首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet difference absorption spectra produced by ethylene glycol were measured for hen lysozyme [EC 3.2.1.17] and bovine chymotrypsinogen. N-Acetyl-L-tryptophanamide and N-acetyl-L-tyrosinamide were employed as model compounds for tryptophyl and tyrosyl residues, respectively, and their ultraviolet difference spectra were also measured as a function of ethylene glycol concentration. By comparison of the slopes of plots of molar difference extinction coefficients (delta epsilon) versus ethylene glycol concentration for the proteins with those of the model compounds at peak positions (291-293 and 284-287 nm) in the difference spectra, the average number of tyrosyl as well as tryptophyl residues in exposed states could be estimated. The results gave 2.7 tryptophyl and 1.9 tyrosyl residues exposed for lysozyme at pH 2.1 and 2.6 tryptophyl and 3.4 tyrosyl residues exposed for chymotrypsinogen at pH 5.4. The somewhat higher tyrosyl exposure of chymotrypsinogen, compared with the findings from spectrophotometric titration and chemical modification, was not unexpected, because delta epsilon285 was larger than delta epsilon292, and the situation is discussed with reference to preferential interaction of ethylene glycol with the tyrosyl residues and/or side chains in the vicinity of the chromophore in the protein. The procedure employed in the present work seems to be suitable for estimation of the average number of exposed tryptophyl and tyrosyl residues in tryptophan-rich proteins. The effects of ethylene glycol on the circular dichroism spectra of lysozyme at pH 2.1 and chymotrypsinogen at pH 5.4 were also investigated. At high ethylene glycol concentrations, both proteins were found to undergo conformational changes in the direction of more ordered structures, presumably more helical for lysozyme and more beta-structured for chymotrypsinogen.  相似文献   

2.
S L Li  S Norioka    F Sakiyama 《Journal of bacteriology》1990,172(11):6506-6511
Two bacteriolytic enzymes secreted by Achromobacter lyticus M497-1 were purified and identified as being very similar (considering their amino acid composition and N-terminal sequence) to alpha- and beta-lytic proteases from Lysobacter enzymogenes. A 1.8-kb EcoRI fragment containing the structural gene for beta-lytic protease was cloned from A. lyticus chromosomal DNA. The protein sequence deduced from the nucleotide sequence was identical to the known sequence of beta-lytic protease, except for six residues. The nucleotide sequence revealed that the mature enzyme is composed of 179 amino acid residues with an additional 195 amino acids at the amino-terminal end of the enzyme, which includes the signal peptide, thus indicating that the enzyme is synthesized as a precursor protein.  相似文献   

3.
Ultraviolet difference spectroscopy has been used to study the binding of the transition state analog saccharo-1,4-lactone to purified rat preputial gland beta-glucuronidase. At pH 4.5 (the pH optimum), the inhibitor induces a difference spectrum indicative of a change in the environment of tryptophyl residues. Based on the magnitude of the induced difference spectrum as a quantitative measure of inhibitor binding, a titration curve for saccharo-1,4-lactone was obtained. A Scatchard plot of the titration data indicates that 4 molecules of inhibitor bind to the enzyme tetramer at a K-I of 4 times 10-7 M. The inhibitor also induces a similar difference spectrum at pH 7.5, although the binding is considerably weaker at this pH than at pH 4.5. When the native enzyme at pH 4.5 is compared with the native enzyme at pH 7.5, a difference spectrum, distinct from that of the binding of saccharo-1,4-lactone, is observed, indicating that the enzyme exists in different conformations at these pH values. The indication that tryptophyl residues are perturbed upon binding of saccharo-1,4-lactone was supported by studies carried out with N-bromosuccinimide. At pH 4.3, this reagent was found to oxidize 6 tryptophyl residues in the native enzyme but only three in the saccharo-1,4-lactone-inhibited enzyme. A spectrophotometric titration of the enzyme indicated that of the 33 tyrosyl residues per subunit, only 5 to 6 ionize at the pK expected for free phenolic groups.  相似文献   

4.
The ultraviolet circular dichroism of di-isopropylphophoryl-subtilisins Carlsberg and Novo (EC 3.4.21.14) has been examined as a function of pH. The CD of these enzymes below 260 nm is invariant over the pH interval 4 to 12, below or above which spectral changes occur suggesting a transition to a random coil form. Above pH 8 contributions due to the ionization of tyrosyl residues appear in the CD above 260 nm as bands shifted to longer wavelengths. Three independently titratable components, obtained by matrix rank analysis, account for the observed CD spectral changes above 260 nm of Dip-subtilisin Carlsberg in the pH interval 8 to 12. By contrast, two components were derived for the Novo enzyme. The identities of the matrix rank components were surmised from their apparent pKa values. One component of both subtilisin enzymes corresponds to the CD of the "buried" or irreversibly titratable tyrosyl residues of the enzyme. The other matrix rank components correspond to the CD of the "exposed" or freely ionizable tyrosyl residues. These residues are optically active only in the ionized state. Two types of "exposed" tyrosyl residues, arising because of differing sensitivity to the ionization of the "partially buried" or abnormally titrating tyrosyl residues, are evident in Dip-subtilisin Carlsberg. A pH-induced local conformational change in this enzyme is proposed to account for this behavior. The "partially buried" tyrosyl residues of both subtilisins appear to be devoid of optical activity in either the tyrosyl or tyrosylate form.  相似文献   

5.
The conformational properties of wheat germ hexokinase LI, a monomeric enzyme showing non-Michaelian kinetics, have been studied by polarised pulse fluorimetry using synchrotron radiation as an excitation light source.The fluorescence decays and the fluorescence anisotropy decays of tryptophyl residues were measured with excitation at 300 nm. At pH 8.5, we found that the mnemonical temperature-dependent transition did not induce any detectable structural change in the protein. This rules out modifications of the aggregation state of hexokinase during the transition as well as important conformational changes in the tertiary structure. At pH 6.1, a temperature-dependent transition of the enzyme-glucose binary complex is observed: rapid, large amplitude, internal motions appear in the structure when the temperature is raised from-1°C to 30°C. Full standard activity is retained during this dynamic change.In the experiments described here we obtained an active fluorescent derivative by reacting hexokinase with N-(iodoacetylaminoethyl)-5-naphtylamine-1-sulfonic acid (1,5-IAEDANS), in the presence of glucose. Polarised fluorescence decay measurements indicate that the label is exposed to the solvent and very mobile, which makes it ineffective as a probe for the conformational properties of hexokinase.Abbreviations 1,5-IAEDANS N-(iodoacetylaminoethyl)-5-napthylamine-1-sulfonic acid - DTNB 5,5-dithiobis(2-nitrobenzoic acid)  相似文献   

6.
Spectral studies demonstrated that acidic pH values induce a two-step denaturation of porcine elastase, the first conformational transition occuring over the pH range 4.2–3.8, the second between pH 3.3 and 2.9. The proflavine-sensitized photooxidation of elastase in its native state, as well as in its denatured conformations, allowed us to isolate elastase derivatives selectively modified at given tryptophyl residues, hence to draw reliable conclusions about their degree of burial inside the protein matrix and their functional and conformational role. In particular, tryptophan-26 and -164 are located at the surface of the protein molecule, and their oxidation to N-formylkynurenine has no appreciable effect on the elastolytic activity and three-dimensional geometry of elastase. Tryptophan-83 is partially shielded from the aqueous environment; its modification affects only slightly the enzymic efficiency, while the tertiary structure of the protein perhaps increases its rigidity. Tryptophan-12 must be largely buried in internal regions, since its photooxidation is possible only after the native elastase structure has been extensively randomized; its indole ring appears to be of critical importance for the enzymic activity and the conformational stability of elastase. Finally, our data suggest that tryptophan-39, -132, and -232 are deeply buried; consequently, we failed to achieve the specific or preferential modification of these residues.  相似文献   

7.
The states of tyrosyl and tryptophyl residues of a dimeric protein proteinase inhibitor, Streptomyces subtilisin inhibitor (Sato, S & Murao, S. (1973), Agric. Biol. Chem. 37, 1067) were studies by solvent perturbation difference spectroscopy with methanol, ethylene glycol, polyethylene glycol, and deuterium oxide as perturbants, and by spectrophotometric titration at alkaline pH. It appeared that all three tyrosyl residues per monomer of the inhibitor were exposed on the surface of the molecule, and their apparent pK values were estimated separately to be 9.58, 11.10, and 12.42. The single tryptophyl residue per monomer of the inhibitor appeared to be partially buried in the protein molecule.  相似文献   

8.
The effect of temperature and pH of medium on the spatial organization of a molecule of the serine protease inhibitor InhVJ from the sea anemone Heteractis crispa (=Radianthus macrodactylus) at the level of the tertiary and secondary structures has been studied by CD spectroscopy. It has been shown that the conformation of an InhVJ molecule is highly stable to changes in temperature and pH. The point of the thermal conformational transition of the polypeptide (70°C) has been determined, after which the molecule turns into a denatured stable state with the retention of 80% of the inhibitory activity. It was found that significant, partially reversible changes in the spatial organization of the molecule occur on the level of the tertiary structure in the pH range 11.0–13.0, which may be explained by the ionization of tyrosine residues. At a low pH value (2.0), the InhVJ molecule is conformationally stable. The results of quenching of tyrosine residues by acrylamide showed that two residues are completely accessible for the quencher, whereas the third residue is partially accessible.  相似文献   

9.
Evidence of conformational changes in rabbit muscle aldolase upon binding to phosphatidylinositol liposomes and the effect of the interaction on the thermal conformational transition are reported. Interaction with phosphatidylinositol liposomes significantly decreases the aldolase tryptophanyl fluorescence and shifts the maximum wavelength to higher values. The dynamic quenching constant for the aldolase fluorescence quenching by acrylamide in the presence of liposomes is much higher than that for unmodified enzyme; this signifies an increase in accessibility of some tryptophanyl residues to small polar molecules. Indirect interaction between single phospholipid molecules, small micelles or any soluble impurities able to penetrate into the protein molecule interior does not seem to be involved in the conformational rearrangement. Native and liposome-interaction-induced conformational states reveal different temperature dependences of the tryptophan residues exposure. The implications of the modification of the conformational state of the enzyme for its function in vivo are discussed.  相似文献   

10.
The 3-phosphoglycerate kinase (EC 2.7.2.3) of yeast which contains two tryptophyl and eight tyrosyl residues per molecule, displayed an unusualy fluorescence emission spectrum with a maximum at 308 nm when excited at 280 nm. The emission peak shifted to 329 nm when excited at 295 nm. We could confirm that it was due to the efficient quenching of tryptophyl fluorescence as well as to the incomplete energy transfer from tyrosyl to tryptophyl residues. The average fluorescence quantum yield of this protein was 0.076 (excitation at 280 nm) and that of tryptophyl residues was 0.046 (excitation at 295 nm). As the pH of the solution was lowered, the fluorescence intensity of phosphoglycerate kinase at 329 nm dramatically increased between pH 5 and 4, while the position of the peak remained unchanged. When denatured in 4 M guanidine hydrochloride, the protein showed two emission peaks, one at 343 nm and the other at 303 nm.  相似文献   

11.
L J Hyland  T A Tomaszek  T D Meek 《Biochemistry》1991,30(34):8454-8463
The pH dependence of the peptidolytic reaction of recombinant human immunodeficiency virus type 1 protease has been examined over a pH range of 3-7 for four oligopeptide substrates and two competitive inhibitors. The pK values obtained from the pKis vs pH profiles for the unprotonated and protonated active-site aspartyl groups, Asp-25 and Asp-25', in the monoprotonated enzyme form were 3.1 and 5.2, respectively. Profiles of log V/K vs pH for all four substrates were "bell-shaped" in which the pK values for the unprotonated and protonated aspartyl residues were 3.4-3.7 and 5.5-6.5, respectively. Profiles of log V vs pH for these substrates were "wave-shaped" in which V was shifted to a constant lower value upon protonation of a residue of pK = 4.2-5.2. These results indicate that substrates bind only to a form of HIV-1 protease in which one of the two catalytic aspartyl residues is protonated. Solvent kinetic isotope effects were measured over a pH (D) range of 3-7 for two oligopeptide substrates, Ac-Arg-Ala-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2 and Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2. The pH-independent value for DV/K was 1.0 for both substrates, and DV = 1.5-1.7 and 2.2-3.2 at low and high pH (D), respectively. The attentuation of both V and DV at low pH (D) is consistent with a change in rate-limiting step from a chemical one at high pH (D) to one in which a product release step or an enzyme isomerization step becomes partly rate-limiting at low pH (D). Proton inventory data is in accord with the concerted transfer of two protons in the transition state of a rate-limiting chemical step in which the enzyme-bound amide hydrate adduct collapses to form the carboxylic acid and amine products.  相似文献   

12.
The effect of pH on the circular dichroism spectra of phenylmethanesulfonyl-mesentericopeptidase (peptidyl peptide hydrolase, EC 3.4.21) was studied. The ellipticity of the bands below 250 nm, which reflects the backbone conformation of the protein molecule, remains almost unchanged in the pH range 6.2--10.4. However, below pH 6.2 and above pH 10.4 a conformational transition occurs. The pH-dependent changes above 250 nm were also studied. The titration of the CD band at 296 nm reflects the ionization of the "exposed" tyrosines, which phenolic groups are fully accessible to the solvent. An apparent pK of 9.9 is calculated from the titration curve. It is concluded that ionization of the tyrosyl residues with normal pK's is complete before conformational changes in the protein molecule occur.  相似文献   

13.
The emission maximum of DPN-linked isocitrate dehydrogenase in pH 7.07 buffer is shifted from 317 to 324 nm and fluorescence intensity is decreased when the excitation wave-length is varied from 270 to 290 nm; in 0.2 M KOH, where the fluorescence of tyrosyl residues is almost completely quenched, a further substantial decline in quantum yield of protein fluorescence and a red shift of the emission peak to 339 nm occur. The latter should be due mainly to tryptophyl residues. The enzyme contains 9.4 tyrosyl residues per subunit of molecular weight 42,000 determined spectrophotometrically (295 nm) at pH 13, in good agreement with a tyrosine content of 9.7 by amino acid analysis. No more than 1.1 tyrosyl residues per subunit can be detected up to pH 10.6 at 7 degrees upon prolonged incubation. The increase in absorption at 295 nm with increasing pH is related to loss of enzyme activity and results in a red shift of the emission maximum, and decreased fluorescence intensity. Treatment of the enzyme in a Li+-containing buffer at pH 7.5 with an excess of N-acetylimidazole results in (a) modification of 1.1 tyrosyl residues per subunit, (b) a 30% decrease in enzyme activity, (c) a 6-nm red shift in emission maximum, and (d) a decrease in fluorescence intensity. Manganous DL-isocitrate (1.06 mM) prevents the acetylation of the enzyme. Deacetylation of the O-acetylated enzyme by hydroxylamine completely restores the enzyme activity and reverses the spectral changes. The acetylation studies indicate that the reactive tyrosyl residue does not participate directly in catalysis but may be involved in maintaining the proper conformation of the active enzyme center. A net of 1 of the 2 tryptophyl residues per subunit is perturbed immediately by a number of solvents. This perturbation is not affected by manganous isocitrate, whereas exposure of tyrosyl residues occurs only with time and is prevented by the substrate. The perturbation of the tryptophyl residue is accompanied by a red shift of the fluorescence emission maximum. The more exposed tryptophyl residue may contribute to the energy transfer from protein to nucleotides since the quenching of protein fluorescence upon binding of DPN+, DPNH, or ADP by enzyme results in a blue shift of the emission maximum. Manganous DL-isocitrate (1.06 mM) quenches protein fluorescence by 16% without a shift in emission peak and does not affect the relative extent of fluorescence quenching induced by the nucleotides.  相似文献   

14.
The conformational changes of antibody structure induced by hapten molecule binding were investigated by means of thermal perturbation difference spectroscopy. The studies of the free rabit anti-dinitrophenyl antibodies show the conformational transition at temperatures between 25 and 35 degrees C. The changes occurring at the higher temperature are accompanied by the screening of the significant part of exposed tyrosine residues. Binding of the hapten molecules induces a similar transition to that which occurs between the two temperature dependent states of the free antibody. In contrast to our previous results with anti-dansyl rabbit antibodies the dinitrophenyl lysine stabilizes the "low temperature" native state of the protein. The investigation of the MOPC-315 mouse immunoglobulin A myeloma protein possessing anti-dinitrophenyl activity indicates no conformational transition at temperatures between 25 and 35 degrees C and only a small decrease of tyrosine exposure induced by the hapten binding. Our present and previous results indicate that most of the free immunoglobulins exist in two native conformational states which have a small difference in free energy. Hapten binding causes the transition in equilibrium between the two states towards the one of better binding. It is possible that this transition is necessary but not sufficient step for inducing the effector function of antibodies.  相似文献   

15.
The acid-induced isomerization (the N-F transition) and expansion of bovine plasma albumin were studied by measuring fluorescence polarization and lifetime of the excited state of tryptophyl fluorophors. Most of the changes (decreases) in the reciprocal of fluorescence polarization and lifetime of the excited state correlated exactly with the N-F1 transition and/or the initial part of the N-F transition. These findings suggest that though the N-F transition is the cooperative pH-dependent conformational transition, the N-F transition clearly involves an intermediate step, such as the N-F1 and F1-F2 transitions. Rotational relaxation times for the N- and F-forms obtained by Perrin plot of tryptophyl fluorescence polarization were approximately 75 and 120-180 ns, respectively. The unexpected short rotational relaxation time of 75 ns of the N-form might be due to the rotational freedom of the tryptophyl side chain itself and/or of small flexible loci where tryptophyl fluorophors attach.  相似文献   

16.
Exposure of pigeon liver malic enzyme [S)-malate:NADP+ oxidoreductase (oxaloacetate-decarboxylating), EC 1.1.1.40) in medium concentrations of guanidine-HCl at 25 degrees C and pH 7.45 caused biphasic conformational changes of the enzyme molecule. Molecular weight determination confirmed that the enzyme tetramers were dissociated to monomers in phase I transition. Enzymatic activity was completely lost in this phase. Recovery of the enzyme activity was only possible in the early stages of the phase I transition. Phase II was due to enzyme unfolding, as judged by circular dichroism and the fluorescence parameters of the enzyme. The steps of the transformation of native malic enzyme into a completely denatured state were in the following sequence: tetramer----monomer----random coil. Extensive denaturation of the enzyme molecule resulted in irreversible aggregation. Dissociation and denaturation were accompanied by a red-shift of the fluorescence spectrum (328----368 nm). Fluorescence quenching studies indicated that tryptophan residues of the enzyme molecule were buried deeply in the interior of the molecule. The tryptophan residues were only partially accessible by acrylamide and almost inaccessible by KI. Dissociation and denaturation were accompanied by exposure of the tryptophan residues, as manifested by the accessibility of the enzyme molecule toward KI or acrylamide.  相似文献   

17.
The tryptophyl fluorescence emission of yeast 3-phosphoglycerate kinase decreases from pH 3.9 to pH 7.2 following a normal titration curve with an apparent pK of 4.7. The fluorescence decays have been determined at both extreme pH by photocounting pulse fluorimetry and have been found to vary with the emission wavelength. A quantitative analysis of these results according to a previously described method allows to determine the emission characteristics of the two tryptophan residues present in the protein molecule. At pH 3.9, one of the tryptophan residues is responsible for only 13% of the total fluorescence emission. This first residue has a lifetime τ1= 0.6 ns and a maximum fluorescence wavelength λ2max = 332 nm. The second tryptophan residue exhibits two lifetimes τ21= 3.1 ns and τ22= 7.0 ns (λ2max= 338 nm). In agreement with the attribution of τ21and τ32 to the same tryptophan residue, the ratio β = C21/C22 of the normalized amplitudes is constant along the fluorescence emission spectrum. At pH 7.2, the two tryptophan residues contribute almost equally tc the protein fluorescence. The decay time of tryptophan 1 is 0.4 ns. The other emission parameters are the same as those determined at pH 3.9. We conclude that the fluorescence quenching in the range pH 3.9 to pH 8.0 comes essentially from the formation of a non emitting internal ground state complex between the tryptophan having the longest decay times and a neighbouring protein chemical group. The intrinsic pK of this group and the equilibrium constant of the irternal complex can be estimated. The quenching group is thought to be a carboxylate anion. Excitation transfers between the two tryptophyl residues of the protein molecule appear to have a small efficiency.  相似文献   

18.
Studies of the iodide ion quenching of the intrinsic fluorescence of Concanavalin A indicate that 50% of the tryptophyl fluorescence originates from exposed residues. This agrees with the X-ray crystallographic determination that two of the four tryptophan residues in a Concanavalin A monomer are on the surface. Previous studies have indicated that conformational changes induced by sugar binding alter the environment of aromatic residues. The present investigation finds that neither the specific binding of alpha-methyl-D-mannoside nor alteration of the Concanavalin A quaternary structure changes the number or accessibility of the solvent-exposed tryptophan residues. It therefore appears that the major conformational transitions in Concanavalin A do not affect steric access to the surface tryptophans and the effects previously observed may be ascribed to structurally internal tryptophan residues.  相似文献   

19.
Changes in structure of alpha1-acid glycoprotein were followed after deglycosylation with neuraminidase, peptide N-glycohydrolase F or with a mixture of exoglycosidases. Partially deglycosylated preparations of alpha1-acid glycoprotein free of sialic acids, one complete saccharide component, sialic acids and one saccharide component and sialic acids and some of the external saccharides were obtained. The effect of these changes in saccharide components on the glycoprotein structure was studied by temperature perturbation difference spectroscopy, fluorescence spectroscopy, fourth-derivative of absorption spectra and spectra of CD. Partial deglycosylation resulted in transformation of the molecule to a more compact state in which phenylalanyl residues were even more buried, tyrosyl residues became more uniform and tryptophyl residues were less exposed. The content of ordered secondary structures decreased. The thermal stability of the molecule was not significantly affected. Removal of one of the five saccharide components from the native molecule had apparently deeper effect than total desialyzation of the glycoprotein.  相似文献   

20.
Glutamate dehydrogenase from Candida utilis undergoes a reversible conformational transition between an active and an inactive state at low pH AND low temperature. This conformational transition can also be followed by fluorescence measurements. The temperature-dependent equilibrium between the active and the inactive state is characterized by a transition temperature of 10.7 degrees C and a delta H value of 148 kcal/mol (620 kJ/mol). The temperature dependence of the enzymic activity above 15 degrees C yields an activation energy of 15 kcal/mol (63 kJ/mol), a larger value than that for the beef liver enzyme (9 kcal/mol; 38 kJ/mol). In contrast to the yeast enzyme the Arrhenius plot is linear and, therefore, the beef liver enzyme is not transformed into an inactive conformation at low temperatures. Sedimentation analysis shows that the inactivation of the Candida utilis enzyme is not caused by change in the quaternary structure. The pH dependence of the conformational transition at low pH measured by fluorescence change is characterized by a pK value of 7.01 for the enzyme in the absence and of 6.89 for the enzyme in the presence of 2-oxoglutarate with a Hill coefficient of 3.4 in both cases. Similar results are found when the pH dependence of the enzymic activity is analyzed. With the beef liver enzyme the same pK value is obtained but with a Hill coefficient of 1 indicating cooperativity only in the case of the Candida utilis enzyme. The best fit of the pH dependence of the rate constants of the fluorescence changes was obtained with pK values of 7.45 and 6.45 for the active and the inactive state respectively. In this model the lowest time constant which is obtained at the pH of the equilibrium was found to be 0.05 s-1. Preincubation experiments with the substrate 2-oxoglutarate but not with the coenzyme shift the equilibrium to the active conformation. The coenzyme obviously reduces the rate constant of the conformational transition. The sedimentation coefficient (SO20, w) and the molecular weight were found to be 11.0 S and 276 000, respectively. The enzyme molecule is built up by six polypeptide chains each having a molecular weight of 47 000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号