首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the epithelium of rat distal colon the acetylcholine analogue carbachol induces a transient increase of short-circuit current (Isc) via stimulation of cellular K+ conductances. Inhibition of the turnover of inositol-1,4,5-trisphosphate (IP3) by LiCl significantly reduced both the amplitude and the duration of this response. When the apical membrane was permeabilized with nystatin, LiCl nearly abolished the carbachol-induced activation of basolateral K+ conductances. In contrast, in epithelia, in which the basolateral membrane was bypassed by a basolateral depolarization, carbachol induced a biphasic increase in the K+ current across the apical membrane consisting of an early component carried by charybdotoxin- and tetraethylammonium-sensitive K+ channels followed by a sustained plateau carried by channels insensitive against these blockers. Only the latter was sensitive against LiCl or inhibition of protein kinases. In contrast, the stimulation of the early apical K+ conductance by carbachol proved to be resistant against inhibition of phospholipase C or protein kinases. However, apical dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, or a Ca2+-free mucosal buffer solution significantly reduced the early component of the carbachol-induced apical K+ current. The presence of an apically localized Na+/Ca2+-exchanger was proven immunohistochemically. Taken together these experiments reveal divergent regulatory mechanisms for the stimulation of apical Ca2+-dependent K+ channels in this secretory epithelium, part of them being activated by an inflow of Ca2+ across the apical membrane.
G. SchultheissEmail:
  相似文献   

2.
Purinergic signalling in rat GFSHR-17 granulosa cells was characterised by Ca2+-imaging and perforated patch-clamp. We observed a resting intracellular Ca2+-concentration ([Ca2+]i) of 100 nM and a membrane potential of −40 mV. This was consistent with high K+− and Cl permeability and a high intracellular Cl concentration of 40 mM. Application of ATP for 5–15 s every 3 min induced repeated [Ca2+]i increases and a 30 mV hyperpolarization. The phospholipase C inhibitor U73122 or the IP3-receptor antagonist 2-aminoethoethyl diphenyl borate suppressed ATP responses. Further biochemical and pharmacological experiments revealed that ATP responses were related to stimulation of P2Y2 and P2Y4 receptors and that the [Ca2+]i increase was a prerequisite for hyperpolarization. Inhibitors of Ca2+-activated channels or K+ channels did not affect the ATP-evoked responses. Conversely, inhibitors of Cl channels hyperpolarized cells to −70 mV and suppressed further ATP-evoked hyperpolarization. We propose that P2Y2 and P2Y4 receptors in granulosa cells modulate Cl permeability by regulating Ca2+-release.  相似文献   

3.
Platelets have been shown to migrate and thus to invade the vascular wall. Platelet migration is stimulated by SDF-1. In other cell types, migration is dependent on Ca2+ entry via Ca2+ channels. Ca2+ influx is sensitive to cell membrane potential which is maintained by K+ channel activity and/or Cl channel activity. The present study explored the role of ion channels in the regulation of SDF-1 induced migration. Platelets were isolated from human volunteers as well as from gene targeted mice lacking the Ca2+ activated K+ channel SK4 (sk4−/−) and their wild type littermates (sk4+/+). According to confocal microscopy human platelets expressed the Ca2+ channel Orai1 and the Ca2+-activated K+ channel KCa3.1 (SK4). SDF-1 (100 ng/ml) stimulated migration in human platelets, an effect blunted by Orai1 inhibitors 2-aminoethoxydiphenyl borate 2-APB (10 μM) and SKF-96365 (10 μM), by unspecific K+ channel inhibitor TEA (30 mM), by SK4 specific K+ channel blocker clotrimazole (10 μM), but not by Cl channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid NPPB (100 μM). Significant stimulation of migration by SDF-1 was further observed in sk4+/+ platelets but was virtually absent in sk4−/− platelets. In conclusion, platelet migration requires activity of the Ca2+ channel Orai1 and of the Ca2+ activated K+ channel SK4, but not of NPPB-sensitive Cl channels.  相似文献   

4.
The whole-cell patch-clamp technique has been used to study membrane currents in cultured rabbit medullary thick ascending limb (MTAL) epithelial cells. A Ca2+-activated K+ current was characterized by its voltage-dependent and Ca2+-dependent properties. When the extracellular K+ ion concentration was increased from 2 to 140 mm, the rereversal potential (Ek) was shifted from –85 to 0 mV with a slope of 46 mV per e-fold change. The Ca2+-activated K+ current is blocked by charybdotoxin (CTX) in a manner similar to the apical membrane Ca2+-activated K+ channel studied with the single channel patch-clamp technique. The results suggest that the Ca2+-activated K+ current is the predominant, large conductance and Ca2+-dependent K+ pathway in the cultured MTAL cell apical membrane. The biophysical properties and physiological regulation of a Cl current were also investigated. This current was activated by stimulation of intracellular cAMP using forskolin and isobutyl-1-methylxanthine (IBMX). The current-voltage (I–V) relationship of the Cl current showed an outward-rectifying pattern in symmetrical Cl solution. The Cl selectivity of the whole-cell current was confirmed by tail current analysis in different Cl concentration bath solutions. Several Cl channel blockers were found to be effective in blocking the outward-rectifying Cl current in MTAL cells. The cAMP-dependent Cl transport in MTAL cells was further confirmed by measuring changes in the intensity of Cl sensitive dye using fluorescence microscopy. These results suggest that the Cl channel in the apical or basolateral membrane of MTAL cells may be regulated by cAMP-dependent protein-kinase-induced phosphorylation.This study was supported by the National Institutes of Health grants GM46834 to L.L. and DK32753 to W.B.G., and by a Grant-in-Aid from the American Heart Association of Ohio to L.L.  相似文献   

5.
Summary Cell-attached patch-clamp recordings from Ehrlich ascites tumor cells reveal nonselective cation channels which are activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette or after osmotic cell swelling. The channel activation does not occur instantaneously but within a time delay of 1/2 to 1 min. The channel is permeable to Ba2+ and hence presumably to Ca2+. It seems likely that the function of the nonselective, stretch-activated channels is correlated with their inferred Ca2+ permeability, as part of the volume-activated signal system. In isolated insideout patches a Ca2+-dependent, inwardly rectifying K+ channel is demonstrated. The single-channel conductance recorded with symmetrical 150 mm K+ solutions is for inward current estimated at 40 pS and for outward current at 15 pS. Activation of the K+ channel takes place after an increase in Ca2+ from 10–7 to 10–6 m which is in the physiological range. Patch-clamp studies in cellattached mode show K+ channels with spontaneous activity and with characteristics similar to those of the K+ channel seen in excised patches. The single-channel conductance for outward current at 5 mm external K+ is estimated at about 7 pS. A K+ channel with similar properties can be activated in the cellattached mode by addition of Ca2+ plus ionophore A23187. The channel is also activated by cell swelling, within 1 min following hypotonic exposure. No evidence was found of channel activation by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches of stretch-activated, nonselective cation channels and K+ channels in the presence of 3 mm Ca2+ in the pipette suggests a close spatial relationship between the two channels. In excised inside-out patches (with NMDG chloride on both sides) a small 5-pS chloride channel with low spontaneous activity is observed. The channel activity was not dependent on Ca2+ and could not be activated by membrane stretch (suction). In cell-attached mode singlechannel currents with characteristics similar to the channels seen in isolated patches are seen. In contrast to the channels seen in isolated patches, the channels in the cell-attached mode could be activated by addition of Ca2+ plus ionophore A23187. The channel is also activated by hypotonic exposure with a single-channel conductance at 7 pS (or less) and with a time delay at about 1 min. The number of open channels during RVD is estimated at 80 per cell. Two other types of Cl channels were regularly recorded in excised inside-out patches: a voltage-activated 400-pS channel and a 34-pS Cl channel which show properties similar to the Cl channel in the apical membrane in human airway epithelial cells. There is no evidence for a role in RVD for either of these two channels.  相似文献   

6.
Z. Ping  I. Yabe  S. Muto 《Protoplasma》1992,171(1-2):7-18
Summary K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cell suspension cultures have been investigated using the patch-clamp technique. In symmetrical 100mM K+, K+ channels opened at positive vacuolar membrane potentials (cytoplasmic side as reference) had different conductances of 57 pS and 24 pS. K+ channel opened at negative vacuolar membrane potentials had a conductance of 43 pS. The K+ channels showed a significant discrimination against Na+ and Cl. The Cl channel opened at positive vacuolar membrane potentials for cytoplasmic Cl influx had a high conductance of 110pS in symmetrical 100mM Cl. When K+ and Cl channels were excluded from opening, no traces were found of Ca2+ channel activity for vacuolar Ca2+ release induced by inositol 1,4,5-trisphosphate or other events. However, we found a 19pS Ca2+ channel which allowed influx of cytoplasmic Ca2+ into the vacuole when the Ca2+ concentration on the cytoplasmic side was high. When Ca2+ was substituted by Ba2+, the conductance of the 19 pS channel became 30 pS and the channel showed a selectivity sequence of Ba2+Sr2+Ca2+Mg2+=10.60.60.21. The reversal potentials of the channel shifted with the change in Ca2+ concentration on the vacuolar side. The channel could be efficiently blocked from the cytoplasmic side by Cd2+, but was insensitive to La3+, Gd3+, Ni2+, verapamil, and nifedipine. The related ion channels in freshly isolated vacuoles from red beet root cells were also recorded. The coexistence of the K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cells might imply a precise classification and cooperation of the channels in the physiological process of plant cells.  相似文献   

7.
Ole H. Petersen   《Cell calcium》2003,33(5-6):337
Studies of Ca2+ transport pathways in exocrine gland cells have been useful, chiefly because of the polarized nature of the secretory epithelial cells. In pancreatic acinar cells, for example, Ca2+ reloading of empty intracellular stores can occur solely via Ca2+ entry through the basal part of the plasma membrane. On the other hand, the principal site for intracellular Ca2+ release—with the highest concentration of inositol 1,4,5-trisphosphate (IP3) receptors—is in the apical secretory pole close to the apical plasma membrane. This apical part of the plasma membrane contains the highest density of Ca2+ pumps and is therefore the principal site for Ca2+ extrusion. On the basis of the known properties of Ca2+ entry and exit pathways in exocrine gland cells, the mechanisms controlling Ca2+ exit and entry are discussed in relation to recent direct information about Ca2+ transport into and out of the endoplasmic reticulum (ER) and the mitochondria in these cells.  相似文献   

8.
9.
Electrical signals, including action potential (AP), play an important role in plant adaptation to the changing environmental conditions. Experimental and theoretical investigations of the mechanisms of AP generation are required to understand the relationships between environmental factors and electrical activity of plants. In this work we have elaborated a mathematical model of AP generation, which takes into account the participation of vacuole in the generation of electrical response. The model describes the transporters of the plasma membrane (Ca2+, Cl, and K+ channels, H+- and Ca2+-ATPases, H+/K+ antiporter, and 2H+/Cl symporter) and the tonoplast (Ca2+, Cl, and K+ channels; H+- and Ca2+-ATPases; H+/K+, 2H+/Cl, and 3H+/Ca2+ antiporters), with due consideration of their regulation by second messengers (Ca2+ and IP3). The apoplastic, cytoplasmic and vacuolar buffers are also described. The properties of the simulated AP are in good agreement with experimental data. The AP model describes the attenuation of electrical signal with an increase in the vacuole area and volume; this effect is related to a decrease in the Ca2+ spike magnitude. The electrical signal was weakly influenced by the K+ and Cl content in the vacuole. It was also shown that the contribution of vacuolar IP3-dependent Ca2+ channels into the generation of calcium spike during AP was insignificant with the given parameters of the model. The results provide theoretical evidence for the significance of the vacuolar area and volume in plant cell excitability.  相似文献   

10.
The actions of intracellular pH (pH i ) on Ca2+dependent Cl? channels were studied in secretory epithelial cells derived from human colon carcinoma (T84) and in isolated rat parotid acinar cells. Channel currents were measured with the whole cell voltage clamp technique with pipette solutions of different pH. Ca2+dependent Cl? channels were activated by superfusing ionomycin to increase the intracellular calcium concentration ([Ca2+] i ) or by using pipette solutions with buffered Ca2+ levels. Large currents were activated in T84 and parotid cells by both methods with pH i levels of 7.3 or 8.3. Little or no Cl? channel current was activated with pH i at 6.4. We used on-cell patch clamp methods to investigate the actions of low pH i on single Cl? channel current amplitude in T84 cells. Lowering the pH i had little or no effect on the current amplitude of a 8 pS Cl? channel, but did reduce channel activity. These results suggest that cytosolic acidification may be able to modulate stimulus-secretion coupling in fluid-secreting epithelia by inhibiting the activation of Ca2+-activated Cl? channels.  相似文献   

11.
As in other salivary glands, the secretory cells of the sheep parotid have a resting K+ conductance that is dominated by BK channels, which are activated by acetylcholine (ACh) and are blocked by tetraethylammonium (TEA). Nevertheless, perfusion studies indicate that TEA does not inhibit ACh-evoked fluid secretion or K+ efflux from intact sheep parotid glands. In the present study, we have used whole-cell patch clamp techniques to show that ACh activates K+ and Cl conductances in sheep parotid secretory cells by increasing intracellular free Ca2+, and we have compared the blocker sensitivity of the ACh-evoked whole-cell K+ current to the previously reported blocker sensitivity of the BK channels seen in these cells.The ACh-induced whole-cell K+ current was not blocked by TEA (10 mmol/l) or verapamil (100 mol/l), both of which block the resting K+ conductance and inhibit BK channels in these cells. Quinine (1 mmol/l) and quinidine (1 mmol/l), although only weak blockers of the resting K+ conductance, inhibited the ACh-evoked current at 0 mV (K+ current), by 68% and 78%, respectively. 4-Aminopyridine (10 mmol/l) partially inhibited the ACh-induced K+ current and caused it to fluctuate. It also caused the resting membrane currents to fluctuate, possibly by altering cytosolic free Ca2+. Ba2+ (100 mol/l), a blocker of the inwardly rectifying K+ conductance in sheep parotid cells, had no effect on the ACh-induced K+ current.We conclude that the ACh-induced K+ conductance in sheep parotid cells is pharmacologically distinct from both the outwardly rectifying (BK) K+ conductance and the inwardly rectifying K+ conductance seen in unstimulated cells. Given that in vitro perfusion and K+ efflux studies on other salivary glands in which BK channels dominate the resting conductance (e.g., the rat mandibular, rat parotid and mouse mandibular glands) have revealed an insensitivity to TEA, suggesting that BK channels do not carry the ACh-evoked K+ current, we propose that BK channels do not contribute substantially to the K+ current evoked by ACh in the secretory cells of most salivary glands.This project was supported by the Australian Research Council. We thank Dr. N. Sangster, Dr. J. Rothwell and Mr. R. Murphy for giving us access to their sheep.  相似文献   

12.
Summary This paper reports experiments designed to assess the relations between net salt absorption and transcellular routes for ion conductance in single mouse medullary thick ascending limbs of Henle microperfusedin vitro. The experimental data indicate that ADH significantly increased the transepithelial electrical conductance, and that this conductance increase could be rationalized in terms of transcellular conductance changes. A minimal estimate (G c min ) of the transcellular conductance, estimated from Ba++ blockade of apical membrane K+ channels, indicated thatG c min was approximately 30–40% of the measured transepithelial conductance. In apical membranes, K+ was the major conductive species; and ADH increased the magnitude of a Ba++-sensitive K+ conductance under conditions where net Cl absorption was nearly abolished. In basolateral membranes, ADH increased the magnitude of a Cl conductance; this ADH-dependent increase in basal Cl conductance depended on a simultaneous hormone-dependent increase in the rate of net Cl absorption. Cl removal from luminal solutions had no detectable effect onG e , and net Cl absorption was reduced at luminal K+ concentrations less than 5mm; thus apical Cl entry may have been a Na+,K+,2Cl cotransport process having a negligible conductance. The net rate of K+ secretion was approximately 10% of the net rate of Cl absorption, while the chemical rate of net Cl absorption was virtually equal to the equivalent short-circuit current. Thus net Cl absorption was rheogenic; and approximately half of net Na+ absorption could be rationalized in terms of dissipative flux through the paracellular pathway. These findings, coupled with the observation that K+ was the principal conductive species in apical plasma membranes, support the view that the majority of K+ efflux from cell to lumen through the Ba++-sensitive apical K+ conductance pathway was recycled into cells by Na+,K+,2Cl cotransport.  相似文献   

13.
Airway submucosal glands are important sites of cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl) channel expression and fluid secretion in the airway. Whereas both mouse and human submucosal glands and their serous acinar cells express CFTR, human glands and serous cells secrete much more robustly than mouse cells/glands in response to cAMP-generating agonists such as forskolin and vasoactive intestinal peptide. In this study, we examined mouse and human serous acinar cells to explain this difference and reveal further insights into the mechanisms of serous cell secretion. We found that mouse serous cells possess a robust cAMP-activated CFTR-dependent Cl permeability, but they lack cAMP-activated calcium (Ca2+) signaling observed in human cells. Similar to human cells, basal K+ conductance is extremely small in mouse acinar cells. Lack of cAMP-activated Ca2+ signaling in mouse cells results in the absence of K+ conductances required for secretion. However, cAMP activates CFTR-dependent fluid secretion during low-level cholinergic stimulation that fails to activate secretion on its own. Robust CFTR-dependent fluid secretion was also observed when cAMP stimulation was combined with direct pharmacological activation of epithelial K+ channels with 1-ethyl-2-benzimidazolinone (EBIO). Our data suggest that mouse serous cells lack cAMP-mediated Ca2+ signaling to activate basolateral membrane K+ conductance, resulting in weak cAMP-driven serous cell fluid secretion, providing the likely explanation for reduced cAMP-driven secretion observed in mouse compared with human glands.  相似文献   

14.
Cytoplasmic Ca2+ is a master regulator of airway physiology; it controls fluid, mucus, and antimicrobial peptide secretion, ciliary beating, and smooth muscle contraction. The focus of this review is on the role of cytoplasmic Ca2+ in fluid secretion by airway exocrine secretory cells. Airway submucosal gland serous acinar cells are the primary fluid secreting cell type of the cartilaginous conducting airways, and this review summarizes the current state of knowledge of the molecular mechanisms of serous cell ion transport, with an emphasis on their regulation by intracellular Ca2+. Many neurotransmitters that regulate secretion from serous acinar cells utilize Ca2+ as a second messenger. Changes in intracellular Ca2+ concentration regulate the activities of ion transporters and channels involved in transepithelial ion transport and fluid secretion, including Ca2+-activated K+ channels and Cl channels. We also review evidence of interactions of Ca2+ signaling with other signaling pathways (cAMP, NO) that impinge upon different ion transport pathways, including the cAMP/PKA-activated cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel. A better understanding of Ca2+ signaling and its targets in airway fluid secretion may identify novel strategies to intervene in airway diseases, for example to enhance fluid secretion in CF airways.  相似文献   

15.
Internodal cells of a brackish water charophyte,Lamprothamnium succinctum (A. Br. in Ash.) R.D.W. regulate the turgor pressure in response to changes in both the cellular and the external osmotic pressures. During turgor regulation upon hypotonic treatment, net effluxes of K+ and Cl from the vacuole, membrane depolarization, a transient increase in the electrical membrane conductance and a transient increase in concentration of cytoplasmic Ca2+ are induced. Activation of the plasmalemma Ca2+ channels and the Ca2+-controlled passive effluxes of K+ and Cl through the plasmalemma ion channels are postulated.  相似文献   

16.
Summary The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (–47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Ca i ) from 200 to 2 nm or increasing the external [Ca2+] (Ca o ) from 1 to 10 mm increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Ca o also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. –160 mV, indicating that the Ca2– block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Ca i -, and Ca o -dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Ca i . Changes in Ca o and (associated) changes in Ca i regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.This work was supported by grants to S.M.A. from NSF (DCB-8904041) and from the McKnight Foundation. K.F.-G. is a Charles Gilbert Heydon Travelling Fellow. The authors thank Dr. R. MacKinnon (Harvard Medical School) and two anonymous reviewers for helpful comments.  相似文献   

17.
IRBIT (also called AHCYL1) was originally identified as a binding protein of the intracellular Ca2 + channel inositol 1,4,5-trisphosphate (IP3) receptor and functions as an inhibitory regulator of this receptor. Unexpectedly, many functions have subsequently been identified for IRBIT including the activation of multiple ion channels and ion transporters, such as the Na+/HCO3 co-transporter NBCe1-B, the Na+/H+ exchanger NHE3, the Cl channel cystic fibrosis transmembrane conductance regulator (CFTR), and the Cl/HCO3 exchanger Slc26a6. The characteristic serine-rich region in IRBIT plays a critical role in the functions of this protein. In this review, we describe the evolution, domain structure, expression pattern, and physiological roles of IRBIT and discuss the potential molecular mechanisms underlying the coordinated regulation of these diverse ion channels/transporters through IRBIT. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

18.
Summary The net loss of KCl observed in Ehrlich ascites cells during regulatory volume decrease (RVD) following hypotonic exposure involves activation of separate conductive K+ and Cl transport pathways. RVD is accelerated when a parallel K+ transport pathway is provided by addition of gramicidin, indicating that the K+ conductance is rate limiting. Addition of ionophore A23187 plus Ca2+ also activates separate K+ and Cl transport pathways, resulting in a hyperpolarization of the cell membrane. A calculation shows that the K+ and Cl conductance is increased 14-and 10-fold, respectively. Gramicidin fails to accelerate the A23187-induced cell shrinkage, indicating that the Cl conductance is rate limiting. An A23187-induced activation of42K and36Cl tracer fluxes is directly demonstrated. RVD and the A23187-induced cell shrinkage both are: (i) inhibited by quinine which blocks the Ca2+-activated K+ channel. (ii) unaffected by substitution of NO 3 or SCN for Cl, and (iii) inhibited by the anti-calmodulin drug pimozide. When the K+ channel is blocked by quinine but bypassed by addition of gramicidin, the rate of cell shrinkage can be used to monitor the Cl conductance. The Cl conductance is increased about 60-fold during RVD. The volume-induced activation of the Cl transport pathway is transient, with inactivation within about 10 min. The activation induced by ionophore A23187 in Ca2+-free media (probably by release of Ca2+ from internal stores) is also transient, whereas the activation is persistent in Ca2+-containing media. In the latter case, addition of excess EGTA is followed by inactivation of the Cl transport pathway. These findings suggest that a transient increase in free cytosolic Ca2+ may account for the transient activation of the Cl transport pathway. The activated anion transport pathway is unselective, carrying both Cl, Br, NO 3 , and SCN. The anti-calmodulin drug pimozide blocks the volume- or A23187-induced Cl transport pathway and also blocks the activation of the K+ transport pathway. This is demonstrated directly by42K flux experiments and indirectly in media where the dominating anion (SCN) has a high ground permeability. A comparison of the A23187-induced K+ conductance estimated from42K flux measurements at high external K+, and from net K flux measurements suggests single-file behavior of the Ca2+-activated K+ channel. The number of Ca2+-activated K+ channels is estimated at about 100 per cell.  相似文献   

19.
Plasma membrane large-conductance Ca2+-activated K+ (BKCa) channels and sarcoplasmic reticulum inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are expressed in a wide variety of cell types, including arterial smooth muscle cells. Here, we studied BKCa channel regulation by IP3 and IP3Rs in rat and mouse cerebral artery smooth muscle cells. IP3 activated BKCa channels both in intact cells and in excised inside-out membrane patches. IP3 caused concentration-dependent BKCa channel activation with an apparent dissociation constant (Kd) of ∼4 µM at physiological voltage (−40 mV) and intracellular Ca2+ concentration ([Ca2+]i; 10 µM). IP3 also caused a leftward-shift in BKCa channel apparent Ca2+ sensitivity and reduced the Kd for free [Ca2+]i from ∼20 to 12 µM, but did not alter the slope or maximal Po. BAPTA, a fast Ca2+ buffer, or an elevation in extracellular Ca2+ concentration did not alter IP3-induced BKCa channel activation. Heparin, an IP3R inhibitor, and a monoclonal type 1 IP3R (IP3R1) antibody blocked IP3-induced BKCa channel activation. Adenophostin A, an IP3R agonist, also activated BKCa channels. IP3 activated BKCa channels in inside-out patches from wild-type (IP3R1+/+) mouse arterial smooth muscle cells, but had no effect on BKCa channels of IP3R1-deficient (IP3R1−/−) mice. Immunofluorescence resonance energy transfer microscopy indicated that IP3R1 is located in close spatial proximity to BKCa α subunits. The IP3R1 monoclonal antibody coimmunoprecipitated IP3R1 and BKCa channel α and β1 subunits from cerebral arteries. In summary, data indicate that IP3R1 activation elevates BKCa channel apparent Ca2+ sensitivity through local molecular coupling in arterial smooth muscle cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号