   

15.
In this study we present a detailed, mechanism-based mathematical framework of Drosophila circadian rhythms. This framework facilitates a more systematic approach to understanding circadian rhythms using a comprehensive representation of the network underlying this phenomenon. The possible mechanisms underlying the cytoplasmic “interval timer” created by PERIOD–TIMELESS association are investigated, suggesting a novel positive feedback regulatory structure. Incorporation of this additional feedback into a full circadian model produced results that are consistent with previous experimental observations of wild-type protein profiles and numerous mutant phenotypes.  相似文献   

16.
Mitochondrial tRNA (mt-tRNA) 5′-editing was first described more than 20 years ago; however, the first candidates for 5′-editing enzymes were only recently identified in a eukaryotic microbe (protist), the slime mold Dictyostelium discoideum. In this organism, eight of 18 mt-tRNAs are predicted to be edited based on the presence of genomically encoded mismatched nucleotides in their aminoacyl-acceptor stem sequences. Here, we demonstrate that mt-tRNA 5′-editing occurs at all predicted sites in D. discoideum as evidenced by changes in the sequences of isolated mt-tRNAs compared with the expected sequences encoded by the mitochondrial genome. We also identify two previously unpredicted editing events in which G-U base pairs are edited in the absence of any other genomically encoded mismatches. A comparison of 5′-editing in D. discoideum with 5′-editing in another slime mold, Polysphondylium pallidum, suggests organism-specific idiosyncrasies in the treatment of U-G/G-U pairs. In vitro activities of putative D. discoideum editing enzymes are consistent with the observed editing reactions and suggest an overall lack of tRNA substrate specificity exhibited by the repair component of the editing enzyme. Although the presence of terminal mismatches in mt-tRNA sequences is highly predictive of the occurrence of mt-tRNA 5′-editing, the variability in treatment of U-G/G-U base pairs observed here indicates that direct experimental evidence of 5′-editing must be obtained to understand the complete spectrum of mt-tRNA editing events in any species.  相似文献   

17.
Systems biology applies quantitative, mechanistic modelling to study genetic networks, signal transduction pathways and metabolic networks. Mathematical models of biochemical networks can look very different. An important reason is that the purpose and application of a model are essential for the selection of the best mathematical framework. Fundamental aspects of selecting an appropriate modelling framework and a strategy for model building are discussed. Concepts and methods from system and control theory provide a sound basis for the further development of improved and dedicated computational tools for systems biology. Identification of the network components and rate constants that are most critical to the output behaviour of the system is one of the major problems raised in systems biology. Current approaches and methods of parameter sensitivity analysis and parameter estimation are reviewed. It is shown how these methods can be applied in the design of model-based experiments which iteratively yield models that are decreasingly wrong and increasingly gain predictive power.  相似文献   

18.
Spatial gradients of Hedgehog signalling play a central role in many patterning events during animal development, regulating cell fate determination and tissue growth in a variety of tissues and developmental stages. Experimental evidence suggests that many of the proteins responsible for regulating Hedgehog signalling and transport are themselves targets of Hedgehog signalling, leading to multiple levels of feedback within the system. We use mathematical modelling to analyse how these overlapping feedbacks combine to regulate patterning and potentially enhance robustness in the Drosophila wing imaginal disc. Our results predict that the regulation of Hedgehog transport and stability by glypicans, as well as multiple overlapping feedbacks in the Hedgehog response network, can combine to enhance the robustness of positional specification against variability in Hedgehog levels. We also discuss potential trade-offs between robustness and additional features of the Hedgehog gradient, such as signalling range and size regulation.  相似文献   

19.
Previous studies have suggested that the developing notochord secretes diffusible axon guidance molecules that repel dorsal root ganglion (DRG) neurites (R. Keynes et al., 1997, Neuron 18, 889-897; K. Nakamoto and T. Shiga, 1998, Dev. Biol. 202, 304-314). Neither notochord-derived chemorepellents nor their receptors on DRG neurites are, however, known. Here we investigated whether cell adhesion molecules (CAMs) of the immunoglobulin/fibronectin type III subfamily present on DRG neurites, including axonin-1/SC2, N-CAM, Ng-CAM, and Nr-CAM, are required for mediating the notochord-derived chemorepulsion. Using collagen gel cocultures of DRGs and notochord explants, we found that an antibody against axonin-1/SC2 diminished the effects of the chemorepulsive activity from the notochord, whereas antibodies against N-CAM, Ng-CAM, and Nr-CAM had no effect. We further showed that the removal of glycosylphosphatidylinositol-anchored cell surface molecules, including axonin-1/SC2, from DRG neurites diminished the effects of the notochord-derived chemorepulsive activity to an extent similar to that of treatment with the anti-axonin-1/SC2 antibody. These results suggest that axonin-1/SC2 expressed on DRG neurites may be involved in mediating the notochord-derived chemorepulsive activity.  相似文献   

20.
Stable and robust oscillations in the concentration of adenosine 3′, 5′-cyclic monophosphate (cAMP) are observed during the aggregation phase of starvation-induced development in Dictyostelium discoideum. In this paper we use mathematical modelling together with ideas from robust control theory to identify two factors which appear to make crucial contributions to ensuring the robustness of these oscillations. Firstly, we show that stochastic fluctuations in the molecular interactions play an important role in preserving stable oscillations in the face of variations in the kinetics of the intracellular network. Secondly, we show that synchronisation of the aggregating cells through the diffusion of extracellular cAMP is a key factor in ensuring robustness of the oscillatory waves of cAMP observed in Dictyostelium cell cultures to cell-to-cell variations. A striking and quite general implication of the results is that the robustness analysis of models of oscillating biomolecular networks (circadian clocks, Ca2+ oscillations, etc.) can only be done reliably by using stochastic simulations, even in the case where molecular concentrations are very high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号