首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis is an extrinsic protein bound to the hydrogenosomal membrane. It has been solubilized and purified to homogeneity, principally by salting-out chromatography on Sepharose 4B. Low recoveries of active enzyme were caused by inactivation by O2 and the irreversible loss of thiamin pyrophosphate. It is a dimeric enzyme of overall Mr 240,000 and subunit Mr 120,000. The enzyme contains, per mol of dimer, 7.3 +/- 0.3 mol of iron and 5.9 +/- 0.9 mol of acid-labile sulphur, suggesting the presence of two [4Fe-4S] centres, and 0.47 mol of thiamin pyrophosphate. The absorption spectrum of the enzyme is characteristic of a non-haem iron protein. The pyruvate: ferredoxin oxidoreductase from T. vaginalis is therefore broadly similar to the 2-oxo acid: ferredoxin (flavodoxin) oxidoreductases purified from bacterial sources, except that it is membrane-bound.  相似文献   

2.
Acetyl-CoA carboxylase (EC 6.4.1.2) has been isolated from rat liver by an avidin-affinity chromatography technique. This preparation has a specific activity of 1.17 +/- 0.06 U/mg and appears as a major (240,000 dalton) and minor (140,000 dalton) band on SDS-polyacrylamide gel electrophoresis. Enzyme isolated by this technique can incorporate 1.09 +/- 0.07 mol phosphate per mol enzyme (Mr = 480,000) when incubated with the catalytic subunit of the cyclic AMP-dependent protein kinase at 30 degrees C for 1 h. The associated activity loss under these conditions is 57 +/- 4.0% when the enzyme is assayed in the presence of 2.0 mM citrate. Less inactivation is observed when the enzyme is assayed in the presence of 5.0 mM citrate. The specific protein inhibitor of the cyclic AMP-dependent protein kinase blocks both the protein kinase stimulated phosphorylation and inactivation of acetyl-CoA carboxylase. The phosphorylated, inactivated rat liver carboxylase can be partially dephosphorylated and reactivated by incubation with a partially purified protein phosphatase. Preparations of acetyl-CoA carboxylase also contained an endogenous protein kinase(s) which incorporated 0.26 +/- 0.11 mol phosphate per mol carboxylase (Mr = 480,000) accompanied by a 26 +/- 9% decline in activity. We have additionally confirmed that the rat mammary gland enzyme, also isolated by avidin affinity chromatography, can be both phosphorylated and inactivated upon incubation with the cyclic AMP-dependent kinase.  相似文献   

3.
Acetyl-CoA carboxylase of animal tissues is known to be dependent on citrate for its activity. The observation that dephosphorylation abolishes its citrate dependence (Thampy, K. G., and Wakil, S. J. (1985) J. Biol. Chem. 260, 6318-6323) suggested that the citrate-independent form might exist in vivo. We have purified such a form from rapidly freeze-clamped livers of rats. Sodium dodecyl sulfate gel electrophoresis of the enzyme gave one protein band (Mr 250,000). The preparation has high specific activity (3.5 units/mg in the absence of citrate) and low phosphate content (5.0 mol of Pi/mol of subunit). The enzyme isolated from unfrozen liver or liver kept in ice-cold sucrose solution for 10 min and then freeze-clamped has low activity (0.3 unit/mg) and high phosphate content (7-8 mol of Pi/mol of subunit). Citrate activated such preparations with half-maximal activation at greater than 1.6 mM, well above physiological range. The low activity may be due to its high phosphate content because dephosphorylation by [acetyl-CoA carboxylase]-phosphatase 2 activates the enzyme and reduces its dependence on citrate. Since freeze-clamping the liver yields enzyme with lower phosphate content and higher activity, it is suggested that the carboxylase undergoes rapid phosphorylation and consequent inactivation after the excision of the liver. The carboxylase is made up of two polymeric forms of Mr greater than or equal to 10 million and 2 million based on gel filtration on Superose 6. The former, which predominates in preparations from freeze-clamped liver, has higher activity and lower phosphate content (5.3 units/mg and 4.0 mol of Pi/mol of subunit, respectively) than the latter (2.0 units/mg and 6.0 mol of Pi/mol of subunit, respectively). The latter, which predominates in preparations from unfrozen liver, is converted to the active polymer (Mr greater than or equal to 10 million) by dephosphorylation. Thus, the two polymeric forms are interconvertible by phosphorylation/dephosphorylation and may be important in the physiological regulation of acetyl-CoA carboxylase.  相似文献   

4.
Carbon monoxide (CO) dehydrogenase was purified, both aerobically and anaerobically, to apparent homogeneity from Methanothrix soehngenii. The enzyme contained 18 +/- 2 (n = 6) mol Fe/mol and 2.0 +/- 0.1 (n = 6) mol Ni/mol. Electron paramagnetic resonance (EPR) spectra of the aerobically purified CO dehydrogenase showed one sharp EPR signal at g = 2.014 with several characteristics of a [3Fe-4S]1+ cluster. The integrated intensity of this signal was low, 0.03 S = 1/2 spin/alpha beta dimer. The 3Fe spectrum was not affected by incubation with CO or acetyl-coenzyme A, but could be reduced by dithionite. The spectrum of the reduced, aerobically purified enzyme showed complex EPR spectra, which had several properties typical of two [4Fe-4S]1+ clusters, whose S = 1/2 spins weakly interacted by dipolar coupling. The integrated intensity was 0.1-0.2 spin/alpha beta dimer. The anaerobically isolated enzyme showed EPR spectra different from the reduced aerobically purified enzyme. Two major signals were apparent. One with g values of 2.05, 1.93 and 1.865, and an Em7.5 of -410 mV, which quantified to 0.9 S = 1/2 spin/alpha beta dimer. The other signal with g values of 1.997, 1.886 and 1.725, and an Em7.5 of -230 mV gave 0.1 spin/alpha beta dimer. When the enzyme was incubated with its physiological substrate acetyl-coenzyme A, these two major signals disappeared. Incubation of the enzyme under CO atmosphere resulted in a partial disappearance of the spectral component with g = 1.997, 1.886, 1.725. Acetyl-coenzyme A/CO exchange activity, 35 nmol.min-1.mg-1 protein, which corresponded to 7 mol CO exchanged min-1 mol-1 enzyme, could be detected in anaerobic enzyme preparations, but was absent in aerobic preparations. Carbon dioxide also exchanged with C-1 of acetyl-coenzyme A, but at a much lower rate than CO and to a much lower extent.  相似文献   

5.
An aldehyde oxidase, which oxidizes various aliphatic and aromatic aldehydes using O(2) as an electron acceptor, was purified from the cell-free extracts of Pseudomonas sp. KY 4690, a soil isolate, to an electrophoretically homogeneous state. The purified enzyme had a molecular mass of 132 kDa and consisted of three non-identical subunits with molecular masses of 88, 39, and 18 kDa. The absorption spectrum of the purified enzyme showed characteristics of an enzyme belonging to the xanthine oxidase family. The enzyme contained 0.89 mol of flavin adenine dinucleotide, 1.0 mol of molybdenum, 3.6 mol of acid-labile sulfur, and 0.90 mol of 5'-CMP per mol of enzyme protein, on the basis of its molecular mass of 145 kDa. Molecular oxygen served as the sole electron acceptor. These results suggest that aldehyde oxidase from Pseudomonas sp. KY 4690 is a new member of the xanthine oxidase family and might contain 1 mol of molybdenum-molybdpterin-cytosine dinucleotide, 1 mol of flavin adenine dinucleotide, and 2 mol of [2Fe-2S] clusters per mol of enzyme protein. The enzyme showed high reaction rates toward various aliphatic and aromatic aldehydes and high thermostability.  相似文献   

6.
Acetyl-CoA carboxylase, purified from rapidly freeze-clamped livers of rats maintained on a normal laboratory diet and given 0-5 units of insulin shortly before death, gives a major protein band (Mr 265,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The carboxylase from untreated rats has relatively low activity (0.8 unit/mg protein when assayed in the absence of citrate) and high phosphate content (8.5 mol of Pi/mol of subunit), while the enzyme from livers of rats that received 5 units of insulin has higher activity (2.0 units/mg protein) and lower phosphate content (7.0 mol of Pi/mol of subunit). Addition of citrate activates both preparations with half-maximal activation (K0.5) at 1.0 and 0.6 mM citrate, respectively. The enzyme from rats that did not receive insulin is mainly in the octameric state (Mr approximately 2 x 10(6)), while that from rats that received insulin is mainly in the polymeric state (Mr approximately 10 x 10(6)). Thus, short-term administration of insulin results in activation of acetyl-CoA carboxylase, lowering of its citrate requirement, and dephosphorylation and polymerization of the protein. The insulin-induced changes in the carboxylase are probably due to dephosphorylation of the protein since similar changes are observed when the enzyme from rats that did not receive insulin is dephosphorylated by the Mn2(+)-dependent [acetyl-CoA carboxylase]-phosphatase 2. The effect of glucagon or epinephrine administration on acetyl-CoA carboxylase was also investigated. The carboxylase from fasted/refed rats has a relatively high specific activity (3.4 units/mg protein in the absence of citrate), lower phosphate content (4.9 mol of Pi/mol of subunit), and is present mainly in the polymeric state (Mr approximately 10 x 10(6)). Addition of citrate activates the enzyme with K0.5 = 0.2 mM citrate. Glucagon or epinephrine injection of fasted/refed rats yielded carboxylase with lower specific activity (1.4 or 1.9 units/mg, respectively, in the absence of citrate), higher phosphate content (6.4 or 6.7 mol of Pi/mol of subunit, respectively), and mainly in the octameric state (Mr approximately 2 x 10(6)). Treatment of these preparations with [acetyl-CoA carboxylase]-phosphatase 2 reactivated the enzyme (specific activity approximately 8 units/mg protein in the absence of citrate) and polymerized the protein (Mr approximately 10 x 10(6]. These observations indicate that insulin and glucagon, by altering the phosphorylation state of the acetyl-CoA carboxylase, play antagonistic roles in the acetyl-control of its activity and therefore in the regulation of fatty acid synthesis.  相似文献   

7.
An extracellular 104 kDa exo-beta-d-glucosaminidase was purified and characterized from the culture supernatant of Aspergillus fumigatus S-26, which showed exceptionally strong chitosanolytic enzyme activity. The purified enzyme showed optimum pH of 3.0-6.0 and optimum temperature of 50-60 degrees C, and was stable between pH 2.0 and 10.0 and under 35 degrees C. The Km, Vmax, and kcat were determined to be 1.0 mg chitosan/ml, 7.8x10(-8) mol/s/mg protein, and 28.3 s-1, respectively. The exo-beta-D-glucosaminidase was severely inactivated by Cu2+ and Hg2+ at 10 mM. 2-Hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, and p-chloromercuribenzoic acid inhibited the enzyme. The enzyme did not degrade chitin, cellulose, and starch. The exo-beta-D-glucosaminidase did not reduce the viscosity of chitosan solutions at early stage of reaction, suggesting the exo-type of cleavage in polymeric chitosan chains. The exo-beta-D-glucosaminidase liberated only GlcN from chitosan, and GlcN plus the one-residue shortened oligomers from (GlcN)2-7. The exo-beta-D-glucosaminidase exhibited transglycosylation activity, resulting in the one-residue elongated oligomers.  相似文献   

8.
The 1,044 bp endo-1,4-β-xylanase gene of a hyperthermophilic Eubacterium, "Thermotoga petrophila RKU 1" (T. petrophila) was amplified, from the genomic DNA of donor bacterium, cloned and expressed in mesophilic host E. coli strain BL21 Codon plus. The extracellular target protein was purified by heat treatment followed by anion and cation exchange column chromatography. The purified enzyme appeared as a single band, corresponding to molecular mass of 40 kDa, upon SDS-PAGE. The pH and temperature profile showed that enzyme was maximally active at 6.0 and 95 °C, respectively against birchwood xylan as a substrate (2,600 U/mg). The enzyme also exhibited marked activity towards beech wood xylan (1,655 U/mg). However minor activity against CMC (61 U/mg) and β-Glucan barley (21 U/mg) was observed. No activity against Avicel, Starch, Laminarin and Whatman filter paper 42 was observed. The K(m), V(max) and K (cat) of the recombinant enzyme were found to be 3.5 mg ml(-1), 2778 μmol mg(-1)min(-1) and 2,137,346.15 s(-1), respectively against birchwood xylan as a substrate. The recombinant enzyme was found very stable and exhibited half life (t(?)) of 54.5 min even at temperature as high as 96 °C, with enthalpy of denaturation (ΔH*(D)), free energy of denaturation (ΔG*(D)) and entropy of denaturation (ΔS*(D)) of 513.23 kJ mol(-1), 104.42 kJ mol(-1) and 1.10 kJ mol(-1)K(-1), respectively at 96 °C. Further the enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) for birchwood xylan hydrolysis by recombinant endo-1,4-β-xylanase were calculated at 95 °C as 62.45 kJ mol(-1), 46.18 kJ mol(-1) and 44.2 J mol(-1) K(-1), respectively.  相似文献   

9.
核盘菌5-烯醇丙酮酰莽草酸-3-磷酸合酶的酶学性质   总被引:1,自引:0,他引:1  
核盘菌5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSP合酶)是AROM多功能酶的活性之一.该酶催化莽草酸磷酸(S3P)和磷酸烯醇式丙酮酸(PEP)产生5-烯醇丙酮酰莽草酸-3-磷酸和无机磷酸的可逆反应,受除草剂草甘膦(N-(膦羧甲基)甘氨酸)抑制.纯化了核盘菌AROM蛋白并对EPSP合酶进行了酶学特征研究.结果显示,该酶反应的最适pH值为7.2,最适温度为30℃.热失活反应活化能是69.62 kJ/mol.底物S3P和PEP浓度分别高于1 mmol/L和2 mmol/L时,对EPSP合酶反应产生抑制作用.用双底物反应恒态动力学Dalziel方程求得的Km(PEP)为140.98 μmol/L,K m(S3P)为139.58 μmol/L.酶动力学模型遵循顺序反应机制.草甘膦是该酶反应底物PEP的竞争性抑制剂(Ki为0.32 μmol/L)和S3P的非竞争性抑制剂.正向反应受K+激活.当[K+]增加时,K m(PEP)随之降低,Km(S3P)不规律变化,而K i(PEP)随[K+]增加而提高.  相似文献   

10.
Frog (Rana catesbiana) rod outer segment disc membranes contain a cyclic nucleotide phosphodiesterase (EC 3.1.4.17) which is activated by light in the presence of ATP. This enzyme is firmly bound to the disc membrane, but can be eluted from the membrane with 10 mM Tris-HCl buffer, pH 7.4 and 2 mM EDTA. The eluted phosphodiesterase has reduced activity, but can be activated approximately 10-fold by polycations such as protamine and polylysine. The eluted phosphodiesterase can no longer be activated by light in the presence of ATP, that is, activation by light apparently depends on the native orientation of phosphodiesterase in relationship to other disc membrane components. The eluted phosphodiesterase was purified to homogeneity as judged by analytical polyacrylamide gel electrophoresis and polyacrylamide gel isoelectric focusing. The over-all purification from intact retina was approximately 925-fold. The purification of phosphodiesterase from the isolated rod outer segment preparation was about 185-fold with a 28% yield. Phosphodiesterase accounts for approximately 0.5% of the disc membrane protein. The eluted phosphodiesterase (inactive form) has a sedimentation coefficient of 12.4 S corresponding to an approximate molecular weight of 240,000. Sodium dodecyl sulfate polyacrylamide gel electrophoresis separates the purified phosphodiesterase into two subunits of 120,000 and 110,000 daltons. With cyclic 3':5'-GMP (cGMP) as substrate the Km for the purified phosphodiesterase is 70 muM. Protamine increases the Vmax without changing the Km for cGMP. The isoelectric point (pI) of the native dimer is 5.7. Limited exposure of the eluted phosphodiesterase (inactive form) to trypsin produces a somewhat greater activation than is obtained with 0.5 mg/ml of protamine. The trypsin-activated phosphodiesterase has a sedimentation coefficient of 7.8 S corresponding to an approximate molecular weight of 170,000. The 110,000-dalton subunit is much less sensitive to trypsin hydrolysis and the 120,000-dalton subunit is rapidly replaced by smaller fragments. On the basis of the molecular weight of the purified phosphodiesterase (240,000) and the concentrations of phosphodiesterase and rhodopsin in the rod outer segment, it is estimated that the molar ratio ophosphodiesterase to rhodopsin in the rod outer segment is approximately 1:900. Since all of the disc phosphodiesterase molecules are activated when 0.1% of the rhodopsins are bleached, we conclude that in the presence of ATP 1 molecule of bleached rhodopsin can activate 1 molecule of phosphodiesterase.  相似文献   

11.
Purification and subunit structure of mouse liver cystathionase   总被引:1,自引:0,他引:1  
Cystathionase has been purified from mouse liver by ammonium sulfate precipitation, ethanol precipitation, column chromatography on DEAE-cellulose and on hydrox-ylapatite, as well as Sephadex G-200 gel filtration. These procedures yielded a chromatographically homogeneous enzyme which was purified more than 1000-fold relative to whole liver extract. Overall recovery was approximately 4%. The purified enzyme does not contain detectable carbohydrate and migrates as a single protein component on analytical disc gel electrophoresis. A sedimentation coefficient of 8.3 S has been determined for the active enzyme by rate zonal centrifugation in glycerol gradients. This value suggests a molecular weight for the native enzyme of approximately 160,000 g/mol, a value similar to that estimated by gel filtration. Following sodium dodecyl sulfate gel electrophoresis in the presence of reducing agent and at different gel concentrations, a single protein component with a molecular weight of 40,000 g/mol was obtained. Thus, the enzyme appears to consist of four subunits of equal size. The Km value for cystathionine at pH 8.1, 37 °C, and in the presence of 1 mm dithioerythritol is approximately 1 mm.  相似文献   

12.
We previously demonstrated that an acidic variant (B1) of lysosomal arylsulfatase B from transplanted human lung cancer is phosphorylated on its protein and carbohydrate moieties (Gasa, S., and Makita, A. (1983) J. Biol. Chem. 258, 5034-5039). The present study identifies that a cAMP-dependent protein kinase is responsible for phosphorylation of arylsulfatase B. The protein kinase activity toward the sulfatase was considerably higher in the transplanted lung cancer than in normal lung in the presence of cAMP. B enzyme purified from normal human liver was found to contain 0.6 mol/mol B enzyme, and protein kinase treatment added further 1.3 mol of Pi to give a single phosphopeptide (X). On the other hand, B1 enzyme purified from the transplanted human lung cancer which had been labeled in vivo with 32Pi revealed at least two phosphopeptides (X and Y). Assuming that the sulfatase from normal liver and lung cancer possesses the same number of available phosphorylation sites, phosphorylation of site X which was available only by deliberate phosphorylation of the native, ordinary B enzyme appears to be cancer-associated. Increasing phosphorylation of the sulfatase resulted in a maximum 50% elevation in arylsulfatase activity, followed by a decrease of the activity upon overphosphorylation, using an artificial substrate.  相似文献   

13.
Homoserine dehydrogenase from cell suspension cultures of carrot (Daucus carota L.) has been purified to apparent homogeneity by a combination of selective heat denaturation, ion exchange and gel filtration chromatographies, and preparative gel electrophoresis. Carrot homoserine dehydrogenase is composed of subunits of equal molecular weight (85,000 ± 5,000). During purification, the enzyme exists predominantly in two molecular weight forms, 180,000 and 240,000. The enzyme can be reversibly converted from one form to the other, and each has different regulatory properties. When the enzyme is dialyzed in the presence of 5 millimolar threonine, the purified enzyme is converted into its trimeric form (240,000), which is completely inhibited by 5 millimolar threonine and is stimulated 2.6-fold by K+. When the enzyme is dialyzed in the presence of K+ and absence of threonine, the purified enzyme is converted into a dimer (180,000), which is not inhibited by threonine and is only stimulated 1.5-fold by K+. The enzyme also can polymerize under certain conditions to form higher molecular weight aggregates ranging in size up to 720,000, which also are catalytically active. This interconversion of homoserine dehydrogenase conformations may reflect the daily stream of events occurring in vivo. When light stimulates protein synthesis, the threonine pool decreases in the chloroplast, while K+ concentrations increase. The change in threonine and K+ concentrations shift the homoserine dehydrogenase from the threonine-sensitive to the threonine-insensitive conformation resulting in increased production of threonine, which would meet the demands of protein synthesis. The reverse process would occur in the dark.  相似文献   

14.
Benzoyl coenzyme A (benzoyl-CoA) reductase is a key enzyme in the anaerobic metabolism of aromatic compounds catalyzing the ATP-driven reductive dearomatization of benzoyl-CoA. The enzyme from Thauera aromatica uses a reduced 2[4Fe-4S] ferredoxin as electron donor. In this work, we identified 2-oxoglutarate:ferredoxin oxidoreductase (KGOR) as the ferredoxin reducing enzyme. KGOR activity was increased 10- to 50-fold in T. aromatica cells grown under denitrifying conditions on an aromatic substrate compared to that of cells grown on nonaromatic substrates. The enzyme was purified from soluble extracts by a 60-fold enrichment with a specific activity of 4.8 micromol min(-1) mg(-1). The native enzyme had a molecular mass of 200 +/- 20 kDa (mean +/- standard deviation) and consisted of two subunits with molecular masses of 66 and 34 kDa, suggesting an (alphabeta)(2) composition. The UV/visible spectrum was characteristic for an iron-sulfur protein; the enzyme contained 8.3 +/- 0.5 mol of Fe, 7.2 +/- 0.5 mol of acid-labile sulfur, and 1.6 +/- 0.2 mol of thiamine diphosphate (TPP) per mol of protein. The high specificity for 2-oxoglutarate and the low K(m) for ferredoxin ( approximately 10 microM) indicated that both are the in vivo substrates of the enzyme. KGOR catalyzed the isotope exchange between (14)CO(2) and C(1) of 2-oxoglutarate, representing a typical reversible partial reaction of 2-oxoacid oxidoreductases. The two genes coding for the two subunits of KGOR were found adjacent to the gene cluster coding for enzymes and ferredoxin of the catabolic benzoyl-CoA pathway. Sequence comparisons with other 2-oxoacid oxidoreductases indicated that KGOR from T. aromatica belongs to the Halobacterium type of 2-oxoacid oxidoreductases, which lack a ferredoxin-like module which contains two additional [4Fe-4S](1+/2+) clusters/monomer. Using purified KGOR, ferredoxin, and benzoyl-CoA reductase, the 2-oxoglutarate-driven reduction of benzoyl-CoA was shown in vitro. This demonstrates that ferredoxin acts as an electron shuttle between the citric acid cycle and benzoyl-CoA reductase by coupling the oxidation of the end product of the benzoyl-CoA pathway, acetyl-CoA, to the reduction of the aromatic ring.  相似文献   

15.
Hydrogenase isoenzyme 1 from the membrane fraction of anaerobically grown Escherichia coli has been purified to near homogeneity. The preparation involved dispersion of the membrane fraction with deoxycholate followed by ammonium sulphate precipitation, ion-exchange, hydroxyapatite and gel filtration chromatography steps. The enzyme was assayed by quantification of the H2:benzyl viologen oxidoreductase activity immunoprecipitated by a non-inhibitory antiserum specific for the enzyme. The enzyme constituted about 8% of the hydrogenase activity found in the detergent-dispersed membranes, the remainder being attributable to hydrogenase isoenzyme 2. Isoenzyme 1 was purified 130-fold and the specific activity of the final preparation was 10.6 mumol benzyl viologen reduced min-1 (mg protein)-1 (H2:benzyl viologen oxidoreductase). The final preparation contained polypeptides of apparent Mr 64,000, 31,000 and 29,000. Antibodies were raised both to the final preparation and to immunoprecipitation arcs containing hydrogenase isoenzyme 1, excised from crossed immunoelectrophoresis plates. The former cross-reacted with all three polypeptides in the enzyme preparation but the latter recognised only the Mr-64,000 polypeptide. Immunological analysis revealed that the polypeptides of apparent Mr 31,000 and 29,000 are fragments of a single polypeptide of Mr 35,000 which is present in the detergent-dispersed membranes. The fragmentation of the Mr-35,000 polypeptide during the preparation correlates with a change in the electrophoretic mobility of the enzyme. A similar electrophoretic mobility change was observed, accompanied by cleavage of the Mr-35,000 polypeptide to one of 32,000 when the enzyme was analysed after exposure of detergent-dispersed membranes to trypsin. The enzyme in the detergent-dispersed membranes consists minimally of two subunits of Mr 64,000 and two subunits of Mr 35,000. It contained 12.2 mol Fe and 9.1 mol acid-labile S2-/200,000 g enzyme. The enzyme, purified from bacteria grown in the presence of 63Ni, was found to contain 0.64 (+/- 0.20) mol Ni/200,000 g enzyme. A constant ratio of 63Ni immunoprecipitated to hydrogenase isoenzyme 1 activity immunoprecipitated by antiserum specific for the enzyme was observed during the preparation, consistent with Ni being part of the enzyme. The enzyme has a low Km for H2 (2.0 microM) in the H2:benzyl viologen oxidoreductase assay. It catalyses H2 evolution employing reduced methyl viologen as electron donor. It is inhibited reversibly by CO and irreversibly by N-bromosuccinimide.  相似文献   

16.
Purification of the beta-glucosidase from Sclerotinia sclerotiorum   总被引:1,自引:0,他引:1  
A beta-glucosidase (EC 3.2.1.21) has been isolated from culture filtrates of the fungus Sclerotinia sclerotiorum. The protein was purified by gel filtration on a column of Bio-Gel P-300 and by ion exchange chromatography on DEAE-Bio-Gel A. The molecular weight, determined by gel filtration, was 240,000. Km values for the enzyme towards p-nitrophenyl-beta-D-glucoside and cellobiose were respectively 0.10 mM and 1.23 mM. The beta-glucosidase activity was found to be strongly associated with a beta-xylosidase (EC 3.2.1.37) activity, suggesting that both activities could be represented in a single protein complex.  相似文献   

17.
A mono-oxygenase catalysing the conversion of 2-ethyl-4-thioisonicotinamide (ethionamide) into its sulphoxide was purified from guinea-pig liver homogenates. The enzyme required stoicheiometric amounts of oxygen and NADPH for the sulphoxidation reaction. The purified protein is homogeneous by electrophoretic, antigenic and chromatographic criteria. The enzyme has mol.wt. 85000 and it contains 1g-atom of iron and 1mol of FAD per mol, but not cytochrome P-450. The enzyme shows maximal activity at pH7.4 in a number of different buffer systems and the K(m) values calculated for the substrate and NADPH are 6.5x10(-5)m and 2.8x10(-5)m respectively. The activation energy of the reaction was calculated to be 36kJ/mol. Under optimal conditions, the molecular activity of the enzyme (mol of substrate oxidized/min per mol of enzyme) is calculated to be 2.1. The oxygenase belongs to the class of general drug-metabolizing enzymes and it may act on different compounds which can undergo sulphoxidation. The mechanism of sulphoxidation was shown to be mediated by superoxide anions.  相似文献   

18.
Acetyl-coenzyme-A carboxylase has been isolated in homogeneous form from Candida lipolytica. The homogeneity of the enzyme preparation is evidenced by analytical ultracentrifugation, dodecyl-sulfate-polyacrylamide gel electrophoresis and Ouchterlony double-diffusion analysis. The purified enzyme exhibits a specific activity of 8.0 U/mg protein at 25 degrees C and contains 1 mol biotin/263000 g protein. The sedimentation coefficient (S20,W) of the enzyme is 18 S. It has been shown by dodecyl-sulfate-polyacrylamide gel electrophoresis that the enzyme possesses only one kind of subunit with a molecular weight of 230000. This finding, together with the biotin content, indicates that the C. lipolytica enzyme has a highly integrated subunit structure. The C. lipolytica enzyme is very labile, but is stabilized by glycerol. The enzyme is markedly activated by poly(ethyleneglycol), the activation being due principally to a decrease in the Km values for substrates. Even in the presence of this activator, the Km value for acetyl-CoA of the C. lipolytica enzyme is much higher than that of the enzyme from Saccharomyces cerevisiae and animal tissues. The C. lipolytica enzyme, unlike the enzyme from animal tissues, is not activated by citrate.  相似文献   

19.
An Escherichia coli K12 strain was constructed that synthesized elevated quantities of Klebsiella aerogenes D-arabitol dehydrogenase; the enzyme accounted for about 5% of the soluble protein in this strain. Some 280 mg of enzyme was purified from 180 g of cell paste. The purified enzyme was active as a monomer of 46,000 mol.wt. The amino acid composition and kinetic constants of the enzyme for D-arabitol and D-mannitol are reported. The apparent Km for D-mannitol was more than 3-fold that for D-arabitol, whereas the maximum velocities with both substrates were indistinguishable. The enzyme purified from the E. coli K12 construct was indistinguishable by the criteria of molecular weight, electrophoretic mobility in native polyacrylamide gel and D-mannitol/D-arabitol activity ratio from D-arabitol dehydrogenase synthesized in wild-type K. aerogenes. Purified D-arabitol dehydrogenase showed no immunological cross-reaction with K. aerogenes ribitol dehydrogenase. During electrophoresis in native polyacrylamide gels, oxidation by persulphate catalysed the formation of inactive polymeric forms of the enzyme. Dithiothreitol and pre-electrophoresis protected against this polymerization.  相似文献   

20.
The enzyme which cleaves the benzene ring of 6-chlorohydroxyquinol was purified to apparent homogeneity from an extract of 2,4,6-trichlorophenol-grown cells of Streptomyces rochei 303. Like the analogous enzyme from Azotobacter sp. strain GP1, it exhibited a highly restricted substrate specificity and was able to cleave only 6-chlorohydroxyquinol and hydroxyquinol and not catechol, chlorinated catechols, or pyrogallol. No extradiol-cleaving activity was observed. In contrast to 6-chlorohydroxyquinol 1,2-dioxygenase from Azotobacter sp. strain GP1, the S. rochei enzyme had a distinct preference for 6-chlorohydroxyquinol over hydroxyquinol (kcat/Km = 1.2 and 0.57 s-1.microM-1, respectively). The enzyme from S. rochei appears to be a dimer of two identical 31-kDa subunits. It is a colored protein and was found to contain 1 mol of iron per mol of enzyme. The NH2-terminal amino acid sequences of 6-chlorohydroxyquinol 1,2-dioxygenase from S. rochei 303 and from Azotobacter sp. strain GP1 showed a high degree of similarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号