首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Netrins promote axon outgrowth and turning through DCC/UNC-40 receptors. To characterize Netrin signaling, we generated a gain-of-function UNC-40 molecule, MYR::UNC-40. MYR::UNC-40 causes axon guidance defects, excess axon branching, and excessive axon and cell body outgrowth. These defects are suppressed by loss-of-function mutations in ced-10 (a Rac GTPase), unc-34 (an Enabled homolog), and unc-115 (a putative actin binding protein). ced-10, unc-34, and unc-115 also function in endogenous unc-40 signaling. Our results indicate that Enabled functions in axonal attraction as well as axon repulsion. UNC-40 has two conserved cytoplasmic motifs that mediate distinct downstream pathways: CED-10, UNC-115, and the UNC-40 P2 motif act in one pathway, and UNC-34 and the UNC-40 P1 motif act in the other. Thus, UNC-40 might act as a scaffold to deliver several independent signals to the actin cytoskeleton.  相似文献   

2.
Short- and long-range repulsion by the Drosophila Unc5 netrin receptor.   总被引:11,自引:0,他引:11  
K Keleman  B J Dickson 《Neuron》2001,32(4):605-617
Netrins are bifunctional guidance molecules, attracting some axons and repelling others. They act through receptors of the DCC and UNC5 families. DCC receptors have been implicated in both attraction and repulsion by Netrins. UNC5 receptors are required only for repulsion. In Drosophila, Netrins are expressed by midline cells of the CNS and by specific muscles in the periphery. They attract commissural and motor axons expressing the DCC family receptor Frazzled. Here we report the identification of the Drosophila Unc5 receptor, and show that it is a repulsive Netrin receptor likely to contribute to motor axon guidance. Ectopic expression of Unc5 on CNS axons can elicit either short- or long-range repulsion from the midline. Both short- and long-range repulsion require Netrin function, but only long-range repulsion requires Frazzled.  相似文献   

3.
Coordinated limb rhythmic movements take place through organized signaling in local spinal cord neuronal networks. The establishment of these circuitries during development is dependent on the correct guidance of axons to their targets. It has previously been shown that the well-known axon guidance molecule netrin-1 is required for configuring the circuitry that provides left-right alternating coordination in fictive locomotion. The attraction of commissural axons to the midline in response to netrin-1 has been shown to involve the netrin-1 receptor DCC (deleted in Colorectal Cancer). However, the role of DCC for the establishment of CPG coordination has not yet been resolved. We show that mice carrying a null mutation of DCC displayed an uncoordinated left-right activity during fictive locomotion accompanied by a loss of interneuronal subpopulations originating from commissural progenitors. Thus, DCC plays a crucial role in the formation of spinal neuronal circuitry coordinating left-right activities. Together with the previously published results from netrin-1 deficient mice, the data presented in this study suggest a role for the most ventral originating V3 interneurons in synchronous activities over the midline. Further, it provides evidence that axon crossing in the spinal cord is more intricately controlled than in previously suggested models of DCC-netrin-1 interaction.  相似文献   

4.
Shi M  Liu Z  Lv Y  Zheng M  Du F  Zhao G  Huang Y  Chen J  Han H  Ding Y 《PloS one》2011,6(1):e14570

Background

A collection of in vitro evidence has demonstrated that Notch signaling plays a key role in the growth of neurites in differentiated neurons. However, the effects of Notch signaling on axon outgrowth in an in vivo condition remain largely unknown.

Methodology/Principal Findings

In this study, the neural tubes of HH10-11 chick embryos were in ovo electroporated with various Notch transgenes of activating or inhibiting Notch signaling, and then their effects on commissural axon outgrowth across the floor plate midline in the chick developing central nerve system were investigated. Our results showed that forced expression of Notch intracellular domain, constitutively active form of RBPJ, or full-length Hes1 in the rostral hindbrain, diencephalon and spinal cord at stage HH10-11 significantly inhibited commissural axon outgrowth. On the other hand, inhibition of Notch signaling by ectopically expressing a dominant-negative form of RBPJ promoted commissural axonal growth along the circumferential axis. Further results revealed that these Notch signaling-mediated axon outgrowth defects may be not due to the alteration of axon guidance since commissural axon marker TAG1 was present in the axons in floor plate midline, and also not result from the changes in cell fate determination of commissural neurons since the expression of postmitotic neuron marker Tuj1 and specific commissural markers TAG1 and Pax7 was unchanged.

Conclusions/Significance

We first used an in vivo system to provide evidence that forced Notch signaling negatively regulates commissural axon outgrowth.  相似文献   

5.
G J Bashaw  C S Goodman 《Cell》1999,97(7):917-926
Frazzled (Fra) is the DCC-like Netrin receptor in Drosophila that mediates attraction; Roundabout (Robo) is a Slit receptor that mediates repulsion. Both ligands are expressed at the midline; both receptors have related structures and are often expressed by the same neurons. To determine if attraction versus repulsion is a modular function encoded in the cytoplasmic domain of these receptors, we created chimeras carrying the ectodomain of one receptor and the cytoplasmic domain of the other and tested their function in transgenic Drosophila. Fra-Robo (Fra's ectodomain and Robo's cytoplasmic domain) functions as a repulsive Netrin receptor; neurons expressing Fra-Robo avoid the Netrin-expressing midline and muscles. Robo-Fra (Robo's ectodomain and Fra's cytoplasmic domain) is an attractive Slit receptor; neurons and muscle precursors expressing Robo-Fra are attracted to the Slit-expressing midline.  相似文献   

6.
Ly A  Nikolaev A  Suresh G  Zheng Y  Tessier-Lavigne M  Stein E 《Cell》2008,133(7):1241-1254
During nervous system development, spinal commissural axons project toward and across the ventral midline. They are guided in part by netrin-1, made by midline cells, which attracts the axons by activating the netrin receptor DCC. However, previous studies suggest that additional receptor components are required. Here, we report that the Down's syndrome Cell Adhesion Molecule (DSCAM), a candidate gene implicated in the mental retardation phenotype of Down's syndrome, is expressed on spinal commissural axons, binds netrin-1, and is necessary for commissural axons to grow toward and across the midline. DSCAM and DCC can each mediate a turning response of these neurons to netrin-1. Similarly, Xenopus spinal neurons exogenously expressing DSCAM can be attracted by netrin-1 independently of DCC. These results show that DSCAM is a receptor that can mediate turning responses to netrin-1 and support a key role for netrin/DSCAM signaling in commissural axon guidance in vertebrates.  相似文献   

7.
The multifunctional protein netrin-1 was initially discovered as the main attractive cue for commissural axon guidance by acting through its receptor DCC. Recently, we have shown that netrin-1 also interacts with the orphan transmembrane receptor amyloid precursor protein (APP). APP is cleaved by proteases, generating amyloid-β peptide, the main component of the amyloid plaques that are associated with Alzheimer disease. Our previous work demonstrated that via its interaction with APP, netrin-1 is a negative regulator of amyloid-β production in adult brain, but the biological relevance of APP/netrin-1 interaction under non-pathological conditions was unknown. We show here that during commissural axon navigation, APP, expressed at the growth cone, is part of the DCC receptor complex mediating netrin-1-dependent axon guidance. APP interacts with DCC in the presence of netrin-1 and enhances netrin-1-mediated DCC intracellular signaling, such as MAPK activation. Inactivation of APP in mice is associated with reduced commissural axon outgrowth. Thus, APP functionally acts as a co-receptor for DCC to mediate axon guidance.  相似文献   

8.
In Drosophila, Slit at the midline activates Robo receptors on commissural axons, thereby repelling them out of the midline into distinct longitudinal tracts on the contralateral side of the central nervous system. In the vertebrate spinal cord, Robo1 and Robo2 are expressed by commissural neurons, whereas all three Slit homologs are expressed at the ventral midline. Previous analysis of Slit1;Slit2 double mutant spinal cords failed to reveal a defect in commissural axon guidance. We report here that when all six Slit alleles are removed, many commissural axons fail to leave the midline, while others recross it. In addition, Robo1 and Robo2 single mutants show guidance defects that reveal a role for these two receptors in guiding commissural axons to different positions within the ventral and lateral funiculi. These results demonstrate a key role for Slit/Robo signaling in midline commissural axon guidance in vertebrates.  相似文献   

9.

Background

In the Drosophila embryonic nerve cord, the formation of commissures require both the chemoattractive Netrin receptor Frazzled (Fra) and the Abelson (Abl) cytoplasmic tyrosine kinase. Abl binds to the cytoplasmic domain of Fra and loss-of-function mutations in abl enhance fra-dependent commissural defects. To further test Abl''s role in attractive signaling, we over-expressed Abl in Fra mutants anticipating rescue of commissures.

Methodology/Principal Findings

The Gal4-UAS system was used to pan-neurally over-express Abl in homozygous fra embryos. Surprisingly, this led to a significant decrease in both posterior and anterior commissure formation and induced some commissural and longitudinal axons to project beyond the CNS/PNS border. Re-expressing wild-type Fra, or Fra mutants with a P-motif deleted, revert both commissural and exiting phenotypes, indicating that Fra is required but not a specific P-motif. This is supported by S2 cell experiments demonstrating that Abl binds to Fra independent of any specific P-motif and that Fra continues to be phosphorylated when individual P-motifs are removed. Decreasing midline repulsion by reducing Robo signaling had no effect on the Abl phenotype and the phenotypes still occur in a Netrin mutant. Pan-neural over-expression of activated Rac or Cdc42 in a fra mutant also induced a significant loss in commissures, but axons did not exit the CNS.

Conclusion/Significance

Taken together, these data suggest that Fra activity is required to correctly regulate Abl-dependent cytoskeletal dynamics underlying commissure formation. In the absence of Fra, increased Abl activity appears to be incorrectly utilized downstream of other guidance receptors resulting in a loss of commissures and the abnormal projections of some axons beyond the CNS/PNS border.  相似文献   

10.
The JNK family of MAPKs is involved in a large variety of physiological and pathological processes in brain development, such as neural survival, migration, and polarity as well as axon regeneration. However, whether JNK activation is involved in axon guidance remains unknown. Here, we provide evidence indicating the JNK pathway is required for Netrin signaling in the developing nervous system. Netrin-1 increased JNK1, not JNK2 or JNK3, activity in the presence of deleted in colorectal cancer (DCC) or Down syndrome cell adhesion molecule (DSCAM), and expression of both of them further enhanced Netrin-1-induced JNK1 activity in vitro. Inhibition of JNK signaling either by a JNK inhibitor, SP600125, or expression of a dominant negative form of MKK4, a JNK upstream activator, blocked Netrin-1-induced JNK1 activation in HEK293 cells. Netrin-1 increased endogenous JNK activity in primary neurons. Netrin-1-induced JNK activation was inhibited either by the JNK inhibitor or an anti-DCC function-blocking antibody. Combination of the anti-DCC function-blocking antibody with expression of DSCAM shRNA in primary neurons totally abolished Netrin-1-induced JNK activation, whereas knockdown of DSCAM partially inhibited the Netrin-1 effect. In the developing spinal cord, phospho-JNK was strongly expressed in commissural axons before and as they crossed the floor plate, and Netrin-1 stimulation dramatically increased the level of endogenous phospho-JNK in commissural axon growth cones. Inhibition of JNK signaling either by JNK1 RNA interference (RNAi) or the JNK inhibitor suppressed Netrin-1-induced neurite outgrowth and axon attraction. Knockdown of JNK1 in ovo caused defects in spinal cord commissural axon projection and pathfinding. Our study reveals that JNK1 is important in the coordination of DCC and DSCAM in Netrin-mediated attractive signaling.  相似文献   

11.
Comm sorts robo to control axon guidance at the Drosophila midline   总被引:9,自引:0,他引:9  
Axon growth across the Drosophila midline requires Comm to downregulate Robo, the receptor for the midline repellent Slit. We show here that comm is required in neurons, not in midline cells as previously thought, and that it is expressed specifically and transiently in commissural neurons. Comm acts as a sorting receptor for Robo, diverting it from the synthetic to the late endocytic pathway. A conserved cytoplasmic LPSY motif is required for endosomal sorting of Comm in vitro and for Comm to downregulate Robo and promote midline crossing in vivo. Axon traffic at the CNS midline is thus controlled by the intracellular trafficking of the Robo guidance receptor, which in turn depends on the precisely regulated expression of the Comm sorting receptor.  相似文献   

12.
Zhou S  Opperman K  Wang X  Chen L 《Genetics》2008,180(3):1429-1443
The L1 family of single-pass transmembrane cell adhesion molecules (L1CAMs) is conserved from Caenorhabditis elegans and Drosophila to vertebrates and is required for axon guidance, neurite outgrowth, and maintenance of neuronal positions. The extracellular region of L1CAMs mediates cell adhesion via interactions with diverse cell-surface and extracellular matrix proteins. In contrast, less is known regarding the function of the intracellular domains in the L1CAM cytoplasmic tail. Previously, we identified a role of the C. elegans L1CAM homolog, SAX-7, in maintaining neuronal and axonal positioning. Here, we demonstrate that this function is dependent on three conserved motifs that reside in the SAX-7 cytoplasmic tail: (1) the FERM-binding motif, (2) the ankyrin-binding domain, and (3) the PDZ-binding motif. Furthermore, we provide molecular and genetic evidence that UNC-44 ankyrin and STN-2 γ-syntrophin bind SAX-7 via the respective ankyrin-binding and PDZ-binding motifs to regulate SAX-7 function in maintaining neuronal positioning.  相似文献   

13.
Although many similarities in arthropod central nervous systems (CNS) development exist, differences in midline cell formation and ventral nerve cord axonogenesis have been noted in arthropods. It is possible that changes in the expression of axon guidance molecules such as Netrin, which functions during commissural axon guidance in Drosophila and many other organisms, may parallel these differences. In this investigation, we analyze this hypothesis by examining Netrin accumulation during development of the brine shrimp Artemia franciscana, a branchiopod crustacean. An Artemia franciscana netrin (afrnet) orthologue was cloned. An antibody to the afrNet protein was generated and used to examine the pattern of afrNet accumulation during Artemia development. Despite differences between Drosophila and Artemia nerve cord development, examination of afrNet accumulation suggests that this protein functions to regulate commissure formation during Artemia CNS development. However, detection of afrNet at the midline and on commissural axons occurs at a relatively later time point in Artemia as compared with Drosophila. Detection of afrNet in a subset of midline cells that closely resemble Netrin-expressing cells at the Drosophila midline provides evidence for homology of midline cells in arthropods. Expression of Netrins in many other tissues is comparable, suggesting that Netrin proteins may play many conserved roles during arthropod development.  相似文献   

14.
Over recent years the secreted guidance cue, netrin-1, and its receptor, DCC, have been shown to be an essential guidance system driving axon pathfinding within the developing vertebrate central nervous system (CNS). Mice lacking DCC exhibit severe defects in commissural axon extension towards the floor plate demonstrating that the DCC-netrin guidance system is largely responsible for directing axonal projections toward the ventral midline in the developing spinal cord (Fazeli et al., Nature 386 (1997) 796). In addition, these mutants lack several major commissures within the forebrain, including the corpus callosum and the hippocampal commissure. In contrast to the CNS, the role of the DCC guidance receptor in the development of the mammalian peripheral and enteric nervous systems (PNS and ENS) has not been investigated. Here we demonstrate using immunohistochemical analysis that the DCC receptor is present in the developing mouse PNS where it is found on spinal, segmental, and sciatic nerves, and in developing sensory ganglia and their associated axonal projections. In addition, DCC is present in the ENS throughout the early developmental phase.  相似文献   

15.
The netrin-1 receptor Deleted in Colorectal Cancer (DCC) is required for the formation of major axonal projections by embryonic cortical neurons, including the corpus callosum, hippocampal commissure, and cortico-thalamic tracts. The presentation of DCC by axonal growth cones is tightly regulated, but the mechanisms regulating DCC trafficking within neurons are not well understood. Here, we investigated the mechanisms regulating DCC recruitment to the plasma membrane of embryonic cortical neurons. In embryonic spinal commissural neurons, protein kinase A (PKA) activation recruits DCC to the plasma membrane and enhances axon chemoattraction to netrin-1. We demonstrate that PKA activation similarly recruits DCC and increases embryonic cortical neuron axon extension, which, like spinal commissural neurons, respond to netrin-1 as a chemoattractant. We then determined if depolarization might recruit DCC to the plasma membrane. Neither netrin-1 induced axon extension, nor levels of plasma membrane DCC, were altered by depolarizing embryonic spinal commissural neurons with elevated levels of KCl. In contrast, depolarizing embryonic cortical neurons increased the amount of plasma membrane DCC, including at the growth cone, and increased axon outgrowth evoked by netrin-1. Inhibition of PKA, phosphatidylinositol-3-kinase, protein kinase C, or exocytosis blocked the depolarization-induced recruitment of DCC and suppressed axon outgrowth. Inhibiting protein synthesis did not affect DCC recruitment, nor were the distributions of trkB or neural cell adhesion molecule (NCAM) influenced by depolarization, consistent with selective mobilization of DCC. These findings identify a role for membrane depolarization modulating the response of axons to netrin-1 by regulating DCC recruitment to the plasma membrane.  相似文献   

16.
Netrins are chemotropic guidance cues that attract or repel growing axons during development. DCC (deleted in colorectal cancer), a transmembrane protein that is a receptor for netrin-1, is implicated in mediating both responses. However, the mechanism by which this is achieved remains unclear. Here we report that Rho GTPases are required for embryonic spinal commissural axon outgrowth induced by netrin-1. Using N1E-115 neuroblastoma cells, we found that both Rac1 and Cdc42 activities are required for DCC-induced neurite outgrowth. In contrast, down-regulation of RhoA and its effector Rho kinase stimulates the ability of DCC to induce neurite outgrowth. In Swiss 3T3 fibroblasts, DCC was found to trigger actin reorganization through activation of Rac1 but not Cdc42 or RhoA. We detected that stimulation of DCC receptors with netrin-1 resulted in a 4-fold increase in Rac1 activation. These results implicate the small GTPases Rac1, Cdc42, and RhoA as essential components that participate in signaling the response of axons to netrin-1 during neural development.  相似文献   

17.
The chemotropic guidance cue netrin-1 promotes neurite outgrowth through its receptor Deleted in Colorectal Cancer (DCC) via activation of Rac1. The guanine nucleotide exchange factor (GEF) linking netrin-1/DCC to Rac1 activation has not yet been identified. Here, we show that the RhoGEF Trio mediates Rac1 activation in netrin-1 signaling. We found that Trio interacts with the netrin-1 receptor DCC in mouse embryonic brains and that netrin-1-induced Rac1 activation in brain is impaired in the absence of Trio. Trio(-/-) cortical neurons fail to extend neurites in response to netrin-1, while they are able to respond to glutamate. Accordingly, netrin-1-induced commissural axon outgrowth is reduced in Trio(-/-) spinal cord explants, and the guidance of commissural axons toward the floor plate is affected by the absence of Trio. The anterior commissure is absent in Trio-null embryos, and netrin-1/DCC-dependent axonal projections that form the internal capsule and the corpus callosum are defective in the mutants. Taken together, these findings establish Trio as a GEF that mediates netrin-1 signaling in axon outgrowth and guidance through its ability to activate Rac1.  相似文献   

18.
During development, netrin-1 is both an attractive and repulsive axon guidance cue and mediates its attractive function through the receptor Deleted in Colorectal Cancer (DCC). The activation of Rho guanosine triphosphatases within the extending growth cone facilitates the dynamic reorganization of the cytoskeleton required to drive axon extension. The Rac1 guanine nucleotide exchange factor (GEF) Trio is essential for netrin-1–induced axon outgrowth and guidance. Here, we identify the molecular chaperone heat shock cognate protein 70 (Hsc70) as a novel Trio regulator. Hsc70 dynamically associated with the N-terminal region and Rac1 GEF domain of Trio. Whereas Hsc70 expression supported Trio-dependent Rac1 activation, adenosine triphosphatase–deficient Hsc70 (D10N) abrogated Trio Rac1 GEF activity and netrin-1–induced Rac1 activation. Hsc70 was required for netrin-1–mediated axon growth and attraction in vitro, whereas Hsc70 activity supported callosal projections and radial neuronal migration in the embryonic neocortex. These findings demonstrate that Hsc70 chaperone activity is required for Rac1 activation by Trio and this function underlies netrin-1/DCC-dependent axon outgrowth and guidance.  相似文献   

19.
Netrin-1 acts as a chemoattractant molecule to guide commissural neurons (CN) toward the floor plate by interacting with the receptor deleted in colorectal cancer (DCC). The molecular mechanisms underlying Netrin-1-DCC signaling are still poorly characterized. Here, we show that DCC is phosphorylated in vivo on tyrosine residues in response to Netrin-1 stimulation of CN and that the Src family kinase inhibitors PP2 and SU6656 block both Netrin-1-dependent phosphorylation of DCC and axon outgrowth. PP2 also blocks the reorientation of Xenopus laevis retinal ganglion cells that occurs in response to Netrin-1, which suggests an essential role of the Src kinases in Netrin-1-dependent orientation. Fyn, but not Src, is able to phosphorylate the intracellular domain of DCC in vitro, and we demonstrate that Y1418 is crucial for DCC axon outgrowth function. Both DCC phosphorylation and Netrin-1-induced axon outgrowth are impaired in Fyn(-/-) CN and spinal cord explants. We propose that DCC is regulated by tyrosine phosphorylation and that Fyn is essential for the response of axons to Netrin-1.  相似文献   

20.
The receptor deleted in colorectal cancer (DCC) mediates the attraction of growing axons to netrin-1 during brain development. In response to netrin-1 stimulation, DCC becomes a signaling platform to recruit proteins that promote axon outgrowth and guidance. The Ras GTPase-activating protein (GAP) p120RasGAP inhibits Ras activity and mediates neurite retraction and growth cone collapse in response to repulsive guidance cues. Here we show an interaction between p120RasGAP and DCC that positively regulates netrin-1-mediated axon outgrowth and guidance in embryonic cortical neurons. In response to netrin-1, p120RasGAP is recruited to DCC in growth cones and forms a multiprotein complex with focal adhesion kinase and ERK. We found that Ras/ERK activities are elevated aberrantly in p120RasGAP-deficient neurons. Moreover, the expression of p120RasGAP Src homology 2 (SH2)-SH3-SH2 domains, which interact with the C-terminal tail of DCC, is sufficient to restore netrin-1-dependent axon outgrowth in p120RasGAP-deficient neurons. We provide a novel mechanism that exploits the scaffolding properties of the N terminus of p120RasGAP to tightly regulate netrin-1/DCC-dependent axon outgrowth and guidance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号