首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
K J Guerrero  L L Ehler  P D Boyer 《FEBS letters》1990,270(1-2):187-190
Guanosine triphosphate and formycin triphosphate (FTP) in the presence of excess Mg2+ can bind to empty non-catalytic sites of spinach chloroplast ATPase (CF1). This results in a greatly reduced capacity for ATP hydrolysis compared to the enzyme with non-catalytic sites filled with ATP. With two GTP bound at non-catalytic sites the inhibition is about 90%; with two FTP bound about 80% inhibition is obtained. Binding and release of the nucleotides from the non-catalytic sites are relatively slow processes. Exposure of CF1 with one or two empty non-catalytic sites to 5–10 μM FTP or GTP for 15 min suffices for about 50% of the maximum inhibition. Reactivation of CF1 after exposure to higher FTP or GTP concentrations requires long exposure to 2 μM EDTA. The findings show that, contrary to previous assumptions, GTP can bind tightly to non-catalytic sites of CF1. They suggest that the presence of adenine nucleotides at non-catalytic sites might be essential for high catalytic capacity of the F1 ATPases.  相似文献   

2.
SolubilizedRhodospirillum rubrum RrF1-ATPase, depleted of loosely bound nucleotides, retains 2.6 mol of tightly bound ATP and ADP/mol of enzyme. Incubation of the depleted RrF1 with Mg2+-ATP or Mg2+-AMP-PNP, followed by passage through two successive Sephadex centrifuge columns, results in retention of a maximal number of 4 mol of tightly bound nucleotides/mol of RrF1. They include 1.5 mol of nonexchangeable ATP, whereas all tightly bound ADP is fully exchangeable. A similar retention of only four out of the six nucleotide binding sites present on CF1 has been observed after its passage through one or two centrifuge columns. These results indicate that the photosynthetic, unlike the respiratory, F1-ATPases have fasterk off constants for two of the Mg-dependent nucleotide binding sites. This could be the reason for the tenfold lower Mg2+ than Ca2+-ATPase activity observed with native RrF1, as with -depleted, activated CF1. An almost complete conversion of both RrF1 and CF1 from Ca2+- to Mg2+-dependent ATPases is obtained upon addition of octylglucoside, at concentrations below its CMC, to the ATPase assay medium. Thus, octylglucoside seems to affect directly the RrF1 and CF1 divalent cation binding site(s), in addition to its proposed role in relieving their inhibition by free Mg2+ ions. The RrF1-ATPase activity is 30-fold more sensitive than CF1 to efrapeptin, and completely resistant to either inhibition or stimulation by the CF1 effector, tentoxin. Octylglucoside decreases the inhibition by efrapeptin and tentoxin, but exposes on CF1 a low-affinity, stimulatory site for tentoxin.Abbreviations: CF1, EcF1, MF1, and TF1, the soluble F1-ATPase from chloroplasts, PE. coli, mitochondria,R. rubrum, and the thermophilic bacterium PS3, respectively: AMP-PNP, adenylyl-, -imidodiphosphate; CMC, critical micellar concentration; DTT, dithiothreitol, LDAO, lauryl dimethylamine oxide.Dedicated to Professor Achim Trebst in honor of this 65th birthday.  相似文献   

3.
Isolated spinach CF1 (chloroplast coupling factor 1) forms enzyme-bound ATP without any supply of energy in the presence of high concentrations of Pi [Feldman and Sigman (1982) J Biol Chem 257: 1676-1683]. The final amount of CF1-bound ATP synthesized was increased greatly by 1,2-propanediol, and moderately by methanol, ethanol, and dimethyl sulfoxide, but decreased by glycerol and octyl glucoside. Methanol and ethanol greatly increased the initial rate of ATP synthesis, while 1,2-propanediol increased it only moderately. Low concentrations (10-8 -10-6 M) of tentoxin, which inhibit ATPase activity of isolated CF1, did not affect enzyme-bound ATP synthesis. However, high concentrations (>10-5 M) of tentoxin, which stimulate ATPase activity of isolated CF1, enhanced the initial rate of CF1-bound ATP synthesis without significant effect on the final amount of ATP synthesized in the presence of medium ADP. The substrate of enzyme-bound ATP synthesized came largely from tightly bound ADP, not medium ADP, and tentoxin did not affect this substrate profile. Tentoxin did not affect the binding of medium ADP to high affinity sites on CF1.  相似文献   

4.
Studies of the kinetics of association and dissociation of the formycin nucleotides FTP and FDP with CF1 were carried out using the enhancement of formycin fluorescence. The protein used, derived from lettuce chloroplasts by chloroform induced release, contains only 4 types of subunit and has a molecular weight of 280 000. In the presence of 1.25 mM MgCl2, 1 mol of ATP or FTP is bound to the latent enzyme, with Kd = 10(-7) or 2 . 10(-7), respectively. The fluorescence emission (lambdamax 340 nm) of FTP is enhanced 3-fold upon binding, and polarization of fluorescence is markedly increased. The fluorescence changes have been used to follow FTP binding, which behaves as a bimolecular process with k1 = 2.4 . 10(4) M-1 . s-1. FTP is displaced by ATP in a process apparently involving unimolecular dissociation of FTP with K-1 = 3 . 10(-3) S-1. The ratio of rates is comparable to the equilibrium constant and no additional steps have been observed. The protein has 3 sites for ADP binding. Rates of ADP binding are similar in magnitude to those for FTP. ADP and ATP sites are at least partly competitive with one another. The kinetics of nucleotide binding are strikingly altered upon activation of the protein as an ATPase. The rate of FTP binding increases to at least 10(6) M-1 . s-1. This suggests that activation involves lowering of the kinetic barriers to substrate and product binding-dissociation and has implications for the mechanism of energy transduction in photophosphorylation.  相似文献   

5.
D. Bar-Zvi  N. Shavit 《BBA》1982,681(3):451-458
Inactivation of the chloroplast ATPase upon tight nucleotide binding was studied with several adenine nucleotide analogs. Compared with ADP, the other nucleoside diphosphates were less effective in the follwing order: IDP >?-ADP > 1-oxido-ADP > GDP. The nucleotide analogs compete with ADP for binding to the tight nucleotide-binding site(s) on the ATPase and also prevent further inactivation by ADP. AdoPP[NH]P also causes inactivation but has a lower affinity than ADP. [3H]GDP binds tightly to the ATPase, but the resulting enzyme-GDP complex is more readily dissociable than the enzyme-ADP complex. Although both nucleotides appear to bind to the same site, the catalytic and binding properties of the coresponding nucletide-enzyme complexes differ. Binding of GDP also decreases the rate and extent of the sontaneous decay of the activated enzyme. PPi decreases the rate of inacivation caused by ADP and also the level of tigthly buond ADP. Based on these results, we suggest that two different confomations of the ATPase exist which contain tigthly bound ADP. The active conformation is conveted to the inactive conformation in the absence of a continued supply of energy by illumination or ATP hydrolysis.  相似文献   

6.
Preillumination of intact cells of the eukaryotic, halotolerant, cell-wall-less green alga Dunaliella salina induces a dark ATPase activity the magnitude of which is about 3–5-fold higher than the ATPase activity observed in dark-adapted cells. The light-induced activity arises from the activation and stabilization in vivo of chloroplast coupling factor 1 (CF1). This activity, 150–300 μmol ATP hydrolyzed/mg Chl per h, rapidly decays (with a half-time of about 6 min at room temperature) in intact cells but only slowly decays (with a half-time of about 45 min at room temperature) if the cells are lysed by osmotic shock immediately after illumination. The activated form of the ATPase in lysed cells is inhibited if the membranes are treated with ferri- but not ferrocyanide, suggesting that the stabilization of the activated form of CF1 is due to the reduction of the enzyme in vivo in the light.  相似文献   

7.
The binding of various nucleotides to chloroplast coupling factor CF1 was studied by two dialysis techniques. It was found that the number of nucleoside diphosphate sites and their specificities for the base moiety is dependent on the magnesium concentration. In the presence of 50 micrometer added MgCl2, the protein has a single strong site/mol protein with Kd = 0.5 micrometer for ADP and high specificity (Kd greater than 20 micrometer for epsilonADP, GDP, CDP). In the presence of 5 mM MgCl2, the protein has two independent tight ADP sites (Kd = 0.4 micrometer) of low specificity (Kd approximately 0.8, 2, and 2 micrometer, respectively for episilonADP, GDP, and CDP). These results are compared with the specificity of the partial reactions for photophosphorylation.  相似文献   

8.
Steady-state binding of adenine nucleotides by thylakoid membranes is measured by employing a centrifugation technique. By this method tightly bound nonexchangeable nucleotides can be discriminated from loosely bound, exchangeable nucleotides. Nucleotide binding requires membrane energization and is highly specific for medium ADP. In illuminated chloroplasts almost no exogenous AMP and only some ATP are incorporated, most being recovered as tightly bound nucleotides. In light-triggered chloroplasts, however, which are capable of hydrolyzing ATP, a high level of exchangeable nucleotides is found on the membranes. The sum of tightly bound and loosely bound nucleotides originating from medium ADP is about one per CF1. The ratio between them decreases with increasing proton-motive force. Exchangeable nucleotides most probably represent the ligands involved in the catalytic process, as suggested from substrate specificity and the effect of a competitive inhibitor of photophosphorylation, naphthoyl ADP. This compound in a low concentration range supresses loose binding but not tight binding of medium ADP. Under phosphorylating conditions (presence of ADP, Pi and light), some of the tightly bound nucleotides exist as ATP even in the presence of a hexokinase system. The results are discussed in the context of the regulation of chloroplast ATPase by tight nucleotide binding.  相似文献   

9.
In bacteria, P1-type ATPases are responsible for resistance to di- and monovalent toxic heavy metals by taking them out of the cell. These ATPases have a cytoplasmic N terminus comprising metal binding domains defined by a betaalphabetabetaalphabeta fold and a CXXC metal binding motif. To check how the structural properties of the metal binding site in the N terminus can influence the metal specificity of the ATPase, the first structure of a Cd(II)-ATPase N terminus was determined by NMR and its coordination sphere was investigated by X-ray absorption spectroscopy. A novel metal binding environment was found, comprising the two conserved Cys residues of the metal binding motif and a Glu in loop 5. A bioinformatic search identifies an ensemble of highly homologous sequences presumably with the same function. Another group of highly homologous sequences is found which can be referred to as zinc-detoxifying P1-type ATPases with the metal binding pattern DCXXC in the N terminus. Because no carboxylate groups participate in Cu(I) or Ag(I) binding sites, we suggest that the acidic residue plays a key role in the coordination properties of divalent cations, hence conferring a function to the N terminus in the metal specificity of the ATPase.  相似文献   

10.
Nucleotide Binding Domains (NBDs) are responsible for the ATPase activity of the multidrug resistance protein 1 (MRP1). A series of NBD1-linker-NBD2 chimeric fusion proteins were constructed, expressed and purified, and their ATPase activities were analyzed. We report here that a GST linked NBD1642-890-GST-NBD21286-1531 was able to hydrolyze ATP at a rate of about 4.6 nmol/mg/min (Km = 2.17 mM, Vmax = 12.36 nmol/mg/min), which was comparable to the purified and reconstituted MRP1. In contrast, neither a mixture of NBD1 and GST-NBD2 nor the NBD1-GST-NBD1 fusion protein showed detectable ATPase activity. Additionally, the E1455Q mutant was found to be nonfunctional. Measurements by both MIANS labeling and circular dichroism spectroscopy revealed significant conformational differences in the NBD1-GST-NBD2 chimeric fusion protein compared to the mixture of NBD1 and GST-NBD2. The results suggest a direct interaction mediated by GST between the two NBDs of MRP1 leading to conformational changes which would enhance its ATPase activity.  相似文献   

11.
A kinetic analysis of ATP binding to noncatalytic sites of chloroplast coupling factor CF1 was made. The ATP binding proved to be unaffected by reduction of the disulfide bridge of the CF1 -subunit. The first-order equation describing nucleotide binding to noncatalytic sites allowed for two vacant nucleotide binding sites different in their kinetics. As suggested by nucleotide concentration dependence of the rate of nucleotide binding, the tight binding was preceded by rapid reversible binding of nucleotides. Preincubation of CF1 with Mg2+ resulted in a decreased rate of ATP binding. ATP dissociation from noncatalytic sites was described by the first order equation for similar sites with a dissociation rate constant k d (ATP) 10–3 min–1. Noncatalytic sites of CF1 were shown to be not homogeneous. One of them retained the major part of endogenous ADP after precipitation of CF1 with ammonium sulfate. Its two other sites differed in kinetic parameters and affinity for ATP. Anions of phosphate, sulfite, and especially, pyrophosphate inhibited the interaction between ATP and the noncatalytic sites.  相似文献   

12.
The numbers of tryptophane residues in spinach CF1-ATPase were measured by means of chemical modification with N-bromosuccinimide (NBS) and photooxidation. There are 3.5 tryptophane residues in CF1-ATPase, among which two are essential for the enzyme activity. Photooxidation of CF1-ATPase led to increased O2 uptake of the reaction system and loss in activity of CF1-ATPase . Immunological property of CF1-ATPase has been altered by chemical modification with NBS and photooxidation. The resuits show that tryptophane residues seen to be essential for activity and antigenic properties of CF1-ATPase.  相似文献   

13.
Isolated coupling factor of photophosphorylation (CF1) covalently labeled with eosin isothiocyanate was studied by polarized laser spectroscopy. Judged by the access of oxygen bound to eosin isothiocyanate and by the librational mobility of eosin isothiocyanate we conclude that activated CF1 encloses a volume with solvent character. In the membrane-bound enzyme the sequestered volume becomes exposed when the membrane is energized.  相似文献   

14.
Exposure of chloroplast F1 ATPase to 2-azido-ATP results in the noncovalent tight binding of 2-azido-ATP or 2-azido-ADP to noncatalytic or to catalytic sites. Subsequent photolysis results in covalent labeling of adjacent tryptic peptides of the beta-subunit. Binding at noncatalytic sites results in labeling of tyrosine 385 by an ATP or an ADP moiety. Binding at catalytic sites results in labeling of tyrosine 362 by only an ADP moiety. Similar labeling patterns are observed for the heat-activated or the membrane-bound enzymes.  相似文献   

15.
A factor having the expected properties of the in vivo oxidant responsible for inactivating the in vivo light-activated chloroplast coupling factor 1 (CF1) has been partially purified from cell-free extracts of Dunaliella salina. This factor is highly polar, weakly acidic, and relatively temperature stable. The ability of this factor to inactivate light-activated CF1 is prevented if it is pretreated with reductants such as dithiothreitol. The factor has virtually no effect on the ethanol-induced, Mg2+ -dependent ATPase activity of the isolated CF1.  相似文献   

16.
The stereoselectivity of the reversible binding interactions between the D- and L-tryptophan enantiomers and serum albumins of different animal species and fragments of human serum albumin (HSA) was investigated by applying three novel high performance liquid chromatographic (HPLC) arrangements. The separations were performed by means of (1) an achiral (diol-bond), (2) a chiral (bovine serum albumin-bond) silica gel sorbent, and (3) a column switching technique which uses both the diol- and HSA-bond HPLC stationary phases. A polarimetric detector and/or an ultraviolet (UV) spectrophotometer were used to monitor the separation process. HPLC arrangement 3 allowed the evaluation of enantioselective binding for D- and L-tryptophan to different albumins and albumin fragments. At present, column switching can be considered the technique of the broadest applicability for investigating the reversible binding interactions between a protein and drug enantiomers. Chirality 9:373–379, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
  rgen Schumann 《BBA》1987,890(3):326-334
Phosphorylation of ADP and nucleotide exchange by membrane-bound coupling factor CF1 are very fast reactions in the light, so that a direct comparison of both reactions is difficult. By adding substrate ADP and phosphate to illuminated thylakoids together with the uncoupler FCCP, the phosphorylation time is limited and the amount of ATP formed can be reduced to less than 1 ATP per enzyme. Low concentrations of medium nucleotides during illumination increase the amount of ATP formed during uncoupling presumably by binding to the tight nucleotide binding site (further designated as ‘site A’) with an affinity of 1 to 7 μM for ADP and ATP. ATP formation itself shows half-saturation at about 30 μM. Loosely bound nucleotides are exchanged upon addition of nucleotides with uncoupler (Schumann, J. (1984) Biochim. Biophys. Acta 766, 334–342). Release depends binding of nucleotides to a second site. The affinity of this site for ADP (in the presence of phosphate) is about 30 μM. It is assumed that phosphorylation and induction of exchange both occur on the same site (site B). During ATP hydrolysis, an ATP molecule is bound to site A, while on another site, ATP is hydrolyzed rapidly. The affinity of ADP for the catalytic site (70 μM) is in the same range as the observed Michaelis constant of ADP during phosphorylation; it is assumed that site B is involved in ATP hydrolysis. Site A exhibits some catalytic activity; it might be that site A is involved in ATP formation in a dual-site mechanism. For ATP hydrolysis, however, direct determination of exchange rates showed that the exchange rate of ATP bound to site A is about 30-times lower than ATP hydrolysis under the same conditions.  相似文献   

18.
The effects of solvents on the ATPase activity of chloroplast coupling factor 1 (CF1) isolated from wild-type Chlamydomonas reinhardii have been studied. Of the solvents examined, the following order summarizes their maximal ability to stimulate the ATPase activity of CF1: ethanol > methanol>allyl alcohol >n-propanol > acetone≈dioxane > ethylene glycol. Glycerol inhibits the CF1 activity at all concentrations. In the absence of organic solvents, 50% of the activity of the enzyme is irreversibly lost after a 10 min incubation at 65–70°C. Ethanol (23%) causes a 30°C drop in the temperature required for 50% inactivation. ATP partially stabilizes the CF1 in the presence, but not in the absence, of ethanol. In the absence of organic solvents, both free Mg2+ and ADP inhibit the CF1-ATPase. Mg2+ is a noncompetitive inhibitor with respect to MgATP, and the kinetic constants are: V, 6.3 μmol ATP hydrolyzed/mg protein per min; Km(MgATP), 0.23 mM; Kii(Mg2+), 27 μM; and Kis(Mg2+), 50 μM. In the presence of ethanol, double-reciprocal plots are no longer linear and have a Hill coefficient of about 1.8±0.1. V increases about 10–12-fold. The pattern of inhibition by Mg2+ appears to change from noncompetitive to competitive with respect to MgATP. In addition, ADP no longer inhibits the MgATPase activity of CF1.  相似文献   

19.

1. 1. Tightly bound ATP and ADP, found on the isolated mitochondrial ATPase, exchange only slowly at pH 8, but the exchange is increased as the pH is reduced. At pH 5.5, more than 60% of the bound nucleotide exchanges within 2.5 min.

2. 2. Preincubation of the isolated ATPase with ADP leads to about 50% inhibition of ATP hydrolysis when the enzyme is subsequently assayed in the absence of free ADP. This effect, which is reversed by preincubation with ATP, is absent on the membrane-bound ATPase. This inhibition seems to involve the replacement of tightly bound ATP by ADP.

3. 3. Using these two findings, the binding specificity of the tight nucleotide binding sites was determined. iso-Guanosine, 2′-deoxyadenosine and formycin nucleotides displaced ATP from the tight binding sites, while all other nucleotides tested did not. The specificities of the tight sites of the isolated and membrane-bound ATPase were similar, and higher than that of the hydrolytic site.

4. 4. The nucleotide specificities of ‘coupled processes’ nucleoside triphosphate-driven reversal of electron transfer, nucleoside triphosphate-32Pi exchange and phosphorylation were higher than that of the hydrolytic site of the ATPase and similar to that of the tight nucleotide binding sites.

5. 5. The different nucleotide specificities of uncoupled ATP hydrolysis and coupled processes can be explained even if both processes involve a single common site on the ATPase molecule. This model requires that energy can be ‘coupled’ only when it is released/utilised in the nucleotide binding steps of the mechanism.

6. 6. Adenosine β,γ-imidotriphosphate (AMP-PNP) is not a simple reversible inhibitor of the ATPase, since incubation requires preincubation and is not reversed when the compound is diluted out, or by addition of ATP. This compound inhibits the isolated and membrane-bound ATPase equally well. Its guanosine analogue does not act in this way.

7. 7. In submitochondrial particles, ADP inhibited uncoupled hydrolysis of ATP much more effectively than coupled hydrolysis, the latter being measured both directly (from ATP hydrolysis in the absence of uncoupler) or indirectly, by monitoring ATP-driven reduction of NAD+ by succinate.

8. 8. The effects of ADP and AMP-PNP were interpreted as providing evidence for two of the intermediates in the proposed scheme for coupled triphosphate hydrolysis.

Abbreviations: ε-ATP, N1,N6-ethenoadenosine triphosphate; 8-BrATP, 8-bromoadenosine triphosphate; AMP-PNP, adenosine β,γ-imidotriphosphate; GMP-PNP, guanosine β,γ-imidotriphosphate; N1,O-ATP, adenosine-N1-oxide triphosphate; rro-ATP 2,2′[1-(9-adenyl)-1′-(triphosphoryl-oxymethyl)-dihydroxydiethyl ether; and similarly for the respective diphosphates; NTP, NDP, nucleoside tri-, diphosphate; ANS, 1-anilino-8-naphthalene sulphonate; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; HEPES, N-2-hydroxyethylpiperazine-N′-2-ethane sulphonic acid; MES, 2-(N-morpholino)-ethane sulphonic acid; TES, tris(hydroxymethyl)methylamino ethane sulphonic acid  相似文献   


20.
Abstract The ole B gene of Streptomyces antibioticus , oleandomycin producer, encodes an ABC transporter containing two putative ATP-binding domains and is involved in oleandomycin resistance and secretion in this organism. We have overexpressed in Escherichia coli the N-terminal nucleotide-binding domain of OleB (OleB') as a fusion protein to a maltose-binding protein and purified the fusion protein by affinity chromatography. The fusion protein showed ATPase activity dependent on the presence of Mg2+ ions. ATPase activity was resistant to specific inhibitors of P-, F-, and V-type ATPase whereas sodium azide and 7-chloro-4-nitrobenzo-2-oxa-l,3-diazole (NBD-C1) were strong inhibitors. The change of Lys71, located within the Walker A motif of the OleB' protein, to Gin or Glu caused a loss of ATPase activity, whereas changing to Gly did not impair the activity. The results suggest that the intrinsic ATPase activity of purified fusion protein can be clearly distinguished from other ATP-hydrolysing enzymes, including ion-translocating ATPases or ABC-traffic ATPases, both on the basis of inhibition by different agents and since it hydrolyzes ATP without interacting with a hydrophobic membrane component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号