首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limited migration results in kin selective pressure on helping behaviors under a wide range of ecological, demographic and life-history situations. However, such genetically determined altruistic helping can evolve only when migration is not too strong and group size is not too large. Cultural inheritance of helping behaviors may allow altruistic helping to evolve in groups of larger size because cultural transmission has the potential to markedly decrease the variance within groups and augment the variance between groups. Here, we study the co-evolution of culturally inherited altruistic helping behaviors and two alternative cultural transmission rules for such behaviors. We find that conformist transmission, where individuals within groups tend to copy prevalent cultural variants (e.g., beliefs or values), has a strong adverse effect on the evolution of culturally inherited helping traits. This finding is at variance with the commonly held view that conformist transmission is a crucial factor favoring the evolution of altruistic helping in humans. By contrast, we find that under one-to-many transmission, where individuals within groups tend to copy a “leader” (or teacher), altruistic helping can evolve in groups of any size, although the cultural transmission rule itself hitchhikes rather weakly with a selected helping trait. Our results suggest that culturally determined helping behaviors are more likely to be driven by “leaders” than by popularity, but the emergence and stability of the cultural transmission rules themselves should be driven by some extrinsic factors.  相似文献   

2.
When individuals in a population can acquire traits through learning, each individual may express a certain number of distinct cultural traits. These traits may have been either invented by the individual himself or acquired from others in the population. Here, we develop a game theoretic model for the accumulation of cultural traits through individual and social learning. We explore how the rates of innovation, decay, and transmission of cultural traits affect the evolutionary stable (ES) levels of individual and social learning and the number of cultural traits expressed by an individual when cultural dynamics are at a steady‐state. We explore the evolution of these phenotypes in both panmictic and structured population settings. Our results suggest that in panmictic populations, the ES level of learning and number of traits tend to be independent of the social transmission rate of cultural traits and is mainly affected by the innovation and decay rates. By contrast, in structured populations, where interactions occur between relatives, the ES level of learning and the number of traits per individual can be increased (relative to the panmictic case) and may then markedly depend on the transmission rate of cultural traits. This suggests that kin selection may be one additional solution to Rogers's paradox of nonadaptive culture.  相似文献   

3.
Cultural niche construction and the evolution of small family size   总被引:2,自引:0,他引:2  
A model of cultural niche construction with two culturally transmitted traits is examined. The frequency of individuals with a certain general predisposition, which is transmitted vertically, plays a role as the cultural background, or the cultural niche, of the population. The cultural background determines the rate of oblique, relative to vertical, transmission of another cultural trait that affects fertility of individuals. It is assumed that individuals with fewer offspring are more likely to achieve social roles that influence the succeeding generation and are therefore overrepresented as transmitters in the process of oblique transmission. Our model suggests that even a slight overrepresentation of those with fewer offspring can drive the evolution of small family size, provided that the rate of oblique transmission depends strongly on the cultural background. In addition, our model may help to explain the time lag between the decrease in death rates and the subsequent decrease in birth rates during the demographic transition of industrializing societies.  相似文献   

4.
Henrich [Henrich, J., 2004. Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses—the Tasmanian case. Am. Antiquity 69, 197-214] proposed a model designed to show that larger population size facilitates cumulative cultural evolution toward higher skill levels. In this model, each newborn attempts to imitate the most highly skilled individual of the parental generation by directly-biased social learning, but the skill level he/she acquires deviates probabilistically from that of the exemplar (cultural parent). The probability that the skill level of the imitator exceeds that of the exemplar can be regarded as the innovation rate. After reformulating Henrich’s model rigorously, we introduce an overlapping-generations analog based on the Moran model and derive an approximate formula for the expected change per generation of the highest skill level in the population. For large population size, our overlapping-generations model predicts a much larger effect of population size than Henrich’s discrete-generations model. We then investigate by way of Monte Carlo simulations the case where each newborn chooses as his/her exemplar the most highly skilled individual from among a limited number of acquaintances. When the number of acquaintances is small relative to the population size, we find that a change in the innovation rate contributes more than a proportional change in population size to the cumulative cultural evolution of skill level.  相似文献   

5.
Cultural niche construction in a metapopulation   总被引:2,自引:0,他引:2  
Cultural niche construction is the process by which certain evolving cultural traits form a cultural niche that affects the evolution of other genetic and cultural traits [Laland, K., et al., 2001. Cultural niche construction and human evolution. J. Evol. Biol. 14, 22-33; Ihara, Y., Feldman, M., 2004. Cultural niche construction and the evolution of small family size. Theor. Popul. Biol. 65, 105-111]. In this study we focus on cultural niche construction in a metapopulation (a population of populations), where the frequency of one cultural trait (e.g. the level of education) determines the transmission rate of a second trait (e.g. the adoption of fertility reduction preferences) within and between populations. We formulate the Metapopulation Cultural Niche Construction (MPCNC) model by defining the cultural niche induced by the first trait as the construction of a social interaction network on which the second trait may percolate. Analysis of the model reveals dynamics that are markedly different from those observed in a single population, allowing, for example, different (or even opposing) dynamics in each population. In particular, this model can account for the puzzling phenomenon reported in previous studies [Bongaarts, J., Watkins, S., 1996. Social interactions and contemporary fertility transitions. Popul. Dev. Rev. 22 (4), 639-682] that the onset of the demographic transition in different countries occurred at ever lower levels of development.  相似文献   

6.
Cultural variation in a population is affected by the rate of occurrence of cultural innovations, whether such innovations are preferred or eschewed, how they are transmitted between individuals in the population, and the size of the population. An innovation, such as a modification in an attribute of a handaxe, may be lost or may become a property of all handaxes, which we call “fixation of the innovation.” Alternatively, several innovations may attain appreciable frequencies, in which case properties of the frequency distribution—for example, of handaxe measurements—is important. Here we apply the Moran model from the stochastic theory of population genetics to study the evolution of cultural innovations. We obtain the probability that an initially rare innovation becomes fixed, and the expected time this takes. When variation in cultural traits is due to recurrent innovation, copy error, and sampling from generation to generation, we describe properties of this variation, such as the level of heterogeneity expected in the population. For all of these, we determine the effect of the mode of social transmission: conformist, where there is a tendency for each naïve newborn to copy the most popular variant; pro-novelty bias, where the newborn prefers a specific variant if it exists among those it samples; one-to-many transmission, where the variant one individual carries is copied by all newborns while that individual remains alive. We compare our findings with those predicted by prevailing theories for rates of cultural change and the distribution of cultural variation.  相似文献   

7.
Because culture requires transmission of information between individuals, thinking about the origin of culture has mainly focused on the genetic evolution of abilities for social learning. Current theory considers how social learning affects the adaptiveness of a single cultural trait, yet human culture consists of the accumulation of very many traits. Here we introduce a new modeling strategy that tracks the adaptive value of many cultural traits, showing that genetic evolution favors only limited social learning owing to the accumulation of maladaptive as well as adaptive culture. We further show that culture can be adaptive, and refined social learning can evolve, if individuals can identify and discard maladaptive culture. This suggests that the evolution of such "adaptive filtering" mechanisms may have been crucial for the birth of human culture.  相似文献   

8.
Understanding patterns and underlying processes of human cultural diversity has been a major challenge in evolutionary anthropology. Recent developments in the study of cultural macro-evolution have illuminated various novel aspects of cultural phenomena at the population level. However, limitations in data availability have constrained previous analyses to use simplest models ignoring factors that potentially affect cultural evolutionary dynamics. Here, we focus on two such factors: accumulated effects of cultural transmission between populations over time and variation in social influence among populations. As a test case, we analyze data on the hinoeuma fertility drop, the Japanese nation-wide drastic decline in the number of births caused by a culturally-transmitted superstition recurring every sixty years, to show that these factors do play significant roles. Specifically, our results suggest that transmission of the superstition in a short timescale has tended to occur among neighboring populations, while transmission in a long timescale is likely to have occurred between populations culturally close to each other, with the cultural closeness being measured by similarity in dialects. The results also indicate a special role played by a population occupying a center in a language–distance network (the cultural center) in the spread of the superstition.  相似文献   

9.
The effect of heterogeneity within populations on the spread of infectious diseases has been a recent focus of research. Such heterogeneity may be, for example, spatial, temporal or behavioral in form. Generally, models that include population subdivision have assumed that individuals are permanently assigned to given behavioral states represented by the subpopulations. We consider a simple epidemic model in which a behavioral trait affects disease transmission, and this trait may be transferred among hosts as a consequence of social interaction. This creates a situation where the frequencies of different behavioral traits and disease states as well as their associations may change over time. We consider the impact of the culturally transmitted trait on the criterion for initial spread of the disease. We also explore the evolution of cultural traits in response to pathogen dynamics and show some conditions under which behavioral traits that reduce transmission evolve. We find that behaviors increasing the risk of infection can also evolve when they are inherently favored or when there is sufficient clustering of contacts between like behaviors.  相似文献   

10.
The modeling of cultural transmission is of great importance for understanding the maintenance, erosion, and spread of cultural traits and innovations. Researchers have hypothesized that, unlike biological transmission, cultural transmission occurs through at least three different, non-mutually exclusive paths: (1) from parents (vertical); (2) from age peers (horizontal); and (3) from older generations (oblique). We used data from 270 adults in a society in the Bolivian Amazon to estimate the association between a person's knowledge and skills and the knowledge and skills of the (1) same-sex parent, (2) age peers (or individuals born in the same village as the subject within ±4 years of the subject's year of birth), and (3) parental cohort (excluding parents). We found a statistically significant association between personal and parental and old cohort knowledge. The magnitude of the association is larger for old cohort knowledge than for parental knowledge, suggesting that, for the studied population, the transmission of ethnobotanical knowledge and skills is mostly oblique.  相似文献   

11.
Evolutionary game dynamics have been proposed as a mathematical framework for the cultural evolution of language and more specifically the evolution of vocabulary. This article discusses a model that is mutually exclusive in its underlying principals with some previously suggested models. The model describes how individuals in a population culturally acquire a vocabulary by actively participating in the acquisition process instead of passively observing and communicate through peer-to-peer interactions instead of vertical parent-offspring relations. Concretely, a notion of social/cultural learning called the naming game is first abstracted using learning theory. This abstraction defines the required cultural transmission mechanism for an evolutionary process. Second, the derived transmission system is expressed in terms of the well-known selection-mutation model defined in the context of evolutionary dynamics. In this way, the analogy between social learning and evolution at the level of meaning-word associations is made explicit. Although only horizontal and oblique transmission structures will be considered, extensions to vertical structures over different genetic generations can easily be incorporated. We provide a number of simplified experiments to clarify our reasoning.  相似文献   

12.
The study of culturally inherited traits has led to the suggestion that the evolution of helping behaviors is more likely with cultural transmission than without. Here we evaluate this idea through a comparative analysis of selection on helping under both genetic and cultural inheritance. We develop two simple models for the evolution of helping through cultural group selection: one in which selection on the trait depends solely on Darwinian fitness effects and one in which selection is driven by nonreproductive factors, specifically imitation of strategies achieving higher payoffs. We show that when cultural variants affect Darwinian fitness, the selection pressure on helping can be markedly increased relative to that under genetic transmission. By contrast, when variants are driven by nonreproductive factors, the selection pressure on helping may be reduced relative to that under genetic inheritance. This occurs because, unlike biological offspring, the spread of cultural variants from one group to another through imitation does not reduce the number of these variants in the source group. As a consequence, there is increased within-group competition associated with traits increasing group productivity, which reduces the benefits of helping. In these cases, selection for harming behavior (decreasing the payoff to neighbors) may occur rather than selection for helping.  相似文献   

13.
Spread of costly prestige-seeking behavior by social learning   总被引:1,自引:1,他引:0  
Mathematical and simulation models of cultural transmission in a population where individuals may differ in their social status are developed. High-status individuals are assumed to be more influential to others but no more fertile or viable than low-status individuals. Analysis of the models suggests that culturally transmitted values, beliefs, and preferences that cause individuals to engage in prestige-seeking behavior can sometimes invade the population, even if that behavior reduces the net reproductive success of the prestige seekers. It is argued that some of the seemingly maladaptive behaviors observed in human societies may be a result of cultural evolution based on the human capacity for social learning, rather than a product of the "time lag" before the evolutionary modification of the human predisposition in response to the recent drastic changes in the environment.  相似文献   

14.
The ability of selfishly spreading DNA sequences to invade host populations is intimately bound up with sex. In the absence of sexual reproduction, an element that lowers the fitness of its host and which is initially found in only some of the population will inevitably be lost by natural selection. This will occur even if the element can spread selfishly in the genomes of those individuals which initially possessed it. Here, we create a model in which such a gene is introduced into a population in which individuals sometimes reproduce sexually and sometimes asexually. The element can raise the level of sexuality in its bearers. There is selection against those individuals with the gene (i.e. it is selfish), and a further selective cost to sexual reproduction. The dynamics of the model that arises from these simple assumptions are remarkably complex, with fixation or loss of the selfish gene, unstable and stable equilibria, and effective neutrality all being possible dependent on the parameter values. A selfish gene that increases the level of sexuality of its bearers will tend to have a higher likelihood of invading a host population, and faster spread, but a lower likelihood of spreading to fixation, than an equivalent gene with no effect on sex.  相似文献   

15.
G Geiger 《Bio Systems》1985,17(3):259-272
Using a well-known mathematical model frequently applied in theoretical population dynamics, certain ecological mechanisms are investigated that are inherent in the organic evolution of cultural capacities in man. Culture is argued to involve ecological interactions exhibiting analogies to the interaction of chemical species in autocatalytic biomolecular reactions. In the model, biocultural evolution proceeds by more and more broadening ecological niches and, thus, releasing competitive selection pressure on the populations involved. This, in turn, facilitates the maintenance of polymorphism in these populations as well as the individual acquisition of organic traits through learning and cultural transmission. The result is that the genetic variance in phenotypic expressions decreases at an accelerated rate.  相似文献   

16.
We investigate the relationship between cultural complexity and population size in a non-technological cultural domain for which we have suitable quantitative records: folktales. We define three levels of complexity for folk narratives: the number of tale types, the number of narrative motifs, and, finally, the number of traits in variants of the same type, for two well-known tales for which we have data from previous studies. We found a positive relationship between number of tale types and population size, a negative relationship for the number of narrative motifs, and no relationship for the number of traits. The absence of a consistent relationship between population size and complexity in folktales provides a novel perspective on the current debates in cultural evolution. We propose that the link between cultural complexity and demography could be domain dependent: in some domains (e.g. technology) this link is important, whereas in others, such as folktales, complex traditions can be easily maintained in small populations as well as large ones, as they may appeal to universal cognitive biases.  相似文献   

17.
Technology (i.e. tools, methods of cultivation and domestication, systems of construction and appropriation, machines) has increased the vital rates of humans, and is one of the defining features of the transition from Malthusian ecological stagnation to a potentially perpetual rising population growth. Maladaptations, on the other hand, encompass behaviours, customs and practices that decrease the vital rates of individuals. Technology and maladaptations are part of the total stock of culture carried by the individuals in a population. Here, we develop a quantitative model for the coevolution of cumulative adaptive technology and maladaptive culture in a ‘producer–scrounger’ game, which can also usefully be interpreted as an ‘individual–social’ learner interaction. Producers (individual learners) are assumed to invent new adaptations and maladaptations by trial-and-error learning, insight or deduction, and they pay the cost of innovation. Scroungers (social learners) are assumed to copy or imitate (cultural transmission) both the adaptations and maladaptations generated by producers. We show that the coevolutionary dynamics of producers and scroungers in the presence of cultural transmission can have a variety of effects on population carrying capacity. From stable polymorphism, where scroungers bring an advantage to the population (increase in carrying capacity), to periodic cycling, where scroungers decrease carrying capacity, we find that selection-driven cultural innovation and transmission may send a population on the path of indefinite growth or to extinction.  相似文献   

18.
In many arthropods, intracellular bacteria, such as those of the genus Wolbachia, may spread through host populations as a result of cytoplasmic incompatibility (CI). Here, there is sterility or reduced fertility in crosses between infected males and uninfected females. As the bacterium is maternally inherited, the reduced fertility of uninfected females increases the frequency of the infection. If the transmission fidelity of the bacterium is less than 100%, the bacterium cannot invade from a low frequency, but if its frequency exceeds a threshold, it increases to a high, stable, equilibrium frequency. We explore the expected evolutionary dynamics of mutant alleles that cause their male bearers to avoid mating with uninfected females. For alleles which create this avoidance behaviour conditional upon the male being infected, there is a wide zone of parameter space that allows the preference allele to drive Wolbachia from the population when it would otherwise stably persist. There is also a wide zone of parameter space that allows a joint stable equilibrium for the Wolbachia and a polymorphism for the preference allele. When the male's avoidance of uninfected females is unconditional, the preference allele's effect on Wolbachia frequency is reduced, but there is a narrow range of values for the transmission rate and CI fertility that allow an unconditional preference allele to drive Wolbachia from the population, in a process driven by positive linkage disequilibrium between Wolbachia and the preference allele. The possibility of the evolution of preference could hamper attempts to manipulate wild populations through Wolbachia introductions.  相似文献   

19.
Recent debates about memetics have revealed some widespread misunderstandings about Darwinian approaches to cultural evolution. Drawing from these debates, this paper disputes five common claims: (1) mental representations are rarely discrete, and therefore models that assume discrete, gene-like particles (i.e., replicators) are useless; (2) replicators are necessary for cumulative, adaptive evolution; (3) content-dependent psychological biases are the only important processes that affect the spread of cultural representations; (4) the “cultural fitness” of a mental representation can be inferred from its successful transmission; and (5) selective forces only matter if the sources of variation are random. We close by sketching the outlines of a unified evolutionary science of culture.
Robert BoydEmail:

Joseph Henrich   (Ph.D. UCLA, 1999) holds the Canada Research Chair in Culture, Cognition, and Coevolution in the Departments of Psychology and Economics at the University of British Columbia. His research combines behavioral and cognitive experiments, in-depth field ethnography, and evolutionary modeling to explore the coevolutionary emergence of cooperative institutions, prosocial motivations, religions, and complex cultural adaptations. See his website at Robert Boyd   received his bachelor’s degree in physics from the University of California at San Diego and a Ph.D. in ecology from UC Davis. He has taught at Duke and Emory universities and has been at UCLA since 1986. With Herb Gintis, Rob currently co-directs the MacArthur Research Network on the Nature and Origin of Preferences. His research focuses on population models of culture. Rob has also co-authored an introductory textbook in biological anthropology, How Humans Evolved, with his wife, Joan Silk. He and Joan have two children and live in Los Angeles. His hobbies are rock climbing and bicycling. Peter J. Richerson   received undergraduate and graduate degrees in entomology and zoology at the University of California, Davis. He is currently Distinguished Professor in the Department of Environmental Science and Policy at UC Davis. His research focuses on the processes of cultural evolution, most of it co-authored with Robert Boyd. Their 1985 book applied the mathematical tools used by organic evolutionists to study a number of basic problems in human cultural evolution. His recent publications have used theoretical models to try to understand some of the main events in human evolution, such as the evolution of the advanced capacity for imitation (and hence cumulative cultural evolution) in humans, the origins of tribal and larger-scale cooperation, and the origins of agriculture. He collaborates with Richard McElreath and Mark Lubell in an NSF-funded research group devoted to the study of cultural transmission and cultural evolution in laboratory systems.  相似文献   

20.
Evolution is driven by the propagation of genes, traits and individuals within and between populations. This propagation depends on the survival, fertility and dispersal of individuals at each age or stage during their life history, as well as on population growth and (st)age structure. Demography is therefore central to understanding evolution. Recent demographic research provides new perspectives on fitness, the spread of mutations within populations and the establishment of life histories in a phylogenetic context. New challenges resulting from individual heterogeneity, and instances where survival and reproduction are linked across generations are being recognized. Evolutionary demography is a field of exciting developments through both methodological and empirical advances. Here, we review these developments and outline two emergent research questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号