首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clark-type oxygen microelectrodes and glass pH microelectrodes, each with a tip diameter of <=10 (mu)m, were used to obtain high-resolution profiles of oxygen concentrations and pH values in isolated termite guts. Radial oxygen profiles showed that oxygen penetrated into the peripheral hindgut contents up to about 150 to 200 (mu)m below the epithelial surface in both the lower termite Reticulitermes flavipes (Kollar) and the higher termite Nasutitermes lujae (Wasmann). Only the central portions (comprising less than 40% of the total volume) of the microbe-packed, enlarged hindgut compartments ("paunches") were completely anoxic, indicating that some members of the hindgut microbiota constitute a significant oxygen sink. From the slopes of the oxygen gradients, we estimated that the entire paunches (gut tissue plus resident microbiota) of R. flavipes and N. lujae accounted for 21 and 13%, respectively, of the respiratory activity of the intact animals. Axial oxygen profiles also confirmed that in general, only the paunches were anoxic in their centers, whereas midguts and posterior hindgut regions contained significant amounts of oxygen (up to about 50 and 30% air saturation, respectively). A remarkable exception to this was the posterior portion of an anterior segment (the P1 segment) of the hindgut of N. lujae, which was completely anoxic despite its small diameter ((apprx=)250 (mu)m). Axial pH profiles of the guts of Nasutitermes nigriceps (Haldeman) and Microcerotermes parvus (Haviland) revealed that there were extreme shifts as we moved posteriorly from the midgut proper (pH (apprx=)7) to the P1 segment of the hindgut (pH >10) and then to the P3 segment (paunch; pH (apprx=)7). The latter transition occurred at the short enteric valve (P2 segment) and within a distance of less than 500 (mu)m. In contrast, R. flavipes, which lacks a readily distinguishable P1 segment, did not possess a markedly alkaline region, and the pH around the midgut-hindgut junction was circumneutral. The oxic status of the peripheral hindgut lumen and its substantial oxygen consumption, together with previous reports of large numbers of aerobic and facultatively anaerobic bacteria in the hindgut microflora, challenge the notion that termite hindguts are a purely anoxic environment and, together with the steep axial pH gradients in higher termites, refine our concept of this tiny microbial habitat.  相似文献   

2.
A. Ebert  A. Brune 《Applied microbiology》1997,63(10):4039-4046
Molecular hydrogen is a key intermediate in lignocellulose degradation by the microbial community of termite hindguts. With polarographic, Clark-type H(inf2) microelectrodes, we determined H(inf2) concentrations at microscale resolution in the gut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Axial H(inf2) concentration profiles obtained from isolated intestinal tracts embedded in agarose Ringer solution clearly identified the voluminous hindgut paunch as the site of H(inf2) production. The latter was strictly coupled with both a low redox potential (E(infh) = -200 mV) and the absence of oxygen, in agreement with the growth requirements of the cellulolytic, H(inf2)-producing flagellates located in the hindgut paunch. Luminal H(inf2) partial pressures were much higher than expected (ca. 5 kPa) and increased more than threefold when the guts were incubated under a N(inf2) headspace. Radial H(inf2) concentration gradients showed a steep decrease from the gut center towards the periphery, indicating the presence of H(inf2)-consuming activities both within the lumen and at the gut epithelium. Measurements under controlled gas headspace showed that the gut wall was also a sink for externally supplied H(inf2), both under oxic and anoxic conditions. With O(inf2) microelectrodes, we confirmed that the H(inf2) sink below the gut epithelium is located within the microoxic gut periphery, but the H(inf2)-consuming activity itself, at least a substantial part of it, was clearly due to an anaerobic process. These results are in accordance with the recently reported presence of methanogens attached in large numbers to the luminal side of the hindgut epithelium of R. flavipes. If the oxygen partial pressure was increased, O(inf2) penetrated deeper and H(inf2) production was suppressed; it ceased completely as soon as the gut was fully oxic. In experiments with living termites, externally supplied H(inf2) (20 kPa) stimulated methane formation five- to sixfold to 0.93 (mu)mol (g of termite)(sup-1) h(sup-1), indicating that the methanogenic activity in R. flavipes hindguts is not saturated for hydrogen under in situ conditions. This rate was in good agreement with the H(inf2) uptake rates exhibited by isolated hindguts, which would account for more than half of the CH(inf4) formed by living termites under comparable conditions.  相似文献   

3.
Lactic acid bacteria have been identified as typical and numerically significant members of the gut microbiota of Reticulitermes flavipes and other wood-feeding lower termites. We found that also in the guts of the higher termites Nasutitermes arborum (wood-feeding), Thoracotermes macrothorax, and Anoplotermes pacificus (both soil-feeding), lactic acid bacteria represent the largest group of culturable carbohydrate-utilizing bacteria (3.6-5.2x10(4) bacteria per gut; 43%-54% of all colonies). All isolates were coccoid and phenotypically difficult to distinguish, but their enterobacterial repetitive intergenic consensus sequence (ERIC) fingerprint patterns showed a significant genetic diversity. Six different genotypes each were identified among the isolates from R. flavipes and T. macrothorax, and representative strains were selected for further characterization. By 16S rRNA gene sequence analysis, strain RfL6 from R. flavipes was classified as a close relative of Enterococcus faecalis, whereas strain RfLs4 from R. flavipes and strain TmLO5 from T. macrothorax were closely related to Lactococcus lactis. All strains consumed oxygen during growth on glucose and cellobiose; oxygen consumption of these and other isolates from both termite species was due to NADH and pyruvate oxidase activities, but did not result in H2O2 formation. In order to assess the significance of the isolates in the hindgut, denaturing gradient gel electrophoresis was used to compare the fingerprints of 16S rRNA genes in the bacterial community of R. flavipes with those of representative isolates. The major DNA band from the hindgut bacterial community was further separated by bisbenzimide-polyethylene glycol electrophoresis, and the two resulting bands were sequenced. Whereas one sequence belonged to a spirochete, the second sequence was closely related to the sequences of the Lactococcus strains RfLs4 and TmLO5. Apparently, those isolates represent strains of a new Lactococcus species which forms a significant fraction of the complex hindgut community of the lower termite R. flavipes and possibly also of other termites.  相似文献   

4.
5.
The symbiotic digestion of lignocellulose in the hindgut of the wood-feeding termite Reticulitermes flavipes is characterized by two major metabolic pathways: (i) the oxidation of polysaccharides to acetate by anaerobic hydrogen-producing protozoa; and (ii) the reduction of CO2 by hydrogenotrophic acetogenic bacteria. Both reactions together would render the hindgut largely homoacetogenic. However, the results of this study show that the situation is more complex. By microinjection of radiolabelled metabolites into intact agarose-embedded hindguts, we showed that the in situ rates of reductive acetogenesis (3.3 nmol termite(-1) h(-1)) represent only 10% of the total carbon flux in the living termite, whereas 30% of the carbon flux proceeds via lactate. The rapid turnover of the lactate pool (7.2 nmol termite(-1) h(-1)) consolidates the previously reported presence of lactic acid bacteria in the R. flavipes hindgut and the low lactate concentrations in the hindgut fluid. However, the immediate precursor of lactate remains unknown; the low turnover rates of injected glucose (< 0.5 nmol termite(-1) h(-1)) indicate that free glucose is not an important intermediate under in situ conditions. The influence of the incubation atmosphere on the turnover rate and the product pattern of glucose and lactate confirmed that the influx of oxygen via the gut epithelium and its reduction in the hindgut periphery have a significant impact on carbon and electron flow within the hindgut microbial community. The in situ rates of reductive acetogenesis were not significantly affected by the presence of oxygen or exogenous H2, which is in agreement with a localization of homoacetogens in the anoxic gut lumen rather than in the oxic periphery. This adds strong support to the hypothesis that the co-existence of methanogens and homoacetogens in this termite is based on the spatial arrangement of the different populations of the gut microbiota. A refined model of metabolic fluxes in the hindgut of R. flavipes is presented.  相似文献   

6.
低等白蚁肠道共生微生物的多样性及其功能   总被引:7,自引:0,他引:7  
低等白蚁肠道里存在着复杂的微生物区系,包括真核微生物鞭毛虫和原核生物,细菌及古细菌。低等白蚁的后肠以特别膨大的囊形胃及其氢氧浓度的明显梯度分布和丰富的微生物区系为特征,是白蚁进行木质纤维素消化的主要器官。后肠内的鞭毛虫能将纤维素水解并发酵为乙酸,二氧化碳和氢,为白蚁提供营养和能源。系统发育研究表明,低等白蚁肠道共生细菌的主要类群为白蚁菌群1、螺旋体、拟杆菌,低G C mol%含量的革兰氏阳性菌和紫细菌等。而古细菌主要为甲烷短杆菌属的产甲烷菌。共生原核生物与二氧化碳的还原和氮的循环等代谢有关。但肠道共生微生物的具体功能和作用机制还有待进一步的揭示。  相似文献   

7.
Light microscopy and scanning and transmission electron microscopy were used to examine the in situ morphology of the gut microbiota of Reticulitermes flavipes and Caoptotermes formosanus. Laboratory-maintained termites were used and, for R. flavipes, specimens were also prepared immediately after collection from a natural infestation. The latter endeavor enabled a study of different castes and developmental stages of R. flavipes and revealed differences in the microbiota of field versus laboratory specimens. The termite paunch microbiota consisted of an abundance of morphologically diverse bacteria and protozoa. Thirteen bacterial morphotypes in the paunch were described in detail: seven were observed only in R. flavipes, three were observed only in C. formosanus, and three were common to both termite species. The paunch epithelium was densely colonized by bacteria, many of which possessed holdfast elements that secured them tightly to this tissue and to other bacterial cells. Besides bacteria, the protozoan Pyrsonympha vertens adhered to the paunch epithelium of R. flavipes by means of an attachment organelle. Cuplike indentations were present on the paunch epithelial surface and were sites of bacterial aggregation. Ultrastructural features of cups suggested their involvement in ion absorption. In addition to the paunch, the midgut was also colonized by bacteria that were situated between epithelial microvilli. Results suggest that bacteria are an integral part of the gut ecosystem.  相似文献   

8.
A steep oxygen gradient and the presence of methane render the hindgut internal periphery of termites a potential habitat for aerobic methane-oxidizing bacteria. However, methane emissions of various termites increased, if at all, only slightly when termites were exposed to an anoxic (nitrogen) atmosphere, and (14)CH(4) added to the air headspace over live termites was not converted to (14)CO(2). Evidence for the absence of methane oxidation in living termites was corroborated by the failure to detect pmoA, the marker gene for particulate methane monooxygenase, in hindgut DNA extracts of all termites investigated. This adds robustness to our concept of the degradation network in the termite hindgut and eliminates the gut itself as a potential sink of this important greenhouse gas.  相似文献   

9.
Uricolytic bacteria were present in guts of Reticulitermes flavipes in populations up to 6 x 10 cells per gut. Of 82 strains isolated under strict anaerobic conditions, most were group N Streptococcus sp., Bacteroides termitidis, and Citrobacter sp. All isolates used uric acid (UA) as an energy source anaerobically, but not aerobically, and NH(3) was the major nitrogenous product of uricolysis. However, none of the isolates had an absolute requirement for UA. Utilization of heterocyclic compounds other than UA was limited. Fresh termite gut contents also degraded UA anaerobically, as measured by CO(2) evolution from [2-C]UA. The magnitude of anaerobic uricolysis [0.67 pmol of UA catabolized/(gut x h)] was entirely consistent with the population density of uricolytic bacteria in situ. Uricolytic gut bacteria may convert UA in situ to products usable by termites for carbon, nitrogen, energy, or all three. This possibility is consistent with the fact that R. flavipes termites from UA, but they do not void the purine in excreta despite the lack of uricase in their tissues.  相似文献   

10.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an aggressive, invasive termite species that has caused billions of dollars of damage across the United States for the past 50 years. Termites depend on intestinal microorganisms for cellulose digestion. Symbiotic microorganisms in the termite gut play key physiological functions such as cellulose and hemicellulose digestion, acetogenesis, hydrogenesis, methanogenesis, sulfate reduction, and nitrogen fixation. Additionally, intestinal microbes create suitable conditions for symbiotic protozoans through the production of nutrients and the maintenance of the pH and the anaerobic conditions in the gut. Although extensive research has been done on the symbiotic relationship of these termites and the microbes found in its gut, there is little information available on the role of facultative anaerobes in the gut. We isolated four enteric bacteria from the hindgut of Formosan subterranean termite, C. formosanus. All isolates were facultative anaerobes and G-. The isolates were identified as Serratia marcescens, Enterobacter aerogens, Enterobacter cloacae, and Citrobacter farmeri by using BIOLOG assay and fatty acid methyl ester analysis (FAME). Each isolate was characterized using sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and biochemical study. This is the first report on the presence of facultative microbes in termite gut. Results of this first study on facultative microbes in the termite gut indicate that the role of facultative organisms in the Formosan termite gut may be to scavenge oxygen and create anaerobic conditions for the anaerobic microorganisms, which are essential for digestion of cellulose consumed by the termite.  相似文献   

11.
Xylophagous termites possess symbiotic bacteria that fix atmospheric nitrogen (N(2)). Although symbiotic N(2) fixation is central to termite nutrition and ecologically important, it is energetically costly. Using stable isotopes, we tested the hypothesis that symbiotic N(2) fixation would decrease in workers of the eastern subterranean termite, Reticulitermes flavipes Kollar, which were exposed to high nitrogen diets. To calculate the isotope discrimination factor occurring as a result of digestion, Δ(dig), and which occurs as the result of N(2) fixation, Δ(fix), symbiotic N(2) fixation was inhibited via force feeding termites the antibiotic kanamycin. Antibiotic-treated termites and control (N(2)-fixing) termites were exposed to different concentrations of dietary N (0, 0.21, and 0.94% N), their (15)N signatures were obtained, and the percent nitrogen derived from the atmosphere within termite samples was calculated. As we hypothesized, symbiotic N(2) fixation rates were negatively correlated with dietary N, suggesting that high concentrations of dietary N suppressed symbiotic N(2) fixation in R. flavipes. A comparison of the (15)N isotope signatures of antibiotic-treated termites with their food sources demonstrated that Δ(dig) = 2.284‰, and a comparison of the (15)N isotope signatures of antibiotic-treated termites with control termites indicated that Δ(fix) = -1.238‰. These are the first estimates of Δ(dig) for R. flavipes, and the first estimate of Δ(fix) for any N(2)-fixing termite species.  相似文献   

12.
A steep oxygen gradient and the presence of methane render the hindgut internal periphery of termites a potential habitat for aerobic methane-oxidizing bacteria. However, methane emissions of various termites increased, if at all, only slightly when termites were exposed to an anoxic (nitrogen) atmosphere, and 14CH4 added to the air headspace over live termites was not converted to 14CO2. Evidence for the absence of methane oxidation in living termites was corroborated by the failure to detect pmoA, the marker gene for particulate methane monooxygenase, in hindgut DNA extracts of all termites investigated. This adds robustness to our concept of the degradation network in the termite hindgut and eliminates the gut itself as a potential sink of this important greenhouse gas.  相似文献   

13.
The importance of the gut microorganisms in the termites Nasutitermes exitiosus and Coptotermes lacteus was investigated by feeding them with antibiotics. With N. exitiosus, antibiotics which killed both the bacteria and the spirochaetes (ampicillin, kanamycin, chloramphenicol, erythromycin, cephaloridine, tetracycline) reduced the life span of the termite from 250 days to about 13 days, whereas antibiotics which had little effect on the flora (penicillin, methicillin) did not greatly reduce the life span of the termite. The essential role of the spirochaetes in N. exitiosus was shown by feeding metronidazole, or exposing the termites to pure oxygen. Both treatments killed the spirochaetes, but not the bacteria, resulting in a life span for the termite of 13–22 days. Acid fuchsin did not kill the spirochaetes. Fungi were not essential for N. exitiosus. In C. lacteus all treatments, except that with acid fuchsin, killed the protozoa, thereby reducing the life span of the termite from 69 days to 6–29 days.  相似文献   

14.
Termites play important roles in lignocellulose and humus turnover in diverse terrestrial ecosystems, and are significant sources of global atmospheric methane and carbon dioxide. All known termite species engage in obligate, complex nutritional symbioses with their gut microbes to carry out such processes. Several hundred microbial species, representing a broad phylogenetic and physiological diversity, are found within the well‐bounded, microliter‐in‐scale gut ecosystem of a given termite. However, most of these species have never been obtained in laboratory culture, and little can be said about their functional roles in the gut community or symbiosis. Herein, an unappreciated facet of the gut chemistry and microbiology of wood‐feeding termites is revealed: the redox metabolism of iron. Gut fluids from field‐collected termites contained millimolar amounts of ferrous iron and other heavy metals. When iron(III) hydroxides were amended to a filter paper diet of Zootermopsis nevadensis, a dampwood termite collected in the San Gabriel Mountains of Southern California, the specimens accumulated high levels of iron(II) in their guts. Additionally, iron was reduced at rapid initial rates in anoxic gut homogenates prepared from field‐collected Z. nevadensis specimens. A Clostridium sp. and a Desulfovibrio sp. were isolated from dilution‐to‐extinction enrichments of Z. nevadensis gut contents and were found to reduce iron(III), as did the termite gut spirochete Treponema primitia. The iron in the guts of wood‐feeding termites may influence the pathways of carbon‐ and electron‐flow, as well as microbial community composition in these tiny ecosystems of global importance.  相似文献   

15.
The hindgut of the lower termites, Mastotermes darwiniensis and Coptotermes lacteus and the higher termite Nasutitermes exitiosus were made aerobic by exposure of the termites to pure oxygen, a procedure which killed their spirochaetes and their protozoa (lower termites only). The time taken for the hindgut to become anaerobic after the termites were restored to normal atmospheric conditions ranged from 2 to 4.5 hr. After oxygen treatment the number of gut bacteria increased some six- to ten-fold in all termite species, indicating that the bacteria are poised to use oxygen entering the gut. Removal of all the hindgut microbiota by feeding tetracycline caused the hindgut to become aerobic in M. darwiniensis and N. exitiosus. The transferring of M. darwiniensis to fresh wood, free of antibiotic, resulted in the return of the normal flora and the eventual establishment of anaerobic conditions in the hindgut. Thus the bacteria appear to be important in maintaining anaerobic conditions in the gut. Attempts to determine whether the protozoa (in the lower termites) played any part in maintaining the Eh of the hindgut were unsuccessful. Serratia marcescens failed to colonise the gut of normal C. lacteus and transiently colonized (for 5 days) the gut of normal N. exitiosus. Transient colonization by S. marcescens (from 6 to 10 days) occurred in N. exitiosus when its hindgut spirochaetes were killed and in C. lacteus when its spirochaetes and protozoa were killed, indicating a possible role for the spirochaetes and/or protozoa in influencing the bacteria allowed to reside in the hindgut. Exposure of normal termites to Serratia provoked an increase in the numbers of the normal gut bacteria.  相似文献   

16.
Phylogenetic diversity of termite gut spirochaetes   总被引:2,自引:0,他引:2  
A molecular phylogenetic analysis was done of not-yet-cultured spirochaetes inhabiting the gut of the termite, Reticulitermes flavipes (Kollar). Ninety-eight clones of near-full-length spirochaetal 16S rDNA genes were classified by ARDRA pattern and by partial sequencing. All clones grouped within the genus Treponema , and at least 21 new species of Treponema were recognized within R. flavipes alone. Analysis of 190 additional clones from guts of Coptotermes formosanus Shiraki and Zootermopsis angusticollis (Hagen), as well as published data on clones from Cryptotermes domesticus (Haviland), Mastotermes darwiniensis Froggatt, Nasutitermes lujae (Wasmann) and Reticulitermes speratus (Kolbe), revealed a similar level of novel treponemal phylogenetic diversity in these representatives of five of the seven termite families. None of the clones was closely related (i.e. all bore ≤ 91% sequence similarity) to any previously recognized treponeme. The data also revealed the existence of two major phylogenetic groups of treponemes: one containing all of the currently known isolates of Treponema and a large number of phylotypes from the human gingival crevice, but only a minority of the termite gut spirochaete clones; another containing the majority of termite spirochaete clones and two Spirochaeta ( S. caldaria and S. stenostrepta ), which, although free living, group within the genus Treponema on the basis of 16S rRNA sequence. Signature nucleotides that almost perfectly distinguished the latter group, herein referred to as the 'termite cluster', occurred at the following ( E. coli numbering) positions: 289-G · C-311; A at 812; and an inserted nucleotide at 1273. The emerging picture is that the long-recognized and striking morphological diversity of termite gut spirochaetes is paralleled by their phylogenetic diversity and may reflect substantial physiological diversity as well.  相似文献   

17.
Abstract: In several aspects termites are a fascinating group of insects having attracted the interest of many researchers. They exhibit a complex social behavior and caste differentiation occurring elsewhere only among the hymenoptera. In an enlarged part of the hindgut, the paunch, termites have established a unique symbiotic association with prokaryotic and eukaryotic microorganisms. A similar flora is also found in wood-eating roaches of the genus Cryptocercus . The study of symbiosis between termites and their intestinal microbes is of general interest, because due to this symbiotic interaction termites can feed on complex biopolymers such as wood. Flagellates and bacteria occur in the gut of lower termites, while higher termites possess only bacteria. In particular spirochetes are abundant in the termite gut. Apart from spirochetes and other more common bacteria, actinomycetes, yeasts and fungi have also been isolated from different species of termites. This review summarizes the distinct role of the intestinal flora in degradation of wood components such as cellulose, hemicellulose and lignin.  相似文献   

18.
Abstract.  Throughout the history of studies on cellulose digestion in termites, carboxymethyl-cellulose has been preferably used as a substrate for measuring cellulase activity in termites due to its high solubility. However, carboxymethyl-cellulose degradation is not directly related to digestibility of naturally occurring cellulose because many noncellulolytic organisms can also hydrolyse carboxymethyl-cellulose. To address this issue, a comparative study of microcrystalline cellulose digestion is performed in diverse xylophagous termites, using gut homogenates. For those termites harbouring gut flagellates , the majority of crystalline cellulose appears to be digested in the hindgut, both in the supernatant and the pellet. For Nasutitermes takasagoensis , a termite free of gut flagellates, crystalline cellulose is degraded primarily in the midgut supernatant, and partially in the pellet of the hindgut. The fungus-growing termite Odontotermes formosanus , which also does not possess intestinal flagellates, shows only a trace of crystalline cellulose hydrolysis throughout the gut. Comparison of levels of activity against crystalline cellulose with previously reported levels of activity against carboxymethyl-cellulose in the gut of each termite reveals significant differences between these activities. The results suggest that the hindgut flagellates produce commonly cellobiohydrolases in addition to endo-β-1,4-glucanases, which presumably act synergistically to digest cellulose. Preliminary evidence for the involvement of bacteria in the cellulose digestion of N. takasagoensis is also found.  相似文献   

19.
The influence of carbon sources on bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis was investigated. 16S rRNA gene sequencing and terminal-restriction fragment length polymorphism (T-RFLP) analyses revealed that the bacterial community structure changed markedly depending on feed components at the phylum level. Spirochaetes was predominant in the clone libraries from wood- and wood powder-fed termites, whereas Bacteroidetes was the largest group in the libraries from xylan-, cellobiose-, and glucose-fed termites, and Firmicutes was predominant in the library from xylose-fed termites. In addition, clones belonging to the phylum Termite Group I (TG1) were found in the library from xylose-fed termites. Our results indicate that the symbiotic relationship between termite and gut microorganisms is not very strong or stable over a short time, and that termite gut microbial community structures vary depending on components of the feeds.  相似文献   

20.
Nitrogen fixation by the microorganisms in the gut of termites is one of the crucial aspects of symbiosis, since termites usually thrive on a nitrogen-poor diet. The phylogenetic diversity of the nitrogen-fixing organisms within the symbiotic community in the guts of various termite species was investigated without culturing the resident microorganisms. A portion of the dinitrogenase reductase gene (nifH) was directly amplified from DNA extracted from the mixed population in the termite gut. Analysis of deduced amino acid sequences of the products of the clonally isolated nifH genes revealed the presence of diverse nifH sequences in most of the individual termite species, and their constituents were considerably different among termite species. A majority of the nifH sequences from six lower termites, which showed significant levels of nitrogen fixation activity, could be assigned to either the anaerobic nif group (consisting of clostridia and sulfur reducers) or the alternative nif methanogen group among the nifH phylogenetic groups. In the case of three higher termites, which showed only low levels of nitrogen fixation activity, a large number of the sequences were assigned to the most divergent nif group, probably functioning in some process other than nitrogen fixation and being derived from methanogenic archaea. The nifH groups detected were similar within each termite family but different among the termite families, suggesting an evolutionary trend reflecting the diazotrophic habitats in the symbiotic community. Within these phylogenetic groups, the sequences from the termites formed lineages distinct from those previously recognized in studies using classical microbiological techniques, and several sequence clusters unique to termites were found. The results indicate the presence of diverse potentially nitrogen-fixing microbial assemblages in the guts of termites, and the majority of them are as yet uncharacterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号