首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of substance P on the functioning of nicotinic acetylcholine receptors in PC12 cells were examined. Carbachol-stimulated 22Na+ uptake was used to assess the functional state of the nicotinic receptor. We found that incubation of the cells with substance P alone caused a loss of receptor function. Receptors recovered from this effect with a t1/2 of 0.94 +/- 0.10 min. Since receptors recovered from carbachol-induced desensitization at a significantly slower rate (t1/2, 1.77 +/- 0.21 min), it was concluded that the two inactive states are not kinetically equivalent. The effects of substance P on carbachol-induced loss of receptor activity were also examined. Substance P had no effect on a component of carbachol-induced loss of activity that was nonrecoverable (inactivation). However, substance P had several effects on the recoverable loss of activity induced by carbachol (desensitization). Substance P caused a shift to the left in the EC50 for carbachol-induced desensitization at equilibrium. If cells were simultaneously incubated with carbachol and substance P7-11, a low-potency analog of substance P, an increase in the rate of formation of a state of the receptor that was kinetically indistinguishable from the state induced by carbachol alone was observed. However, not all inhibition of nicotinic cholinergic function could be explained by an increased rate of formation of a desensitized receptor and it is concluded that substance P causes both enhanced desensitization and block of the nicotinic receptor-linked channel.  相似文献   

2.
The effects of extracellular ATP on intracellular free calcium concentration [( Ca2+]i), phosphatidylinositol (PtdIns) turnover, amylase release and Ca2+-activated membrane currents were examined in isolated rat parotid acinar cells and contrasted with the effects of receptor agonists known to activate phospholipase C. ATP was more effective than muscarinic and alpha-adrenergic agonists and substance P as a stimulus for elevating [Ca2+]i (as measured with quin2). The ATP effect was selectively antagonized by pretreating parotid cells with the impermeant anion-exchange blocker 4,4'-di-isothiocyano-2,2'-stilbenedisulphonate (DIDS), which also inhibited binding of [alpha-32P]ATP to parotid cells. By elevating [Ca2+]i, ATP and the muscarinic agonist carbachol both activated Ca2+-sensitive membrane currents, which were measured by whole-cell and cell-attached patch-clamp recordings. However, there were marked contrasts between the effects of ATP and the receptor agonists linked to phospholipase C, as follows. (1) Although the combination of maximally effective concentrations of carbachol, substance P and phenylephrine had no greater effect on [Ca2+]i than did carbachol alone, there was some additivity between maximal ATP and carbachol effects. (2) Intracellular dialysis with guanosine 5'-[beta-thio]diphosphate did not block activation of ion channels by ATP, but did block channel activation by the muscarinic agonist carbachol. This suggests that a G-protein is involved in the muscarinic response, but not in the response to ATP. (3) Despite its pronounced effect on [Ca2+]i, ATP had little effect on PtdIns turnover in these cells, in contrast with the effects of carbachol and other Ca2+-mobilizing agents. (4) Although ATP was able to stimulate amylase release from parotid acinar cells, the stimulation was only 33 +/- 9% of that obtained with phospholipase C-linked receptor agonists. These differences suggest that ATP increases [Ca2+]i through specific activation of a pathway which is distinct from that shared by the classical phospholipase C-linked receptor agonists.  相似文献   

3.
Acetylcholine, released from splanchnic nerve terminals innervating adrenal chromaffin cells, is known to increase synthesis of adrenal tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis. The neuropeptide substance P is also present in the splanchnic nerve innervating the adrenal medulla, and this study examined whether substance P has any long-term effects on tyrosine hydroxylase activity and catecholamine levels in cultures of adult bovine adrenal chromaffin cells. When cultures were incubated for 3 days with substance P and carbachol, a cholinergic agonist, substance P (10(-6) M, and greater) completely inhibited the increase in tyrosine hydroxylase activity normally induced by carbachol. Long-term stimulation with carbachol also depleted endogenous catecholamines from the cells and substance P prevented this carbachol-induced depletion of catecholamine content. Substance P by itself, in the absence of carbachol, had only a slight effect on tyrosine hydroxylase activity. 8-Bromoadenosine 3':5'-cyclic monophosphate, an analogue of adenosine 3':5'-cyclic monophosphate, also increases tyrosine hydroxylase activity in chromaffin cells; however, substance P had no effect on the increase in tyrosine hydroxylase activity induced by this analogue. These results indicate that substance P's effects are relatively specific for the carbachol-induced increased in tyrosine hydroxylase activity and that the primary site of action of substance P is not a site common to the mechanism of tyrosine hydroxylase induction by carbachol and 8-bromoadenosine 3':5'-cyclic monophosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
James W. Putney 《Life sciences》1978,22(19):1731-1735
Carbachol, substance P and epinephrine, but not isoproterenol, transiently stimulated O2 consumption by 40–50% in rat parotid gland slices. The response to carbachol, but not to substance P, was blocked by atropine. Ouabain (1 mM) did not affect the response to carbachol. Also, the response to carbachol did not require external Ca, and was not significantly diminished by 1.0 mM LaCl3. Reintroduction of Ca to a low Ca medium increased O2 consumption only if carbachol was present. Procaine inhibited the increase in O2 consumption due to carbachol, but not that due to substance P. When both carbachol and substance P were presented to the tissues in series and in the absence of external Ca, the second agonist failed to produce a response. When these results are considered in the light of previous studies on Ca and the responses of the parotid gland, they suggest that the primary stimulus for the O2 consumption is the release of a limited pool of membrane-bound Ca following receptor activation.  相似文献   

5.
Substance P is known to modulate acetylcholine-induced catecholamine release from adrenal chromaffin cells. To investigate the mechanisms involved in this modulation, the present study examined the effects of substance P on net 45Ca2+ fluxes in cultures of bovine adrenal chromaffin cells. Two effects of substance P were observed: (1) Substance P inhibited carbachol-induced 45Ca2+ uptake and 45Ca2+ efflux and (2) substance P protected against desensitization of carbachol-induced 45Ca2+ uptake and 45Ca2+ efflux. Thus substance P modulates two other cholinergic responses, 45Ca2+ uptake and 45Ca2+ efflux, in a manner similar to its modulation of catecholamine release. The results also indicate that substance P's inhibition of net carbachol-induced 45Ca2+ uptake is due to inhibition of 45Ca2+ uptake rather than enhancement of 45Ca2+ efflux. Substance P almost completely inhibited carbachol-induced 45Ca2+ uptake in both Na+-containing and Na+-free media, suggesting that substance P can inhibit the uptake of 45Ca2+ induced by carbachol regardless of whether 45Ca2+ is taken up through voltage-sensitive or acetylcholine receptor-linked channels. However, substance P produced only a small inhibition of K+-induced 45Ca2+ uptake, indicating that substance P does not interact directly with voltage-sensitive Ca2+ channels. In addition, substance P's inhibition of carbachol-induced 45Ca2+ uptake was noncompetitive with respect to Ca2+, were unable to overcome substance P's inhibition of [3H]-norepinephrine ( [3H]NE) release. It is concluded that substance P does not interact directly with Ca2+ channels in bovine adrenal chromaffin cells.  相似文献   

6.
Carbachol and substance P stimulated 45Ca2+ flux changes, 86Rb+ efflux, and amylase secretion from acinar cells isolated from rat parotid. The local anesthetic tetracaine blocked all of these measured responses to carbachol, but none of the responses to substance P. Tetracaine must act at either the cholinergic receptor or at a subsequent transducing step in the cholinergic stimulus-response sequence. If tetracaine acts at one of the transducing steps between cholinergic receptor occupation and the physiological responses then the action of tetracaine must be at a locus in the cholinergic reaction scheme not shared by substance P, because tetracaine did not block any response of the parotid to substance P.  相似文献   

7.
Both substance P and carbachol produced increases in inositol tris- and tetrakisphosphate and increased cytosolic free [Ca2+] in dispersed parotid acinar cells loaded with fura-2. The increase in [Ca2+]i in response to each agonist was due to a combination of mobilization of internal Ca2+ and entry of extracellular Ca2+. Kinetic studies of the initial response to substance P, and measurement of peak [Ca2+]i, demonstrated that the initial rapid rise in [Ca2+]i was due to both internal release and entry of Ca2+. Substance P could evoke a greater initial increase in [Ca2+]i and inositol trisphosphate than could carbachol. However, after 1 min in the presence of external Ca2+, the maintained [Ca2+]i level in response to substance P was considerably smaller than that seen with carbachol, an effect apparently due to homologous desensitization of the substance P receptor. The two agonists each produced a similar 4-5-fold increase in inositol tetrakisphosphate levels within 30 s; this level was maintained in the presence of carbachol, but decreased with substance P. Similarly, the level of inositol (1,4,5)-trisphosphate decreased after prolonged incubation with substance P. Thus, the maintained level of [Ca2+]i, and by deduction Ca2+ entry, correlated with the levels of inositol (1,4,5)-trisphosphate and inositol tetrakisphosphate; a result consistent with a possible role for these inositol phosphates in the control of receptor-mediated Ca2+ channels.  相似文献   

8.
Contraction of vascular smooth muscle in cell culture   总被引:3,自引:0,他引:3  
The use of cultured vascular smooth muscle cells for the study of events related to excitation and contraction of smooth muscle has been limited by the inability to reliably induce contractile responses after subculturing of the cells. This limitation has been overcome by the cell culture preparation described herein. We demonstrate that appropriate responses to both smooth muscle agonists and vasodilators were preserved in cells that were serially subcultured. Fetal bovine pulmonary artery and aortic cell cultures were established following enzymatic dispersion of the medial portion of freshly harvested vessels. At various times after isolation, cells were transferred to microscope coverslips coated with a polymerized silicone preparation (polydimethyl siloxane). Tension forces generated by the cells were manifested as wrinkles and distortions of this flexible growth surface. Visual evidence of cell contraction in the form of increased wrinkling was documented for cells exposed to angiotensin II, carbachol, and KCl. Decreases in cell tension occurred following treatment with isoproterenol, and those relaxing effects were overcome by subsequent treatment with the agonist carbachol. The contractile responses did not diminish with prolonged maintenance in culture or repeated subculturing. Phosphorylation of the light chains on the contractile protein myosin was also measured as a biochemical index of agonist-induced contraction. Cells depolarized with KCl or exposed to carbachol showed increased myosin phosphorylation when analyzed by 2-dimensional gel electrophoresis. The responses remained intact through 7 passages and 9 weeks in culture. These results show that cultured vascular smooth muscle cells do not necessarily undergo a phenotypic modulation with loss of contractility under prolonged maintenance in culture.  相似文献   

9.
The effect of antigen challenge on the airway responses to substance P and on the epithelial neutral endopeptidase (NEP) activity was investigated in aerosol sensitized guinea-pigs. In vivo, bronchial responses to aerosolized substance P were similar to the responses observed in antigen-challenged guinea-pigs and in the control groups. In contrast, when the guinea-pigs were pretreated with the NEP inhibitor, phosphoramidon, a significant increase in the airway responses to substance P was observed after antigen challenge in vivo. However, in vitro, the contractile responses of the tracheal smooth muscle to substance P were similar between groups of guinea-pigs, in respect to the presence or absence of the epithelium and/or phosphoramidon. Histological studies showed an accumulation of eosinophils in the tracheal submucosa after antigen challenge and intact epithelial cells. These results show that in vivo bronchial hyperresponsiveness to substance P after antigen challenge in the guinea-pig is not associated with increased responses of the smooth muscle to exogenous SP in vitro. In addition, the results with phosphoramidon suggest that loss of NEP activity cannot account for the in vivo bronchial hyperresponsiveness to substance P presently observed.  相似文献   

10.
Carbachol and substance P stimulated 45Ca2+ flux changes, 86Rb+ efflux, and amylase secretion from acinar cells isolated fromrat parotid. The local anesthetic tetracaine blocked all of these measured responsed to carbachol, but none of the responses to substance P. Tetracaine must act at either the cholinergic receptor or at a subsequent transducing step in the cholinergic stimulus-response sequence. If tetracaine acts at one of the transducing steps between cholinergic receptor occupation and the physiological responses then the action of tetracaine must be at a locus in the cholinergic reaction scheme not shared by substance P, because tetracaine did not block any response of the parotid to substance P.  相似文献   

11.
Regulation of calcium efflux from isolated rat parotid cells   总被引:5,自引:0,他引:5  
Calcium efflux from isolated rat parotid acinar cells was studied with 45Ca. Carbachol, phenylephrine, substance P, monobutyryl cyclic AMP and isoproterenol stimulated 45Ca efflux. It is suggested that carbachol, phenylephrine and substance P mobilize the same pool of cellular Ca. This suggestion is based on two observations. Firstly, combinations of any two of these three agonists at saturating concentrations result in no more 45Ca efflux than either agonist alone. Secondly, stimulation of 45Ca efflux by any one of the three agonists prevents further stimulation of 45Ca efflux by the same or one of the other two agonists. The pool of calcium mobilized by isoproterenol or monobutyryl cyclic AMP is different from the pool mobilized by carbachol. This conclusion is based on the observation that stimulation of 45Ca efflux by a saturating concentration of carbachol did not inhibit stimulation of 45Ca efflux by isoproterenol. Furthermore the effect of a saturating concentration of isoproterenol on 45Ca efflux is additive with that caused by a saturating concentration of carbachol. The effect of carbachol, phenylephrine and substance P on 45Ca2+ efflux did not require extracellular Ca2+.  相似文献   

12.
myo-[3H]Inositol-labelled SH-SY5Y cells were permeabilized with electrical discharges. 3H-Inositol phosphate formation in cells shown to be fully permeable was stimulated by the muscarinic agonist carbachol, by guanosine 5'-(gamma-thio)triphosphate [GTP(S)], and by guanosine 5'-(beta gamma-imido)diphosphate (GppNHp). Synergism was observed on coincubation of these GTP analogues with carbachol. GTP was also stimulatory and guanosine 5'-(beta-thio)diphosphate was inhibitory in the presence of agonist. Atropine blocked the effects of carbachol. Stimulation by GTP(S) (0.1 mM) occurred after a 1-2-min lag, whereas Ca2+ (0.5 mM), carbachol (1 mM), and carbachol plus GTP(S) stimulated without delay. The effects of carbachol plus GTP(S) but not those of Ca2+ were inhibited by spermine (4 mM). Accumulation of 3H-inositol phosphates was enhanced by Li+ (4 mM) only in intact cells. In intact or permeabilized cells, the "partial" agonist arecoline was maximally 40-50% as efficacious as carbachol. In permeabilized cells, the maximal effects of carbachol and arecoline were enhanced 2.8- and 5.3-fold, respectively, by 0.1 mM GTP(S), but only the EC50 for carbachol was substantially reduced. The binding affinity of carbachol but not that of arecoline in permeabilized cells was significantly reduced by 0.1 mM GppNHp. These data indicate that a guanine nucleotide-binding regulatory protein is involved in coupling muscarinic receptors to phosphoinositidase C in SH-SY5Y cells and that the activity of this protein influences the relationship between receptor occupation and phosphoinositide response.  相似文献   

13.
Summary The distribution and cellular localization of substance P in the chicken gut was studied by immunocytochemistry and immunochemistry. Substance P-containing nerve fibers are numerous in the gut wall. They occur in the smooth muscle layer as well as in the mucosa, where they are associated with blood vessels or surround the intestinal crypts. The fibers are particularly numerous in the myenteric and submucosal plexuses, where substance P-containing nerve-cell perikarya are also encountered. Substance P was found also in scattered endocrine cells of the small intestine, caeca and colon. Previously, bombesin-containing cells, which are numerous in the proventriculus, have been mistakenly identified as substance P cells due to crossreactivity of certain antisera against substance P. Immunochemistry revealed the highest concentration of substance P in the duodenum. The gel chromatographic behavior of chicken substance P differs slightly from that of synthetic bovine substance P, suggesting that chicken substance P differs structurally from mammalian substance P. Substance P-containing nerve fibers in the chicken gut develop slowly after hatching, apparently beginning in the duodenum; at approximately 20 weeks after hatching the distribution pattern is fully developed.A functional investigation was performed on the isolated chicken caecum to clarify the role of substance P in the contractile behavior of smooth muscle. Substance P contracted the caecum over a wide dose range; the contractile response was greater in 20 week-old chickens than in 4 and 10 week-old animals. Electrical field stimulation caused a relaxation of the caecum and a contraction upon cessation of stimulation. Neither of these responses, both of which are neurally mediated, were inhibited by adrenergic and cholinergic blockade. It is conceivable that the contractile response following electrical stimulation is caused by substance P released from nerve fibers in the smooth muscle.  相似文献   

14.
Activation of M3 muscarinic receptors in HT-29 cells by carbachol rapidly increases polyphosphoinositide breakdown. Pretreatment of these cells with carbachol (0.1 mM) for 5 h completely inhibits the subsequent ability of carbachol to increase [3H]inositol monophosphate ([3H]InsP) accumulation, paralleled by a total loss of muscarinic binding sites. In contrast, protein kinase C (PK-C)-mediated desensitization by incubation with phorbol esters [PMA (phorbol 12-myristate 13-acetate)], leading to a time- and dose-dependent inhibition of cholinergically stimulated InsP release (95% inhibition after 4 h with 0.1 microM-PMA), is accompanied by only a 40% decrease in muscarinic receptor binding, which suggests an additional mechanism of negative-feedback control. Neither carbachol nor PMA pretreatment had any effect on receptor affinity. Incubation with carbachol for 15 min caused a small increase of membrane-associated PK-C activity (15% increase, P less than 0.05) as compared with the potency of phorbol esters (PMA) (3-4-fold increase, P less than 0.01). Long-term incubation (4-24 h) with PMA resulted in a complete down-regulation of cytosolic and particulate PK-C activity. Stimulation of InsP release by NaF (20 mM) was not affected after a pretreatment with phorbol esters or carbachol, demonstrating an intact function of G-protein and phospholipase-C (PL-C) at the effector side. Determination of PL-C activity in a liposomal system with [3H]PtdInsP2 as substrate, showed no change in PL-C activity after carbachol (13 h) and short-term PMA (2.5 h) pretreatment, whereas long-term preincubation with phorbol esters (13 h) caused a small but significant decrease in PL-C activity (19%, P less than 0.05). Our results indicate that agonist-induced desensitization of phosphoinositide turnover occurs predominantly at the receptor level, with a rapid loss of muscarinic receptors. Exogenous activation of PK-C by phorbol esters seems to dissociate the interaction between receptor and G-protein/PL-C, without major effects on total cellular PL-C activity.  相似文献   

15.
Our goal was to examine the sidedness of effects of the purinergic agonist, uridine 5'-triphosphate (UTP), on Cl(-) secretion in intestinal epithelial cells. We hypothesized that UTP might exert both stimulatory and inhibitory effects. All studies were conducted with T84 intestinal epithelial cells. UTP induced Cl(-) secretion in a concentration-dependent fashion. Responses to serosally added UTP were smaller and more transient than those evoked by mucosal addition, but there was no evidence that mucosal responses involved cAMP-dependent mechanisms. Pretreatment with serosal UTP inhibited subsequent Ca(2+)-dependent Cl(-) secretion induced by carbachol or thapsigargin, or secretion induced by mucosal UTP, in a manner that was reversed by a tyrosine kinase inhibitor. The inhibitory effect of serosal UTP on Cl(-) secretion was not additive with that of carbachol, known to exert its inhibitory effects through the tyrosine kinase-dependent generation of inositol 3,4,5,6-tetrakisphosphate [Ins(3,4,5,6)P(4)]. Moreover, responses to both serosal and mucosal UTP were reduced by prior treatment of T84 cells with carbachol. Finally, serosal, but not mucosal, UTP evoked an increase in Ins(3,4,5,6)P(4). We conclude that different signaling mechanisms lie downstream of apical and basolateral UTP receptors in epithelial cells, at least in the intestine. These differences may be relevant to the use of UTP as a therapy in cystic fibrosis.  相似文献   

16.
ATP and substance P were examined as possible mediators of non-adrenergic, non-cholinergic excitatory transmission in chicken rectum. ATP and the non-degradable ATP analogue, alpha, beta-methylene ATP, mimicked the response to nerve stimulation. Substance P either produced a maintained contraction after a long latency or was inactive. After desensitization of the P2-purinoceptor by alpha, beta-methylene ATP, the responses to ATP and nerve stimulation were abolished, while the response to carbachol was little affected. It is concluded that ATP may be the transmitter in non-adrenergic, non-cholinergic excitatory nerves supplying the chicken rectum.  相似文献   

17.
Agonist Regulation of Muscarinic Acetylcholine Receptors in Rat Spinal Cord   总被引:2,自引:0,他引:2  
Abstract: In vitro studies with cultured cells originating from nervous tissue have shown that chronic exposure to muscarinic agonists results in a loss of muscarinic receptors. To determine whether this type of regulation of muscarinic receptor number also occurs in vivo , we infused carbachol into the spinal cords of rats. A single carbachol injection into the lumbar spinal cord caused a significant increase in the nociceptive threshold. This effect of carbachol diminished to control levels after 12 h of repeated agonist injections every 4 h and was blocked by atropine. The desensitization to the antinociceptive effects of carbachol was associated with a loss of muscarinic receptors as determined by the binding of the muscarinic antagonist [3H]quinuclidinyl benzilate. After a 24-h exposure to carbachol given every 4 h, there was about a 60% loss of binding sites. The loss of muscarinic receptors was also blocked by atropine and was reversible. These results represent direct evidence that a muscarinic agonist can regulate receptor number in the central nervous system and suggest that this loss of receptors is associated with a desensitization to the antinociceptive effects of carbachol injected into the spinal cord.  相似文献   

18.
Changes in the numbers of serotonin- and substance P-immunoreactive (IR) cells occur in several animal models of diabetes. It is not known, however, whether these changes are a result of actual cell loss or are caused by modified gene expression in cells showing co-localization of serotonin and substance P. The pattern of mono- and co-expression of serotonin, as well as of substance P, was therefore investigated in gastrointestinal endocrine cells from animal models of human type 1 and type 2 diabetes, namely non-obese diabetic (NOD) and obese diabetic (ob/ob) mice. Immunocytochemical staining by the avidin-biotin complex method was performed for computerized image analysis of each cell type, and by immunofluorescence double staining to study co-localization. Tissues from antrum, proximal duodenum and distal colon were investigated. Co-localization of serotonin- and substance P-IR was found in all investigated parts of the gut. In antrum, substance P immunoreactivity was found exclusively in serotonin-IR cells. In both NOD and ob/ob mice there was a reduced number of substance P-IR cells, but an unchanged serotonin-IR cell count, which thus tallies with a shut-off of substance P expression in antral enterochromaffin cells. In duodenum, both diabetes models showed a decreased number of serotonin-IR cells. Furthermore there was a decreased number of substance P-IR cells in the type 2 model. The proportion of serotonin-IR cells showing substance P-immuno-reactivity was decreased in both diabetic models, thus indicating a shut-off of substance P-gene expression. However, this does not fully explain the changes in duodenum, but the diabetic state probably affects the number of mono-expressed cells as well. In colon, no change was found in diabetic mice regarding co-localization of substance P and serotonin. However, pre-diabetic NOD mice showed a decreased proportion of substance P in serotonin-IR cells, which might be explained by the increased number of serotonin-IR cells, combined with an unchanged number of substance P-IR cells. In conclusion, diabetic animal models of both type 1 and type 2 appear to have a combination of decreased expression of substance P in serotonin-IR cells of both antrum and duodenum, as well as a change in the number of mono-expressed cells. The pattern in colon, on the other hand, seems to be unaffected.  相似文献   

19.
We selected two inbred strains of mice based on their different in vivo lung responses to intravenous acetylcholine for studies on the in vitro tracheal responses to contractile and relaxing agents. In addition, we studied the role of cyclooxygenase products on the in vitro responses. Tracheal rings were contracted with increasing concentrations of carbachol and KCl and relaxed with increasing concentrations of isoproterenol after contraction with carbachol at the concentration that produced 30, 50, and 70% of the maximal contraction (EC30, EC50, and EC70, respectively) and KCl at the EC50. Half the tracheae simultaneously underwent the same protocols after pretreatment with indomethacin (3 X 10(-6) M). Despite a severalfold difference in the maximal response to cholinergic agents in vivo, there were no significant differences between the strains in the tracheal responses to carbachol (P = 0.78) or KCl (P = 0.13) in vitro. Both strains showed inhibition of the isoproterenol relaxation by carbachol (P less than 0.0001). Multiple linear regression analysis showed that the strain that was more sensitive to carbachol in vivo was also more sensitive to isoproterenol in vitro after carbachol contraction (P = 0.014). The greater isoproterenol sensitivity of the tracheae from this strain was not present after contraction with KCl, nor were these tracheae more sensitive to relaxation with sodium nitroprusside. Indomethacin pretreatment of the tissues in vitro augmented the maximal response and the sensitivity to carbachol (P less than 0.001) and KCl (P = 0.0006), and this effect was similar in both strains. Evaluation of isoproterenol relaxation after indomethacin pretreatment was confounded by the lower concentrations of carbachol needed for contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Whereas carbachol, noradrenaline, serotonin and memantine stimulated inositol phosphates production and calcium mobilization in 3-5 day old rabbit retinal cultures, only carbachol and noradrenaline were effective when 25-30 day old cultures were used. The older retinal cultures contain only Müller cells which shows that the memantine and serotonin effects on the 3-5 day old cultures are specifically associated with neurones. While the carbachol, noradrenaline and serotonin effects were respectively blocked by atropine, prazosin and ketanserin, none of these substances influenced the memantine responses. In all areas of the rat brain which were analysed, the effectiveness of memantine, noradrenaline and carbachol on the stimulation of inositol phosphates production was similar. However, in the rabbit retina, as opposed to the rat brain slices, carbachol had a more pronounced influence than noradrenaline in stimulating inositol phosphates production. Chick retina exposed to N-methyl-D-aspartate, quisqualate, glutamate or kainic acid resulted in cytopathological damage to cell bodies in the outer nuclear layer. The N-methyl-D-aspartate effect was nullified by memantine and MK-801 but not by kynurenic acid. In contrast the kainic acid-induced damage was specifically antagonized by kynurenic acid. The present results show that memantine influences the metabolism of inositol phosphates in neurones but not glial (Müller) cells and appears to counteract the N-methyl-D-aspartate induced cytopathological damage. How these two effects of memantine are interrelated and whether they are involved in the described beneficial therapeutic observations of memantine (as in dementia) remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号