首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin–proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system.  相似文献   

2.
Protein aggregation is a phenomenon observed in all organisms and has often been linked with cell disorders. In addition, several groups have reported a virtual absence of protein aggregates in healthy cells. In contrast to previous studies and the expected outcome, we observed aggregated proteins in aerobic exponentially growing and “healthy” Escherichia coli cells. We observed overrepresentation of “aberrant proteins,” as well as substrates of the major conserved chaperone DnaK (Hsp70) and the protease ClpXP (a serine protease), in the aggregates. In addition, the protein aggregates appeared to interact with chaperones known to be involved in the aggregate repair pathway, including ClpB, GroEL, GroES, and DnaK. Finally, we showed that the levels of reactive oxygen species and unfolded or misfolded proteins determine the levels of protein aggregates. Our results led us to speculate that protein aggregates may function as a temporary “trash organelle” for cellular detoxification.  相似文献   

3.
Protective proteases are key elements of protein quality control pathways that are up-regulated, for example, under various protein folding stresses. These proteases are employed to prevent the accumulation and aggregation of misfolded proteins that can impose severe damage to cells. The high temperature requirement A (HtrA) family of serine proteases has evolved to perform important aspects of ATP-independent protein quality control. So far, however, no HtrA protease is known that degrades protein aggregates. We show here that human HTRA1 degrades aggregated and fibrillar tau, a protein that is critically involved in various neurological disorders. Neuronal cells and patient brains accumulate less tau, neurofibrillary tangles, and neuritic plaques, respectively, when HTRA1 is expressed at elevated levels. Furthermore, HTRA1 mRNA and HTRA1 activity are up-regulated in response to elevated tau concentrations. These data suggest that HTRA1 is performing regulated proteolysis during protein quality control, the implications of which are discussed.  相似文献   

4.
Non-optimal codons are generally characterised by a low concentration of isoaccepting tRNA and a slower translation rate compared to optimal codons. In a previous study, we reported a 20-fold reduction in maltose binding protein (MBP) level when the non-optimal codons in the signal sequence were optimised. In this study, we report that the 20-fold reduction is rescued when MBP is expressed at 28 °C instead of 37 °C, suggesting that the signal sequence optimised MBP protein (MBP-opt) may be misfolded, and is being degraded at 37 °C. Consistent with this idea, transient induction of the heat shock proteases prior to MBP expression at 28 °C restores the 20-fold difference, demonstrating that the difference in production levels is due to post-translational degradation of MBP-opt by the heat-shock proteases. Analysis of the structure of purified MBP-wt and MBP-opt grown at 28 °C showed that although they have similar secondary structure content, MBP-opt is more resistant to thermal unfolding than is MBP-wt. The two proteins also exhibit different tryptic fragment profiles, further confirming that they are folded into conformationally different states. This is the first study to demonstrate that signal sequence non-optimal codons can influence the folding of the mature exported protein.  相似文献   

5.
Disease-associated misfolded proteins or proteins damaged due to cellular stress are generally disposed via the cellular protein quality-control system. However, under saturating conditions, misfolded proteins will aggregate. In higher eukaryotes, these aggregates can be transported to accumulate in aggresomes at the microtubule organizing center. The fate of cells that contain aggresomes is currently unknown. Here we report that cells that have formed aggresomes can undergo normal mitosis. As a result, the aggregated proteins are asymmetrically distributed to one of the daughter cells, leaving the other daughter free of accumulated protein damage. Using both epithelial crypts of the small intestine of patients with a protein folding disease and Drosophila melanogaster neural precursor cells as models, we found that the inheritance of protein aggregates during mitosis occurs with a fixed polarity indicative of a mechanism to preserve the long-lived progeny.  相似文献   

6.
During aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat‐shock proteins (HSPs). As safeguards of the cellular proteome, HSPs assist in protein folding and prevent accumulation of damaged, misfolded proteins. Here, we compared the capacity of all Drosophila melanogaster small HSP family members for their ability to assist in refolding stress‐denatured substrates and/or to prevent aggregation of disease‐associated misfolded proteins. We identified CG14207 as a novel and potent small HSP member that exclusively assisted in HSP70‐dependent refolding of stress‐denatured proteins. Furthermore, we report that HSP67BC, which has no role in protein refolding, was the most effective small HSP preventing toxic protein aggregation in an HSP70‐independent manner. Importantly, overexpression of both CG14207 and HSP67BC in Drosophila leads to a mild increase in lifespan, demonstrating that increased levels of functionally diverse small HSPs can promote longevity in vivo.  相似文献   

7.
Several chronic neurodegenerative disorders manifest deposits of misfolded or aggregated proteins. Genetic mutations are the root cause for protein misfolding in rare families, but the majority of patients have sporadic forms possibly related to environmental factors. In some cases, the ubiquitin-proteasome system or molecular chaperones can prevent accumulation of aberrantly folded proteins. Recent studies suggest that generation of excessive nitric oxide (NO) and reactive oxygen species (ROS), in part due to overactivity of the NMDA-subtype of glutamate receptor, can mediate protein misfolding in the absence of genetic predisposition. S-Nitrosylation, or covalent reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced protein misfolding and neurotoxicity. Here, we present evidence suggesting that NO contributes to protein misfolding via S-nitrosylating protein-disulfide isomerase or the E3 ubiquitin ligase parkin. We discuss how memantine/NitroMemantine can inhibit excessive NMDA receptor activity to ameliorate NO production, protein misfolding, and neurodegeneration.  相似文献   

8.
The accumulation of aberrantly folded proteins can lead to cell dysfunction and death. Currently, the mechanisms of toxicity and cellular defenses against their effects remain incompletely understood. In the endoplasmic reticulum (ER), stress caused by misfolded proteins activates the unfolded protein response (UPR). The UPR is an ER-to-nucleus signal transduction pathway that regulates a wide variety of target genes to maintain cellular homeostasis. We studied the effects of ER stress in budding yeast through expression of the well-characterized misfolded protein, CPY*. By challenging cells within their physiological limits to resist stress, we show that the UPR is required to maintain essential functions including protein translocation, glycosylation, degradation, and transport. Under stress, the ER-associated degradation (ERAD) pathway for misfolded proteins is saturable. To maintain homeostasis, an "overflow" pathway dependent on the UPR transports excess substrate to the vacuole for turnover. The importance of this pathway was revealed through mutant strains compromised in the vesicular trafficking of excess CPY*. Expression of CPY* at levels tolerated by wild-type cells was toxic to these strains despite retaining the ability to activate the UPR.  相似文献   

9.
10.
Acute stress causes a rapid redistribution of protein quality control components and aggregation-prone proteins to diverse subcellular compartments. How these remarkable changes come about is not well understood. Using a phenotypic reporter for a synthetic yeast prion, we identified two protein-sorting factors of the Hook family, termed Btn2 and Cur1, as key regulators of spatial protein quality control in Saccharomyces cerevisiae. Btn2 and Cur1 are undetectable under normal growth conditions but accumulate in stressed cells due to increased gene expression and reduced proteasomal turnover. Newly synthesized Btn2 can associate with the small heat shock protein Hsp42 to promote the sorting of misfolded proteins to a peripheral protein deposition site. Alternatively, Btn2 can bind to the chaperone Sis1 to facilitate the targeting of misfolded proteins to a juxtanuclear compartment. Protein redistribution by Btn2 is accompanied by a gradual depletion of Sis1 from the cytosol, which is mediated by the sorting factor Cur1. On the basis of these findings, we propose a dynamic model that explains the subcellular distribution of misfolded proteins as a function of the cytosolic concentrations of molecular chaperones and protein-sorting factors. Our model suggests that protein aggregation is not a haphazard process but rather an orchestrated cellular response that adjusts the flux of misfolded proteins to the capacities of the protein quality control system.  相似文献   

11.

Background  

The nature of the protein molecular clock, the protein-specific rate of amino acid substitutions, is among the central questions of molecular evolution. Protein expression level is the dominant determinant of the clock rate in a number of organisms. It has been suggested that highly expressed proteins evolve slowly in all species mainly to maintain robustness to translation errors that generate toxic misfolded proteins. Here we investigate this hypothesis experimentally by comparing the growth rate of Escherichia coli expressing wild type and misfolding-prone variants of the LacZ protein.  相似文献   

12.
Structurally and sequence-wise, the Hsp110s belong to a subfamily of the Hsp70 chaperones. Like the classical Hsp70s, members of the Hsp110 subfamily can bind misfolding polypeptides and hydrolyze ATP. However, they apparently act as a mere subordinate nucleotide exchange factors, regulating the ability of Hsp70 to hydrolyze ATP and convert stable protein aggregates into native proteins. Using stably misfolded and aggregated polypeptides as substrates in optimized in vitro chaperone assays, we show that the human cytosolic Hsp110s (HSPH1 and HSPH2) are bona fide chaperones on their own that collaborate with Hsp40 (DNAJA1 and DNAJB1) to hydrolyze ATP and unfold and thus convert stable misfolded polypeptides into natively refolded proteins. Moreover, equimolar Hsp70 (HSPA1A) and Hsp110 (HSPH1) formed a powerful molecular machinery that optimally reactivated stable luciferase aggregates in an ATP- and DNAJA1-dependent manner, in a disaggregation mechanism whereby the two paralogous chaperones alternatively activate the release of bound unfolded polypeptide substrates from one another, leading to native protein refolding.  相似文献   

13.
The ability of proteins to fold into complex three-dimensional shapes is truly amazing. Given the difficulty of the reaction it is perhaps unsurprising that many proteins in vivo are unable to fold correctly. These misfolded proteins are generally recognized by the cell's quality control machinery and dealt with through degradation. However in an increasing number of diseases, such as Huntington's, Alzheimer's and alpha1-antitrypsin deficiency, misfolded protein accumulates both within and outside the cell. This aggregated protein is able to evade the normal cellular responses and in some cases even disable it. In this review we present an overview of protein misfolding and examine recent data which is beginning to reveal the mechanisms by which protein aggregates are toxic to cells.  相似文献   

14.
A key constraint on the growth of most organisms is the slow and inefficient folding of many essential proteins. To deal with this problem, several diverse families of protein folding machines, known collectively as molecular chaperones, developed early in evolutionary history. The functional role and operational steps of these remarkably complex nanomachines remain subjects of active debate. Here we present evidence that, for the GroEL-GroES chaperonin system, the non-native substrate protein enters the folding cycle on the trans ring of the double-ring GroEL-ATP-GroES complex rather than the ADP-bound complex. The properties of this ATP complex are designed to ensure that non-native substrate protein binds first, followed by ATP and finally GroES. This binding order ensures efficient occupancy of the open GroEL ring and allows for disruption of misfolded structures through two phases of multiaxis unfolding. In this model, repeated cycles of partial unfolding, followed by confinement within the GroEL-GroES chamber, provide the most effective overall mechanism for facilitating the folding of the most stringently dependent GroEL substrate proteins.  相似文献   

15.
Protein quality control processes active in the endoplasmic reticulum (ER), including ER-associated protein degradation (ERAD) and the unfolded protein response (UPR), prevent the cytotoxic effects that can result from the accumulation of misfolded proteins. Characterization of a yeast mutant deficient in ERAD, a proteasome-dependent degradation pathway, revealed the employment of two overflow pathways from the ER to the vacuole when ERAD was compromised. One removes the soluble misfolded protein via the biosynthetic pathway and the second clears aggregated proteins via autophagy. Previously, autophagy had been implicated in the clearance of cytoplasmic aggresomes, but was not known to play a direct role in ER protein quality control. These findings provide insight into the molecular mechanisms that result in the gain-of-function liver disease associated with both alpha1-deficiency and hypofibrinogenemia (abnormally low levels of plasma fibrinogen, which is required for blood clotting), and emphasize the need for a more complete understanding of the molecular mechanisms of autophagy and its relationship to protein quality control.  相似文献   

16.
A protein quality control system, consisting of molecular chaperones and proteases, controls the folding status of proteins and prevents the aggregation of misfolded proteins by either refolding or degrading aggregation-prone species. During severe stress conditions this protection system can be overwhelmed by high substrate load, resulting in the formation of protein aggregates. In such emergency situations, Hsp104/ClpB becomes a key player for cell survival, as it has the extraordinary capacity to rescue proteins from an aggregated state in cooperation with an Hsp70 chaperone system. The ring-forming Hsp104/ClpB chaperone belongs to the AAA+ protein superfamily, which in general drives the assembly and disassembly of protein complexes by ATP-dependent remodelling of protein substrates. A disaggregation activity was also recently attributed to other eubacterial AAA+ proteins, while such an activity has not yet been identified in mammalian cells. In this review, we report on new insights into the mechanism of protein disaggregation by AAA+ proteins, suggesting that these chaperones act as molecular crowbars or ratchets.  相似文献   

17.
Frederik Eisele 《FEBS letters》2008,582(30):4143-4146
Protein quality control and subsequent elimination of terminally misfolded proteins occurs via the ubiquitin-proteasome system. Tagging of misfolded proteins with ubiquitin for degradation depends on a cascade of reactions involving an ubiquitin activating enzyme (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). While ubiquitin ligases responsible for targeting misfolded secretory proteins to proteasomal degradation (ERAD) have been uncovered, no such E3 enzymes have been found for elimination of misfolded cytoplasmic proteins in yeast. Here we report on the discovery of Ubr1, the E3 ligase of the N-end rule pathway, to be responsible for targeting misfolded cytosoplasmic protein to proteasomal degradation.  相似文献   

18.
Most investigations of the forces shaping protein evolution have focussed on protein function. However, cells are typically 50%–75% protein by dry weight, with protein expression levels distributed over five orders of magnitude. Cells may, therefore, be under considerable selection pressure to incorporate amino acids that are cheap to synthesize into proteins that are highly expressed. Such selection pressure has been demonstrated to alter amino acid usage in a few organisms, but whether “cost selection” is a general phenomenon remains unknown. One reason for this is that reliable protein expression level data is not available for most organisms. Accordingly, I have developed a new method for detecting cost selection. This method depends solely on interprotein gradients in amino acid usage. Applying it to an analysis of 43 whole genomes from all three domains of life, I show that selection on the synthesis cost of amino acids is a pervasive force in shaping the composition of proteins. Moreover, some amino acids have different price tags for different organisms—the cost of amino acids is changed for organisms living in hydrothermal vents compared with those living at the sea surface or for organisms that have difficulty acquiring elements such as nitrogen compared with those that do not—so I also investigated whether differences between organisms in amino acid usage might reflect differences in synthesis or acquisition costs. The results suggest that organisms evolve to alter amino acid usage in response to environmental conditions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. [Reviewing Editor: Hector Musto]  相似文献   

19.
The endoplasmic reticulum-associated degradation (ERAD) is a cellular quality control mechanism to dispose of misfolded proteins of the secretory pathway via proteasomal degradation. SEL1L is an ER-resident protein that participates in identification of misfolded molecules as ERAD substrates, therefore inducing their ER-to-cytosol retrotranslocation and degradation. We have developed a novel class of fusion proteins, termed degradins, composed of a fragment of SEL1L fused to a target-specific binding moiety located on the luminal side of the ER. The target-binding moiety can be a ligand of the target or derived from specific mAbs. Here, we describe the ability of degradins with two different recognition moieties to promote degradation of a model target. Degradins recognize the target protein within the ER both in secretory and membrane-bound forms, inducing their degradation following retrotranslocation to the cytosol. Thus, degradins represent an effective technique to knock-out proteins within the secretory pathway with high specificity.  相似文献   

20.
Turnover of cellular protein has been estimated in Escherichia coli during continuous exponential growth and in the absence of extensive experimental manipulation. Estimation is based upon the cumulative release into carrier pools of free leucine-1-(14)C over a number of time intervals after its pulsed incorporation into protein. Breakdown rates obtained with other labeled amino acids are similar to those obtained with leucine. Two kinetically separate processes have been shown. First, a very rapid turnover of 5% of the amino acid label occurs within 45 sec after its incorporation, most likely indicating maturative cleavages within the proteins after their assembly. A slower heterogeneous rate of true protein turnover follows, falling by 39% in the remaining proteins for each doubling of turnover time. At 36 C, the total breakdown rate of cellular protein is 2.5 and 3.0% per hr over a threefold range of growth rate in glucose and acetate medium, respectively. This relatively constant breakdown rate is maintained during slower growth by more extensive protein replacement, one fifth of the protein synthesized at any time in the acetate medium being replaced after 4.6 doubling times. Intracellular proteolysis thus appears to be a normal and integral reaction of the growing cell. The total rate equals minimal estimates obtained by others for arrested or decelerated growth but is kinetically more heterogeneous. Quantitatively proteolysis is not directly affected by growth arrestment per se as caused by alpha-methylhistidine, chloramphenicol, or uncouplers of oxidative phosphorylation, but qualitatively it can gradually become more homogeneous kinetically as a secondary event of starvation. Under more extreme conditions as with extensive washing, prolonged phosphorylative uncoupling, or acidification of the growth medium, the proteolytic rate can increase severalfold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号