首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharaoh's ants organise their foraging system using three types of trail pheromone. All previous foraging models based on specific ant foraging systems have assumed that only a single attractive pheromone is used. Here we present an agent-based model based on trail choice at a trail bifurcation within the foraging trail network of a Pharaoh's ant colony which includes both attractive (positive) and repellent (negative) trail pheromones. Experiments have previously shown that Pharaoh's ants use both types of pheromone. We investigate how the repellent pheromone affects trail choice and foraging success in our simulated foraging system. We find that both the repellent and attractive pheromones have a role in trail choice, and that the repellent pheromone prevents random fluctuations which could otherwise lead to a positive feedback loop causing the colony to concentrate its foraging on the unrewarding trail. An emergent feature of the model is a high level of variability in the level of repellent pheromone on the unrewarding branch. This is caused by the repellent pheromone exerting negative feedback on its own deposition. We also investigate the dynamic situation where the location of the food is changed after foraging trails are established. We find that the repellent pheromone has a key role in enabling the colony to refocus the foraging effort to the new location. Our results show that having a repellent pheromone is adaptive, as it increases the robustness and flexibility of the colony's overall foraging response.  相似文献   

2.
Positive feedback plays a major role in the emergence of many collective animal behaviours. In many ants pheromone trails recruit and direct nestmate foragers to food sources. The strong positive feedback caused by trail pheromones allows fast collective responses but can compromise flexibility. Previous laboratory experiments have shown that when the environment changes, colonies are often unable to reallocate their foragers to a more rewarding food source. Here we show both experimentally, using colonies of Lasius niger, and with an agent-based simulation model, that negative feedback caused by crowding at feeding sites allows ant colonies to maintain foraging flexibility even with strong recruitment to food sources. In a constant environment, negative feedback prevents the frequently found bias towards one feeder (symmetry breaking) and leads to equal distribution of foragers. In a changing environment, negative feedback allows a colony to quickly reallocate the majority of its foragers to a superior food patch that becomes available when foraging at an inferior patch is already well underway. The model confirms these experimental findings and shows that the ability of colonies to switch to a superior food source does not require the decay of trail pheromones. Our results help to resolve inconsistencies between collective foraging patterns seen in laboratory studies and observations in the wild, and show that the simultaneous action of negative and positive feedback is important for efficient foraging in mass-recruiting insect colonies.  相似文献   

3.
Recruitment via pheromone trails by ants is arguably one of the best-studied examples of self-organization in animal societies. Yet it is still unclear if and how trail recruitment allows a colony to adapt to changes in its foraging environment. We study foraging decisions by colonies of the ant Pheidole megacephala under dynamic conditions. Our experiments show that P. megacephala, unlike many other mass recruiting species, can make a collective decision for the better of two food sources even when the environment changes dynamically. We developed a stochastic differential equation model that explains our data qualitatively and quantitatively. Analysing this model reveals that both deterministic and stochastic effects (noise) work together to allow colonies to efficiently track changes in the environment. Our study thus suggests that a certain level of noise is not a disturbance in self-organized decision-making but rather serves an important functional role.  相似文献   

4.
Animals must contend with an ever-changing environment. Social animals, especially eusocial insects such as ants and bees, rely heavily on communication for their success. However, in a changing environment, communicated information can become rapidly outdated. This is a particular problem for pheromone trail using ants, as once deposited pheromones cannot be removed. Here, we study the response of ant foragers to an environmental change. Ants were trained to one feeder location, and the feeder was then moved to a different location. We found that ants responded to an environmental change by strongly upregulating pheromone deposition immediately after experiencing the change. This may help maintain the colony''s foraging flexibility, and allow multiple food locations to be exploited simultaneously. Our treatment also caused uncertainty in the foragers, by making their memories less reliable. Ants which had made an error but eventually found the food source upregulated pheromone deposition when returning to the nest. Intriguingly, ants on their way towards the food source downregulated pheromone deposition if they were going to make an error. This may suggest that individual ants can measure the reliability of their own memories and respond appropriately.  相似文献   

5.
Amplifying communication is a characteristic of group-living animals. This study is concerned with food recruitment by chemical means, known to be associated with foraging in most ant colonies but also with defence or nest moving. A stochastic approach of collective choices made by ants faced with different sources is developed to account for the fluctuations inherent to the recruitment process. It has been established that ants are able to optimize their foraging by selecting the most rewarding source. Our results not only confirm that selection is the result of a trail modulation according to food quality but also show the existence of an optimal quantity of laid pheromone for which the selection of a source is at the maximum, whatever the difference between the two sources might be. In terms of colony size, large colonies more easily focus their activity on one source. Moreover, the selection of the rich source is more efficient if many individuals lay small quantities of pheromone, instead of a small group of individuals laying a higher trail amount. These properties due to the stochasticity of the recruitment process can be extended to other social phenomena in which competition between different sources of information occurs.  相似文献   

6.
Ants are ordinarily faced with a succession of bifurcations along their foraging networks. Given that there is no directionality in pheromone trails, each bifurcation is potentially an opportunity for error in the trajectory of laden workers to the nest, which could entail considerable inefficiencies in the transportation of food to the colony. Leaf-cutting ants (Atta and Acromyrmex) commonly show intense traffic and complex foraging trail systems, which make them ideal organisms to study worker behavior in trail bifurcations. The behavior of leaf-cutting ants of the genus Acromyrmex in trail bifurcations is still largely unexplored. Thus, this study aimed to assess the behavior of Acromyrmex crassispinus workers on trail bifurcations and to investigate whether differences in ant flow on foraging trails influence the error rate of nestbound laden workers at trail bifurcation. There was a negative relationship between ant flow and error rate of nestbound laden workers. Most workers walked in the central part of the foraging trails but occupied a broader area of the foraging trail when the ant flow was high. The results of this study provide valuable insight into the organization of traffic flow in A. crassispinus and its impacts on the foraging strategy of the species.  相似文献   

7.
In social insects, the superposition of simple individual behavioral rules leads to the emergence of complex collective patterns and helps solve difficult problems inherent to surviving in hostile habitats. Modelling ant colony foraging reveals strategies arising from the insects’ self-organization and helps develop of new computational strategies in order to solve complex problems. This paper presents advances in modelling ants’ behavior when foraging in a confined and dynamic environment, based on experiments with the Argentine ant Linepithema humile in a relatively complex artificial network. We propose a model which overcomes the problem of stagnation observed in earlier models by taking into account additional biological aspects, by using non-linear functions for the deposit, perception and evaporation of pheromone, and by introducing new mechanisms to represent randomness and the exploratory behavior of the ants.  相似文献   

8.
The search for food in the French subterranean termite Reticulitermes santonensis De Feytaud is organized in part by chemical trails laid with the secretion of their abdominal sternal gland. Trail-laying and -following behavior of R. santonensis was investigated in bioassays. During foraging for food termites walk slowly (on average, 2.3 mm/s) and lay a dotted trail by dabbing the abdomen at intervals on the ground. When food is discovered they return at a quick pace (on average, 8.9 mm/s) to the nest, laying a trail for recruiting nestmates to the food source. While laying this recruitment trail the workers drag the abdomen continuously on the ground. The recruitment trail is highly attractive: it is followed within a few seconds, by more nestmates, and at a quicker pace (on average, 6.4 mm/s) than foraging trails (on average, 2.9 mm/s). The difference between foraging and recruitment trails in R. santonensis could be attributed to different quantities of trail pheromone. A caste-specific difference in trail pheromone thresholds, with workers of R. santonensis being more sensitive to trails than soldiers, was also documented: soldiers respond only to trails with a high concentration of trail pheromone.  相似文献   

9.
Summary The pygidial (anal) gland was found to be the source of trail pheromone in the antTapinoma simrothi. Bioassays conducted with fractionated pygidial gland secretion indicated that the fraction containing iridodials and iridomyrmecin is responsible for the trail pheromone activity. Thus workers ofT. simrothi may utilize the same glandular exudate for alarm and trail following. At high emission rates from a point source, the ants responded in alarm, e.g., rushed to the source with open mandibles and raised abdomen. When concentrations were low and drawn as a line, the ants followed the secretion calmly. Trails ofT. simrothi are long-lived, having a biological half-life of 10 to 19 days. Quantitative studies of the evaporation rates of the iridodials by gas chromatography resulted in a half-life of 11 days, agreeing with the biological data. The implications of the use of the same glandular secretion for alarm and food recruitments are discussed.  相似文献   

10.
Sagili RR  Pankiw T  Metz BN 《PloS one》2011,6(2):e16785
Division of labor is a striking feature observed in honey bees and many other social insects. Division of labor has been claimed to benefit fitness. In honey bees, the adult work force may be viewed as divided between non-foraging hive bees that rear brood and maintain the nest, and foragers that collect food outside the nest. Honey bee brood pheromone is a larval pheromone that serves as an excellent empirical tool to manipulate foraging behaviors and thus division of labor in the honey bee. Here we use two different doses of brood pheromone to alter the foraging stimulus environment, thus changing demographics of colony division of labor, to demonstrate how division of labor associated with brood rearing affects colony growth rate. We examine the effects of these different doses of brood pheromone on individual foraging ontogeny and specialization, colony level foraging behavior, and individual glandular protein synthesis. Low brood pheromone treatment colonies exhibited significantly higher foraging population, decreased age of first foraging and greater foraging effort, resulting in greater colony growth compared to other treatments. This study demonstrates how division of labor associated with brood rearing affects honey bee colony growth rate, a token of fitness.  相似文献   

11.
The polyethic behaviour of soldiers and workers of Nasutitermescorniger during foraging and in defence is described. It hasbeen shown that the cephalic gland defensive secretion of thenasute soldiers produces short term recruitment of only soldiersto loci where it is present. Without further reinforcement ofthe stimulus, the number of soldiers wanes. Workers react tothe cephalic gland secretion by remaining in or retreating tothe nest. The sternal gland secretion of workers and soldiersacts in long term recruitment of soldiers when presented experimentallyas a point source, as a trail or as a trail with a food sourceat its end. This secretion causes more exiting soldiers thanthe cephalic gland secretion, and is more effective in thisregard as a trail than as a point source. The greater numbersexiting in the trail situation appears to be related to thegreater amount of pheromone area present, and the halting ofsoldiers at the pheromone odour boundary. The greatest numberof soldiers exit when the trail is coupled with a food sourceat its end, and in this situation workers exit for the firsttime in significant numbers. Additional information about thefood source is postulated to be communicated by tactile means(jittering) and it is suggested that this lowers the thresholdfor the trail following responses in the termites such thatworker exiting is initiated. Other factors affecting the numbersforaging are noted. The phenomenon of soldier initiation offoraging as scouts, and as a scouting column, is commented onwith regard to the polyethic responses to the pheromones, andto its adaptive significance (sociobiological import) in thelight of the soldiers' rôle in colony defence.  相似文献   

12.
白蚁诱食信息素研究进展   总被引:3,自引:0,他引:3  
黄求应  薛东  雷朝亮 《昆虫学报》2005,48(4):616-621
白蚁为社会性昆虫,其组织结构和联系方式主要由白蚁外分泌腺产生的起诱导和调节白蚁行为反应作用的信息素来获得。由白蚁下唇腺产生的诱食信息素,能够在白蚁巢体的群体性食物采集中诱使取食白蚁形成聚集,并且取食食物的相同位置,从而提高白蚁巢体采集食物的效率。目前,已确定对苯二酚为白蚁诱食信息素,且认为整个等翅目昆虫都产生和使用对苯二酚作为诱食信息素,与分类地位和生物学特性无关。该文概述了白蚁诱食信息素的分泌器官、种特异性、生物学意义、生物合成途径及其在白蚁防治中的应用等方面的研究进展。  相似文献   

13.
In swarm robotics, communication among the robots is essential. Inspired by biological swarms using pheromones, we propose the use of chemical compounds to realize group foraging behavior in robot swarms. We designed a fully autonomous robot, and then created a swarm using ethanol as the trail pheromone allowing the robots to communicate with one another indirectly via pheromone trails. Our group recruitment and cooperative transport algorithms provide the robots with the required swarm behavior. We conducted both simulations and experiments with real robot swarms, and analyzed the data statistically to investigate any changes caused by pheromone communication in the performance of the swarm in solving foraging recruitment and cooperative transport tasks. The results show that the robots can communicate using pheromone trails, and that the improvement due to pheromone communication may be non-linear, depending on the size of the robot swarm.  相似文献   

14.
Pheromone trails laid by foraging ants serve as a positive feedback mechanism for the sharing of information about food sources. This feedback is nonlinear, in that ants do not react in a proportionate manner to the amount of pheromone deposited. Instead, strong trails elicit disproportionately stronger responses than weak trails. Such nonlinearity has important implications for how a colony distributes its workforce, when confronted with a choice of food sources. We investigated how colonies of the Pharaoh's ant, Monomorium pharaonis, distribute their workforce when offered a choice of two food sources of differing energetic value. By developing a nonlinear differential equation model of trail foraging, and comparing model with experiments, we examined how the ants allocate their workforce between the two food sources. In this allocation, the most profitable feeder (i.e. the feeder with the highest concentration of sugar syrup) was usually exploited by the majority of ants. The particular form of the nonlinear feedback in trail foraging means that when we offered the ants a choice between two feeders of equal profitability, foraging was biased to the feeder with the highest initial number of visitors. Taken together, our experiments illuminate how pheromones provide a mechanism whereby ants can efficiently allocate their workforce among the available food sources without centralized control.  相似文献   

15.
The use of pheromone trails in ant colony organization is an important model for understanding collective decision‐making and complex adaptive systems. The ant Lasius niger L. (Hymenoptera: Fomicidae) is one of the main model organisms used for such studies. Key to understanding pheromone trail use by ants is knowing how well trails are followed. The results of a previous study suggest that L. niger trail following is poor, with between 60% and 70% accuracy at a T bifurcation. It is hypothesized that the true trail following accuracy is higher, and that the low accuracy reported previously is the result of a methodological error. Specifically, it is hypothesized that ‘task state’ (i.e. what the ants ‘thought they were doing’) affected pheromone following accuracy. In the present study, the task state of the ants is set experimentally to one of three states: scouting (completely naive), recruited (having information that food has been found, but not where it is) and shuttling (having a strong memory of the location of a food source). Trail following accuracy is tested for each group. Trail following is found to be more accurate than previously reported: 83%, 82% and 74% correct decisions for scouts, recruits and shuttlers, respectively. However, the difference between the three groups is not significant. Importantly, very high inter‐trial variation is reported both in the present study and in experiments from other research groups. This variation is unexplainable by trail strengths or colony‐level differences, and is highlighted as an important factor when experimentally measuring trail following.  相似文献   

16.
1. Ants using trails to forage have to select between two alternative routes at bifurcations, using two, potentially conflicting, sources of information to make their decision: individual experience to return to a previous successful foraging site (i.e. fidelity) and ant traffic. In the field, we investigated which of these two types of information individuals of the leaf‐cutting ant Acromyrmex lobicornis Emery use to decide which foraging route to take. 2. We measured the proportion of foraging ants returning to each trail of bifurcations the following day, and for 4–7 consecutive days. We then experimentally increased ant traffic on one trail of the bifurcation by adding additional food sources to examine the effect of increased ant traffic on the decision that ants make. 3. Binomial tests showed that for 62% of the trails, ant fidelity was relatively more important than ant traffic in deciding which bifurcation to follow, suggesting the importance of previous experience. 4. When information conflict was generated by experimentally increasing ant traffic along the trail with less foraging activity, most ants relied on ant traffic to decide. However, in 33% of these bifurcations, ants were still faithful to their trail. Thus, there is some degree of flexibility in the decisions that A. lobicornis make to access food resources. 5. This flexible fidelity results in individual variation in the response of workers to different levels of ant traffic, and allows the colony to simultaneously exploit both established and recently discovered food patches, aiding efficient food gathering.  相似文献   

17.
Recruitment to food or nest sites is well known in ants; the recruiting ants lay a chemical trail that other ants follow to the target site, or they walk with other ants to the target site. Here we report that a different process determines foraging direction in the harvester ant Pogonomyrmex barbatus. Each day, the colony chooses from among up to eight distinct foraging trails; colonies use different trails on different days. Here we show that the patrollers regulate the direction taken by foragers each day by depositing Dufour's secretions onto a sector of the nest mound about 20 cm long and leading to the beginning of a foraging trail. The patrollers do not recruit foragers all the way to food sources, which may be up to 20 m away. Fewer foragers traveled along a trail if patrollers had no access to the sector of the nest mound leading to that trail. Adding Dufour's gland extract to patroller-free sectors of the nest mound rescued foraging in that direction, while poison gland extract did not. We also found that in the absence of patrollers, most foragers used the direction they had used on the previous day. Thus, the colony's 30-50 patrollers act as gatekeepers for thousands of foragers and choose a foraging direction, but they do not recruit and lead foragers all the way to a food source.  相似文献   

18.
Many social insects use pheromones to communicate and coordinatetheir activities. Investigation of intraspecific differencesin pheromone use is a new area of social insect research. Forexample, interindividual variation in alarm pheromone contenthas been found in physical castes of polymorphic ants. Manyant species use multiple trail pheromones. Here we present novelresearch into trail pheromone variations between behavioralsubcastes of pharaoh ants, Monomorium pharaonis. Monomoriumpharaonis is attracted to trail pheromones found in its poisonglands (monomorines) and Dufour's glands (faranal). We showthat the most abundant monomorines, I (M1) and III (M3), canbe readily detected in pheromone trails. A behaviorally distinctsubcaste known as "pathfinder" foragers can relocate long-livedpheromone trails. Chemical analysis showed that pathfinder foragershad low M3:M1 ratios (mean 3.09 ± 1.53, range 1.03–7.10).Nonpathfinder foragers had significantly greater M3:M1 ratios(38.3 ± 60.0, range 3.54–289). We found that M3:M1ratio did not differ between foragers of different age but wascorrelated with behavioral subcaste at all ages. The relativeabundance of M3:M1 on foraging trails ranged from 3.03–41.3over time during pheromone trail build-up. M3:M1 ratio alsovaried spatially throughout trail networks, being lowest ontrail sections closest to a food source (M3:M1 = 1.9–3.61)and highest near the nest (M3:M1 = 67–267). Our resultsindicate a functional role for differences in pheromone trailcomposition, whereby pathfinder foragers might preferentiallymark sections of pheromone trail networks for future exploration.  相似文献   

19.
We study the influence of food distance on the individual foraging behaviour of Lasius niger scouts and we investigate which cue they use to assess their distance from the nest and accordingly tune their recruiting behaviour. Globally, the number of U-turns made by scouts increases with distance resulting in longer travel times and duration of the foraging cycle. However, over familiar areas, home-range marking reduces the frequency and thereby the impact of U-turns on foraging times leading to a quicker exploitation of food sources than over unmarked set-ups. Regarding information transfer, the intensity of the recruitment trail reaching the nest decreases with increasing food distance for all set-ups and is even more reduced in the absence of home-range marking. Hence, the probability of a scout continuing to lay a trail changes along the homeward journey but in a different way according to home-range marking. Over unexplored setups, at a given distance from the food source, the percentage of returning trail-laying ants remains unchanged for all tested nest-feeder distances. Hence, the tuning of the trail recruiting signal by scouts was not influenced by an odometric estimate of the distance already travelled by the ants during their outward journey to the food. By contrast, over previously explored set-ups, a distance-related factor – that is the intensity of home-range marking – strongly influences their recruiting behaviour. In fact, over a home-range marked bridge, the probability of returning ants maintaining their trail-laying behaviour increases with decreasing food distance while the gradient of home-range marks even induces ants which have stopped laying a trail to resume this behaviour in the nest vicinity. We suggest that home-range marking laid passively by walking ants is a relevant cue for scouts to indirectly assess distance from the nest but also local activity level or foraging risks in order to adaptively tune trail recruitment and colony foraging dynamics. Received 13 July 2004; revised 26 January and 20 May 2005; accepted 2 July 2005.  相似文献   

20.
During foraging, worker ants are known for making use of many information sources to guide themselves in external environments, especially individual (memory) and social (trail pheromone) information. Both kinds of information act in a synergic way, keeping the foraging process efficient and organized. However, when social and individual information is conflicting face a trail bifurcation, it is necessary to establish a hierarchical order so prioritizing one of them. This study aims to verify which information (social or individual) is prioritized by Acromyrmex subterraneus workers when facing a bifurcation in a Y-trail system. Only one branch of the Y-trail leads to food resource and it had a section covered by filter paper where trail pheromone was deposited by workers. Pheromone deposition was here estimated by worker flow. After an individually marked forager (target-worker) made 1, 3 or 5 trips to the food resource, the filter paper was transferred to the branch which did not lead to the food. The time spent by target workers on branch selection and their right choice (branch with food) frequency were registered. Regardless of the target worker's previous trips to the resource, right choice frequency stood over 70%. In addition, the number of previous trips did not influence the time spent on decision making. However, the higher the flow of workers, the longer the time spent on decision making. By simulating a situation with conflicting information, it was possible to verify that a hierarchical order is established by A. subterraneus, which prioritized individual information (memory).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号