首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
低氧诱导因子-1(hypoxia-inducible factor-1,HIF-1)是异二聚体的转录因子,由氧敏感的α亚基和在细胞内稳定表达的β亚基组成,在细胞低氧应答反应中起核心作用,能调节100多种涉及低氧应激下细胞适应和存活的靶基因.泛素是一种由76个氨基酸残基组成的保守性多肽,广泛存在真核生物中.SUMO是泛素样蛋白家族成员,分子量约为12 kD的小蛋白,从拟南芥到人类普遍存在.泛素和SUMO可共价结合许多靶底物蛋白,对其进行翻译后修饰,该过程分别称为泛素化与SUMO化.近来研究显示,HIF-1α的翻译后修饰如泛素化、SUMO化可调节其的稳定性,从而改变HIF 1α的转录激活活性.本文主要就HIF-1α泛素化及SUMO化修饰等问题作一综述.  相似文献   

2.
小泛素相关修饰物SUMO研究进展   总被引:8,自引:0,他引:8  
蛋白质翻译后修饰对改变蛋白功能、活性或定位都起着非常重要的作用,泛素及其相似蛋白的修饰是其中一种重要形式。与其他诸如磷酸化、乙酰化、糖基化等不同的是,泛素及其相似蛋白的修饰基团本身即是一个小的多肽,通过异肽键与靶蛋白Lys侧链ε-NH2相连,其中小泛素相关修饰物(small ubiquitin—related modifier,SUMO)与蛋白的共价连接是一种新的广泛存在的翻译后修饰形式。SUMO是广泛存在于真核生物中高度保守的蛋白家族,在脊椎动物中有三个SUMO基因,称为SUMO-1,-2,-3,与泛素在二级结构上极其相似,且催化修饰过程的酶体系也具有很高的同源性。然而,与泛素化介导的蛋白酶降解途径不同,SUMO化修饰发挥着更为广泛的功能,如核质转运、细胞周期调控、信号转导、转录活性调控等。  相似文献   

3.
泛素化是一种动态可逆的蛋白质翻译后修饰,泛素分子在泛素激活酶、泛素结合酶和泛素连接酶的级联酶促反应催化下共价连接到底物蛋白上。去泛素化酶将泛素分子从底物上移除,动态可逆地调控泛素化修饰,在成熟泛素的生成、泛素链的移除与修剪、游离泛素链的回收等过程中发挥着关键的调控作用。本文的研究对象是酵母中泛素特异性蛋白酶(ubiquitin specific protease, USP)家族成员Ubp14,负责回收细胞内游离的泛素链。本研究定量比较了酵母细胞中Ubp14缺失对全蛋白质组的影响,进而找出其潜在的调控通路和分子功能。首先,通过同源重组技术构建了ubp14?菌株,发现其生长速度低于野生型酵母。利用稳定同位素氨基酸代谢标记技术结合深度覆盖的蛋白质组学分析技术,系统比较了ubp14?菌株相对于野生型菌株的差异蛋白,共计鉴定3 685个蛋白,通过统计学分析筛选得到109个差异蛋白。基因本体论分析发现,Ubp14缺失引起的差异蛋白主要参与了包括氨基酸代谢、氧化还原和热应激等生物学过程。本研究为深入探究去泛素化酶Ubp14的生物学功能,进而深刻理解游离泛素的稳态平衡与生物学过程调控提供了高可信的蛋白...  相似文献   

4.
为探究去泛素化酶中泛素羧基末端水解酶(UCHs)在巴西橡胶树乳管泛素化过程中发挥的潜在功能,从巴西橡胶树中成功分离2个UCHs家族成员(HbUCH-L3和HbUCH-L5)的全长序列,开放阅读框分别长993、558 bp,编码330、185个氨基酸,具有典型的UCHs结构域;qRT-PCR结果表明HbUCH-L3和HbUCH-L5在各组织中均有表达,且在胶乳中表达丰度较低;HbUCHs重组蛋白的体外泛素化底物切割试验表明,HbUCH-L3和HbUCH-L5均具有水解泛素的功能。HbUCHs显著降低C乳清中总蛋白整体泛素化水平,且HbUCH-L3去泛素化酶活性高于HbUCH-L5。由此推测橡胶树UCHs在乳管中参与维持泛素化动态平衡进而发挥其特定的生物学功能,但具体的作用及调控机制尚不清楚。  相似文献   

5.
α-1抗胰蛋白酶Z型突变体蛋白(α-1 antitrypsin Z-mutant protein, ATZ)是引发α-1抗胰蛋白酶缺陷症(α-1 antitrypsin deficiency, AATD)的主要原因,研究ATZ蛋白的泛素化修饰和降解对于治疗AATD具有重要意义。STUB1是一种重要的E3泛素连接酶,参与调节多种蛋白质的泛素化修饰。然而,STUB1是否参与ATZ的泛素化修饰尚未明确。本研究首先将ATZ和STUB1的编码基因克隆到pET28a质粒,构建了这2个蛋白的表达质粒。随后,将重组质粒转入大肠杆菌表达系统,在优化诱导条件实现了重组蛋白的异源表达。通过金属螯合亲和层析技术纯化得到目的蛋白,并通过蛋白质谱分析验证了其氨基酸序列的准确性。利用纯化的ATZ和STUB1重组蛋白,构建了一个体外泛素化修饰反应体系。实验结果显示,在ATP、E1泛素激活酶和E2泛素结合酶的协同作用下,STUB1成功催化了ATZ的泛素化修饰。本研究提供了一种体外获得Z型突变体ATZ纯化蛋白的方法,并确认了STUB1介导ATZ的泛素化修饰功能,推进了对α-1抗胰蛋白酶Z型突变体蛋白在细胞内降解过程的调控机制的理解。  相似文献   

6.
本研究旨在探索泛素羧基末端水解酶L1(ubiquitin C-terminal hydrolase-L1,UCHL1)对非小细胞肺癌细胞系A549细胞的作用。用CRISPR-CAS9基因编辑技术构建UCHL1基因敲除的A549细胞株,用RT-PCR和Western blot检测A549细胞中UCHL1基因敲除情况,用CCK-8检测细胞增殖能力的变化,用流式细胞仪检测细胞周期的变化,用CCK-8检测A549细胞对顺铂药物敏感性的改变,用划痕与Transwell实验检测A549细胞迁移能力的变化,用Western blot检测与A549细胞迁移有关的蛋白表达变化。结果显示,使用CRISPR-CAS9技术构建的基因移码突变导致A549细胞株UCHL1 mRNA和蛋白缺失,UCHL1基因功能缺失后A549细胞增殖和各细胞周期比例没有明显变化,但对顺铂的药物敏感性降低,迁移能力下降,Erk1/2蛋白磷酸化水平升高。以上结果提示,UCHL1基因功能缺失可导致A549细胞顺铂耐药性提高,细胞迁移能力降低,其机制可能涉及Erk1/2信号通路的激活。  相似文献   

7.
分化的胚软骨表达蛋白1(differentiated embryo-chondrocyte expressed gene 1,DEC1)作为一种时钟蛋白,除了在周期节律的调控中发挥转录抑制作用外,还在能量代谢以及多种肿瘤相关的信号通路的调控中发挥重要作用。此外,蛋白质的翻译后修饰是实现蛋白质功能精细调控的一种重要方式。目前发现,DEC1主要可被两种翻译后修饰,即泛素化和SUMO化修饰。尽管泛素化和SUMO化是两种过程非常类似的蛋白质翻译后修饰方式,但是它们对目的蛋白功能的调控却截然不同。由于泛素化和SUMO化与底物的作用靶点都是赖氨酸(Lys),因此在多数情况下,泛素化和SUMO化以拮抗性的方式调控底物蛋白的功能。鉴于此,该文旨在阐述泛素化和SUMO化修饰对DEC1功能的拮抗调节过程,为了解时钟蛋白DEC1对多种信号通路的调控过程中的分子机制提供新的思路。  相似文献   

8.
泛素化是一种维持细胞稳态必不可少的翻译后修饰,通过泛素分子与靶蛋白的连接参与蛋白质功能、定位和转换的调节。去泛素化酶介导的去泛素化为泛素化过程的逆反应,参与泛素的回收、编辑和重排。泛素特异性蛋白酶是最大的去泛素化酶家族,泛素特异性蛋白酶1 (USP1)是其中重要的亚型,广泛参与维持基因组完整性、细胞周期和细胞稳态。在多种肿瘤类型中均存在USP1异常表达,因此该靶点受到了广泛关注。目前研发进展最快的小分子USP1抑制剂为KSQ-4279,处于Ⅰ期临床研究阶段;另外ISM3091也已在国内和美国获得新药临床试验批件,即将开展临床试验。该文综述了USP1的结构、调控、生理功能、与肿瘤发生发展的关系以及USP1抑制剂的研究进展。  相似文献   

9.
泛素激活酶(E1)、泛素耦联酶(E2)和泛素连接酶(E3)是蛋白质泛素化修饰的关键酶。在真核基因组上有大量基因编码这些泛素化相关的酶类或蛋白。检测这些泛素化修饰酶及其底物蛋白的生化特性和特异性是分析其生物学功能的重要内容。该文提供了一种简便快速检测体外泛素化反应的方法, 不仅可通过检测对DTT敏感的硫酯键的形成来判断E2的活性、检测E3的体外泛素化活性, 而且可以检测E2-E3和E3-底物的特异性。所用蛋白主要来源于拟南芥(Arabidopsis thaliana), 包括分属于绝大多数E2亚家族的成员, 可用于不同RING类型E3的活性检测。该方法不仅可以采用多种E2进行E3活性分析, 而且可以分析不同组合的E2-RING E3、RING E3-底物的泛素化活性等, 亦可应用于真核生物蛋白质尤其是植物蛋白的体外泛素化活性分析。  相似文献   

10.
泛素激活酶(E1)、泛素耦联酶(E2)和泛素连接酶(E3)是蛋白质泛素化修饰的关键酶。在真核基因组上有大量基因编码这些泛素化相关的酶类或蛋白。检测这些泛素化修饰酶及其底物蛋白的生化特性和特异性是分析其生物学功能的重要内容。该文提供了一种简便快速检测体外泛素化反应的方法, 不仅可通过检测对DTT敏感的硫酯键的形成来判断E2的活性、检测E3的体外泛素化活性, 而且可以检测E2-E3和E3-底物的特异性。所用蛋白主要来源于拟南芥(Arabidopsis thaliana), 包括分属于绝大多数E2亚家族的成员, 可用于不同RING类型E3的活性检测。该方法不仅可以采用多种E2进行E3活性分析, 而且可以分析不同组合的E2-RING E3、RING E3-底物的泛素化活性等, 亦可应用于真核生物蛋白质尤其是植物蛋白的体外泛素化活性分析。  相似文献   

11.
七鳃鳗是现存的最原始的无颌类脊椎动物之一,也是连接无脊椎动物与脊椎动物的重要环节,对生物的起源与进化有很高的研究价值。anoctamin-1蛋白(ANO1)是一种重要的跨膜蛋白,与细胞内阴离子的跨膜运输相关。以海七鳃鳗为例,利用不同软件对海七鳃鳗ANO1蛋白的理化性质、结构域、蛋白结构特征、物种进化保守性以及系统进化关系进行生物信息学分析表明:海七鳃鳗ANO1的开放阅读框为2 373 bp,编码791个氨基酸,属于anoctamin蛋白家族,具有7个跨膜区;二级结构含有无规则卷曲、α螺旋和β折叠。将海七鳃鳗与其他物种的ANO1氨基酸序列进行同源比对,并构建系统进化树,以确认海七鳃鳗ANO1基因的保守性和进化地位。对ANO1基因及蛋白的生物信息学分析为ANO1基因及蛋白的相关研究提供了重要的信息基础。  相似文献   

12.
All jawed vertebrates possess a complex immune system, which is capable of anticipatory and innate immune responses. Jawless vertebrates posses an equally complex immune system but with no evidence of an anticipatory immune response. From these findings it has been speculated that the initiation and regulation of the immune system within vertebrates will be equally complex, although very little has been done to look at the evolution of cytokine genes, despite well-known biological activities within vertebrates. In recent years, cytokines, which have been well characterised within mammals, have begun to be cloned and sequenced within non-mammalian vertebrates, with the number of cytokine sequences available from primitive vertebrates growing rapidly. The identification of cytokines, which are mammalian homologues, will give a better insight into where immune system communicators arose and may also reveal molecules, which are unique to certain organisms. Work has focussed on interleukin-1 (IL-1), a major mediator of inflammation which initiates and/or increases a wide variety of non-structural, function associated genes that are characteristically expressed during inflammation. Other than mammalian IL-1β sequences there are now full cDNA sequences and genomic organisations available from bird, amphibian, bony fish and cartilaginous fish, with many of these genes having been obtained using an homology cloning approach. This review considers how the IL-1β gene has changed through vertebrate evolution and whether its role and regulation are conserved within selected non-mammalian vertebrates.  相似文献   

13.
The complete CDS sequences of three porcine genes: UCHL3, RIT1 and CCND3 were amplified using RT-PCR based on the sequence information of the mouse or other mammals and referenced highly homologous pig ESTs. Sequence analysis of these three genes revealed that the porcine UCHL3 gene encodes a protein of 230 amino acids and has high homology with the ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCHL3) of four species-bovine (97%), human (96%), mouse (95%) and rat (94%). The porcine RIT1 gene encodes a protein of 219 amino acids and has high homology with the GTP-binding protein Rit1 (RIT1) of two species-human (97%), mouse (97%). The porcine CCND3 gene encodes a protein of 292 amino acids and has high homology with the G1/S-specific cyclin-D3 (CCND3) of four species-bovine (98%), human (97%), mouse (93%) and rat (92%). The phylogenetic tree analysis revealed that the swine UCHL3 has a closer genetic relationship with the UCHL3 of bovine, and the swine RIT1 has closer genetic relationships with the RIT1 of human, but the swine CCND3 has a closer genetic relationship with the CCND3 of bovine. The RT-PCR gene expression analysis indicated that the swine UCHL3, RIT1 and CCND3 genes were differentially expressed in tissues including small intestine, large intestine, liver, muscle, fat, lung, spleen and kidney. Our experiment established the primary foundation for further research on these three swine genes.  相似文献   

14.
Transthyretin (TTR) is a tetrameric protein involved in the distribution of thyroid hormones in vertebrates. The amino acid sequence of TTR is highly conserved across vertebrates. Hypothetical TTR-like proteins (TLPs) were inferred from the identification of genes in nonvertebrate species. Here, we identified five motifs defining TLPs and three motifs defining both TTRs and TLPs. These motifs were mapped onto structurally conserved and functionally important regions of TTRs. These motifs were used to build hidden Markov models for accurate identification of TLPs in other organisms. TLPs were divided into three main groups based on their N-terminal regions. Most TLPs are cytosolic, but in plants and slime mold, we predict they are peroxisomal. We verified that the TLPs from enterobacteria were periplasmic. We demonstrated that TLP genes are expressed in a bacterium (E. coli), an invertebrate animal (C. elegans), and a plant (A. thaliana). These TLPs have similar subunit molecular weights to TTRs, are tetramers, and are predicted to have similar three-dimensional (3D) structures to TTRs, but do not bind thyroid hormones or similar ligands. We suggest that like TTRs, the N-terminal and C-terminal regions of TLPs are integral in defining the function of TLPs in nonvertebrate species and that the TLP gene duplicated in primitive vertebrates to produce the TTR gene. TLP/TTR has retained its overall structure, but changed function and localization during evolution in bacteria, invertebrates, plants, and vertebrates.  相似文献   

15.
Geng J  Liang D  Jiang K  Zhang P 《PloS one》2011,6(12):e28644
TRPA1 is a calcium ion channel protein recently identified as the infrared receptor in pit organ-containing snakes. Therefore, understanding the molecular evolution of TRPA1 may help to illuminate the origin of "heat vision" in snakes and reveal the molecular mechanism of infrared sensitivity for TRPA1. To this end, we sequenced the infrared sensory gene TRPA1 in 24 snake species, representing nine snake families and multiple non-snake outgroups. We found that TRPA1 is under strong positive selection in the pit-bearing snakes studied, but not in other non-pit snakes and non-snake vertebrates. As a comparison, TRPV1, a gene closely related to TRPA1, was found to be under strong purifying selection in all the species studied, with no difference in the strength of selection between pit-bearing snakes and non-pit snakes. This finding demonstrates that the adaptive evolution of TRPA1 specifically occurred within the pit-bearing snakes and may be related to the functional modification for detecting infrared radiation. In addition, by comparing the TRPA1 protein sequences, we identified 11 amino acid sites that were diverged in pit-bearing snakes but conserved in non-pit snakes and other vertebrates, 21 sites that were diverged only within pit-vipers but conserved in the remaining snakes. These specific amino acid substitutions may be potentially functional important for infrared sensing.  相似文献   

16.
Protamines are small, highly basic DNA-binding proteins found in the sperm of animals. Interestingly, the proportion of arginine residues in one type of protamine, protamine P1, is about 50% in mammals. Upon closer examination, it was found that both the total number of amino acids and the positions of arginine residues have changed considerably during the course of mammalian evolution. This evolutionary pattern suggests that protamine P1 is under an unusual form of purifying selection, in which the high proportion of arginine residues is maintained but the positions may vary. In this case, we would expect that the rate of nonsynonymous substitution is not particularly low compared with that of synonymous substitution, despite purifying selection. We would also expect that the selection for a high arginine content results in a high frequency of the nucleotide G in the coding region of this gene, because all six arginine codons contain at least one G. These expectations were confirmed in our study of mammalian protamine genes. Analysis of nonmammalian vertebrate genes also showed essentially the same patterns of evolutionary changes, suggesting that this unusual form of purifying selection has been active since the origin of bony vertebrates. The protamine gene of an insect species shows similar patterns, although its purifying selection is less intense. These observations suggest that arginine-rich selection is a general feature of protamine evolution. The driving force for arginine-rich selection appears to be the DNA-binding function of protamine P1 and an interaction with a protein kinase in the fertilized egg.  相似文献   

17.
Bone morphogenetic protein 2 (BMP2) plays an important role in skeletogenesis, osteoblastic differentiation and limb patterning. Its protein coding region consists of the signal peptide, the pro-domain (that regulates post-translational control of synthesis) and the mature domain (that carries out gene function). This gene has been considered previously to be conserved. By re-analyzing the coding region of BMP2 in 31 species of vertebrates, we found that the mature domain region is indeed conserved in mammals, but not among non-mammalian taxa. Moreover, compared to the mature domain, the signal peptide and pro-domain have experienced dramatic variation in all vertebrates. Six amino acid sites in the pro-domain were identified to be under diversifying Darwinian selection in mammals. These results indicate that the signal peptide and pro-domain of BMP2 may be involved in skeletal poly-morphology during mammal evolution and the mature domain may also contribute to this function in non-mammals. This supports the hypothesis that morphological variations in mammals result mainly from a change in post-translational control of synthesis, whereas in non-mammals they result mainly from gene functional change.  相似文献   

18.
Proteins involved in sperm-egg binding have been shown to evolve rapidly in several groups of invertebrates and vertebrates. Mammalian SED1 (secreted protein containing N-terminal Notch-like type II epidermal growth factor (EGF) repeats and C-terminal discoidin/F5/8 C domains) is a recently identified sperm surface protein that binds the egg zona pellucida and facilitates sperm-egg adhesion. SED1-null male mice are subfertile. Here we examine the SED1 gene from 11 mammalian species and provide evidence that it underwent accelerated evolution in ancestral primates, most likely driven by positive selection. Specifically, the intensity of the positive selection across various protein domains of SED1 was heterogeneous. Although one of the 2 Notch-like EGF domains, which mediate protein-protein binding, was lost in primate SED1, the second EGF domain evolved under strong positive selection favoring polar to nonpolar amino acid replacements. By contrast, the 2 discoidin/F5/8 type C domains, which are involved in protein-cell membrane binding, do not show definite signs of positive selection. The structural modification and occurrence of directional selection in ancestral primates but not any other lineage suggest that the function of SED1 may have changed during primate evolution. These results reveal a different evolutionary pattern of SED1 from that of many other sperm-egg-binding proteins, which often show diversifying selection occurring in multiple lineages.  相似文献   

19.
Molecular evolution of proglucagon   总被引:2,自引:0,他引:2  
The vertebrate proglucagon gene encodes glucagon, and the two glucagon-like peptides GLP-1 and GLP-2. To better understand the origin and diversification of the distinct hormonal roles of the three glucagon-like sequences encoded by the proglucagon gene, we have examined the evolution of this gene. The structure of proglucagon has been largely maintained within vertebrates. Duplication of the proglucagon gene or duplications of sequences within the proglucagon gene are rare. All proglucagon gene duplications are likely to be the result of genome duplication events. Examination of the rates of amino acid sequence evolution of each hormone reveals that they have not evolved in a uniform manner. Each hormone has evolved in an episodic fashion, suggesting that the selective constraints acting upon the sequence vary between, and within, vertebrate classes. Changes in selection on a sequence often reflect changes in the function of the sequence, such as the change in function of GLP-1 from a glucagon-like hormone in fish to an incretin in mammals. We found that the GLP-2 sequence underwent rapid sequence evolution in the early mammal lineage, therefore we have concluded that mammalian GLP-2 has acquired a new biological function that is not found in other vertebrates. Comparisons of the hormone sequences show that many amino acid residues that are functionally important in mammalian hormones are not conserved through vertebrate evolution. This observation suggests that the sequences involved in hormone action change through evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号