共查询到20条相似文献,搜索用时 15 毫秒
1.
Qiu J Liu R Chapados BR Sherman M Tainer JA Shen B 《The Journal of biological chemistry》2004,279(23):24394-24402
Flap endonuclease-1 or FEN-1 is a structure-specific and multifunctional nuclease critical for DNA replication, repair, and recombination; however, its interaction with DNA substrates has not been fully understood. In the current study, we have defined the borders of the interaction between the FEN-1 protein and its DNA substrates and identified six clusters of conserved positively charged amino acid residues, which are in direct contact with DNA substrate. To map further the corresponding interactions between FEN-1 residues and DNA substrates, we performed biochemical assays employing a series of flap DNA substrates lacking some structural components and a series of binding-deficient point mutants of FEN-1. It was revealed that Arg(47), Arg(70), and Lys(326)-Arg(327) of FEN-1 interact with the upstream duplex of DNA substrates, whereas Lys(244)-Arg(245) interact with the downstream duplex. This result indicates the orientation of the FEN-1-DNA interaction. Moreover, Arg(70) and Arg(47) were determined to interact with the sites around the 2nd nucleotide (Arg(70)) or the 5th/6th nucleotide (Arg(47)) of the template strand in the upstream duplex portion counting from the nick point of the flap substrate. Together with previously published data and the crystallographic ainformation from the FEN-1.DNA complex that we published recently (Chapados, B. R., Hosfield, D. J., Han, S., Qiu, J., Yelent, B., Shen, B., Tainer, J. A. (2004) Cell 116, 39-50) we are able to propose a reasonable model for how the human FEN-1 protein interacts with its DNA substrates. 相似文献
2.
L. David Finger Nikesh Patel Amanda Beddows Long Ma Jack C. Exell Emma Jardine Anita C. Jones Jane A. Grasby 《Nucleic acids research》2013,41(21):9839-9847
The structure- and strand-specific phosphodiesterase flap endonuclease-1 (FEN1), the prototypical 5′-nuclease, catalyzes the essential removal of 5′-single-stranded flaps during replication and repair. FEN1 achieves this by selectively catalyzing hydrolysis one nucleotide into the duplex region of substrates, always targeting the 5′-strand. This specificity is proposed to arise by unpairing the 5′-end of duplex to permit the scissile phosphate diester to contact catalytic divalent metal ions. Providing the first direct evidence for this, we detected changes induced by human FEN1 (hFEN1) in the low-energy CD spectra and fluorescence lifetimes of 2-aminopurine in substrates and products that were indicative of unpairing. Divalent metal ions were essential for unpairing. However, although 5′-nuclease superfamily-conserved active-site residues K93 and R100 were required to produce unpaired product, they were not necessary to unpair substrates. Nevertheless, a unique arrangement of protein residues around the unpaired DNA was detected only with wild-type protein, suggesting a cooperative assembly of active-site residues that may be triggered by unpaired DNA. The general principles of FEN1 strand and reaction-site selection, which depend on the ability of juxtaposed divalent metal ions to unpair the end of duplex DNA, may also apply more widely to other structure- and strand-specific nucleases. 相似文献
3.
Sharma S Sommers JA Wu L Bohr VA Hickson ID Brosh RM 《The Journal of biological chemistry》2004,279(11):9847-9856
Bloom's syndrome (BS) is a rare autosomal recessive genetic disorder associated with genomic instability and an elevated risk of cancer. Cellular features of BS include an accumulation of abnormal replication intermediates and increased sister chromatid exchange. Although it has been suggested that the underlying defect responsible for hyper-recombination in BS cells is a temporal delay in the maturation of DNA replication intermediates, the precise role of the BS gene product, BLM, in DNA metabolism remains elusive. We report here a novel interaction of the BLM protein with the human 5'-flap endonuclease/5'-3' exonuclease (FEN-1), a genome stability factor involved in Okazaki fragment processing and DNA repair. BLM protein stimulates both the endonucleolytic and exonucleolytic cleavage activity of FEN-1 and this functional interaction is independent of BLM catalytic activity. BLM and FEN-1 are associated with each other in human nuclei as shown by their reciprocal co-immunoprecipitation from HeLa nuclear extracts. The BLM-FEN-1 physical interaction is mediated through a region of the BLM C-terminal domain that shares homology with the FEN-1 interaction domain of the Werner syndrome protein, a RecQ helicase family member homologous to BLM. This study provides the first evidence for a direct interaction of BLM with a human nucleolytic enzyme. We suggest that functional interactions between RecQ helicases and Rad2 family nucleases serve to process DNA substrates that are intermediates in DNA replication and repair. 相似文献
4.
Nazarkina JK Petrousseva IO Safronov IV Lavrik OI Khodyreva SN 《Biochemistry. Biokhimii?a》2003,68(8):934-942
A new method for enzymatic synthesis of radioactive DNA flapped structures containing a photoreactive dCMP moiety at a branch point with 4-(4-azido-2,3,5,6-tetrafluorobenzylidene-hydrazinocarbonyl)butylcarbamoyl group attached at exo-N-position of cytosine was developed. The formation of complexes of flap endonuclease-1 (FEN-1) with flapped DNA was shown by photoaffinity modification and gel retardation assays. The substrate properties of the flapped structures with different flap lengths were studied in the reaction of endonuclease cleavage catalyzed by FEN-1. It was demonstrated that inhibition of FEN-1 activity by replication protein A (RPA) depends on the length of the single-stranded part of the flapped substrate. A significant inhibition of cleavage was observed when the flap length was sufficient for effective RPA binding, while for structures with short single-stranded part the efficiency of cleavage was independent of the presence of RPA. FEN-1 and RPA were modified by photoaffinity labeling using flap structures with single-stranded parts consisting of 8 and 21 nucleotides. Products of DNA photoattachment to FEN-1 were observed in both cases, while the covalent adducts with RPA were obtained only with the 21-nucleotide-long flap. Photoaffinity modification demonstrated that FEN-1 and RPA compete for the binding of the flapped substrates with long single-stranded parts. 相似文献
5.
Double-strand break formation by the RAG complex at the bcl-2 major breakpoint region and at other non-B DNA structures in vitro 下载免费PDF全文
The most common chromosomal translocation in cancer, t(14;18) at the 150-bp bcl-2 major breakpoint region (Mbr), occurs in follicular lymphomas. The bcl-2 Mbr assumes a non-B DNA conformation, thus explaining its distinctive fragility. This non-B DNA structure is a target of the RAG complex in vivo, but not because of its primary sequence. Here we report that the RAG complex generates at least two independent nicks that lead to double-strand breaks in vitro, and this requires the non-B DNA structure at the bcl-2 Mbr. A 3-bp mutation is capable of abolishing the non-B structure formation and the double-strand breaks. The observations on the bcl-2 Mbr reflect more general properties of the RAG complex, which can bind and nick at duplex-single-strand transitions of other non-B DNA structures, resulting in double-strand breaks in vitro. Hence, the present study reveals novel insight into a third mechanism of action of RAGs on DNA, besides the standard heptamer/nonamer-mediated cleavage in V(D)J recombination and the in vitro transposase activity. 相似文献
6.
Double-strand break repair by Ku70 requires heterodimerization with Ku80 and DNA binding functions. 总被引:12,自引:0,他引:12 下载免费PDF全文
Heterodimers of the 70 and 80 kDa Ku autoantigens (Ku70 and Ku80) activate the DNA-dependent protein kinase (DNA-PK). Mutations in any of the three subunits of this protein kinase (Ku70, Ku80 and DNA-PKcs) lead to sensitivity to ionizing radiation (IR) and to DNA double-strand breaks, and V(D)J recombination product formation defects. Here we show that the IR repair, DNA end binding and DNA-PK defects in Ku70-/- embryonic stem cells can be counteracted by introducing epitope-tagged wild-type Ku70 cDNA. Truncations and chimeras of Ku70 were used to identify the regions necessary for DNA end binding and IR repair. Site-specific mutational analysis revealed a core region of Ku70 responsible for DNA end binding and heterodimerization. The propensity for Ku70 to associate with Ku80 and to bind DNA correlates with the ability to activate DNA-PK, although two mutants showed that the roles of Ku70 in DNA-PK activation and IR repair are separate. Mutation of DNA-PK autophosphorylation sites and other structural motifs in Ku70 showed that these sites are not necessary for IR repair in vivo. These studies reveal Ku70 features required for double-strand break repair. 相似文献
7.
Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases 总被引:31,自引:0,他引:31
Mitotic double-strand break (DSB)-induced gene conversion at MAT in Saccharomyces cerevisiae was analyzed molecularly in mutant strains thermosensitive for essential replication factors. The processivity cofactors PCNA and RFC are essential even to synthesize as little as 30 nucleotides following strand invasion. Both PCNA-associated DNA polymerases delta and epsilon are important for gene conversion, though a temperature-sensitive Pol epsilon mutant is more severe than one in Pol delta. Surprisingly, mutants of lagging strand replication, DNA polymerase alpha (pol1-17), DNA primase (pri2-1), and Rad27p (rad27 delta) also greatly inhibit completion of DSB repair, even in G1-arrested cells. We propose a novel model for DSB-induced gene conversion in which a strand invasion creates a modified replication fork, involving leading and lagging strand synthesis from the donor template. Replication is terminated by capture of the second end of the DSB. 相似文献
8.
HIV-1 genome nuclear import is mediated by a central DNA flap 总被引:41,自引:0,他引:41
9.
Anoek Friskes Lisa Koob Lenno Krenning Tesa M Severson Emma
S Koeleman Xabier Vergara Michael Schubert Jeroen van
den
Berg Bastiaan Evers Anna G Manjn Stacey Joosten Yongsoo Kim Wilbert Zwart Ren
H Medema 《Nucleic acids research》2022,50(17):9930
Cells respond to double-strand breaks (DSBs) by activating DNA damage response pathways, including cell cycle arrest. We have previously shown that a single double-strand break generated via CRISPR/Cas9 is sufficient to delay cell cycle progression and compromise cell viability. However, we also found that the cellular response to DSBs can vary, independent of the number of lesions. This implies that not all DSBs are equally toxic, and raises the question if the location of a single double-strand break could influence its toxicity. To systematically investigate if DSB-location is a determinant of toxicity we performed a CRISPR/Cas9 screen targeting 6237 single sites in the human genome. Next, we developed a data-driven framework to design CRISPR/Cas9 sgRNA (crRNA) pools targeting specific chromatin features. The chromatin context was defined using ChromHMM states, Lamin-B1 DAM-iD, DNAseI hypersensitivity, and RNA-sequencing data. We computationally designed 6 distinct crRNA pools, each containing 10 crRNAs targeting the same chromatin state. We show that the toxicity of a DSB is highly similar across the different ChromHMM states. Rather, we find that the major determinants of toxicity of a sgRNA are cutting efficiency and off-target effects. Thus, chromatin features have little to no effect on the toxicity of a single CRISPR/Cas9-induced DSB. 相似文献
10.
Matsui E Musti KV Abe J Yamasaki K Matsui I Harata K 《The Journal of biological chemistry》2002,277(40):37840-37847
The crystal structure of flap endonuclease-1 from Pyrococcus horikoshii (phFEN-1) was determined to a resolution of 3.1 A. The active cleft of the phFEN-1 molecule is formed with one large loop and four small loops. We examined the function of the conserved residues and positively charged clusters on these loops by kinetic analysis with 45 different mutants. Arg(40) and Arg(42) on small loop 1, a cluster Lys(193)-Lys(195) on small loop 2, and two sites, Arg(94) and Arg(118)-Lys(119), on the large loop were identified as binding sites. Lys(87) on the large loop may play significant roles in catalytic reaction. Furthermore, we successfully elucidated the function of the four DNA binding sites that form productive ES complexes specific for each endo- or exo-type hydrolysis, probably by bending the substrates. For the endo-activity, Arg(94) and Lys(193)-Lys(195) located at the top and bottom of the molecule were key determinants. For the exo-activity, all four sites were needed, but Arg(118)-Lys(119) was dominant. The major binding sites for both the nick substrate and double-stranded DNA might be the same. 相似文献
11.
It has been shown that flap endonuclease-1 (FEN-1), a structure-specific nuclease, acts on the removal of RNA primers during Okazaki fragment maturation in DNA synthesis. To study whether the gene expression of FEN-1 is inducible during cell proliferation, we analyzed the FEN-1 mRNA levels in actively growing cells and non-growing cells. The gene expression of FEN-1 was higher in mitotic cells than in resting cells, and was markedly decreased, especially, when terminal differentiation was induced in promyelocytic leukemia cells (HL-60 cells). The decline correlated substantially with the ceasing of DNA synthesis. In the examination of tissue-specific gene expression, the human testis, spleen, thymus and mucosal lining of colon tissues expressed this gene actively, whereas the prostate, ovary, small intestine and peripheral blood leukocyte hardly expressed it. In addition, FEN-1 was co-localized with the proliferating cell nuclear antigen (PCNA) in young rat kidney according to immunohistochemistry. These findings suggest that FEN-1 gene expression is inducible during cell proliferation for DNA synthesis, and is down-regulated during cell differentiation. 相似文献
12.
In this study, we analyzed double-strand break (DSB) repair in Arabidopsis (Arabidopsis thaliana) at various developmental stages. To analyze DSB repair, we used a homologous recombination (HR) and point mutation reversion assays based on nonfunctional beta-glucuronidase reporter genes. Activation of the reporter gene through HR or point mutation reversion resulted in the appearance of blue sectors after histochemical staining. Scoring of these sectors at 3-d intervals from 2 to 31 d post germination (dpg) revealed that, although there was a 100-fold increase in the number of genomes per plant, the recombination frequency only increased 30-fold. This translates to a recombination rate at 31 dpg (2.77 x 10(-8)) being only 30% of the recombination rate at 2 dpg (9.14 x 10(-8)). Conversely, the mutation frequency increased nearly 180-fold, resulting in a 1.8-fold increase in mutation rate from 2 to 31 dpg. Additional analysis of DSBs over the early developmental stages revealed a substantial increase in the number of strand breaks per unit of DNA. Furthermore, RNA analysis of Ku70 and Rad51, two key enzymes in two different DSB repair pathways, and further protein analysis of Ku70 revealed an increase in Ku70 levels and a decrease of Rad51 levels in the developing plants. These data suggest that DSB repair mechanisms are developmentally regulated in Arabidopsis, whereby the proportion of breaks repaired via HR substantially decreases as the plants mature. 相似文献
13.
Although there has been progress in developing artificial hydrolytic DNA cleaving agents, none of these has been shown to
carry out the double-strand hydrolysis of DNA. We demonstrate that La(III) or Ce(IV) combined with the ligand 1,3-diamino-2-hydroxypropane-N,N,N′,N′-tetraacetate (HPTA) in a 2 : 1 ratio can efficiently cleave supercoiled plasmid DNA at 55 °C within a 3-h period. Analysis
of end-labeled restriction fragments cleaved by these complexes reveals 3′- and 5′-ends consistent with a hydrolytic mechanism.
Unlike for other polydentate carboxylate complexes, plasmid DNA cleavage by La2(HPTA) or Ce2(HPTA) affords a significant amount of linear DNA with a considerable fraction of the supercoiled form still remaining. This
result implies that La2(HPTA) and Ce2(HPTA) can carry out double-strand cleavage of plasmid DNA. La2(HPTA) and Ce2(HPTA) represent the first metal complexes demonstrated to be capable of double-strand hydrolytic cleavage of plasmid DNA.
Received: 29 March 1999 / Accepted: 9 July 1999 相似文献
14.
Human flap endonuclease-1 (FEN-1) is a member of the structure-specific endonuclease family and is a key enzyme in DNA replication and repair. FEN-1 recognizes the 5'-flap DNA structure and cleaves it, a specialized endonuclease function essential for the processing of Okazaki fragments during DNA replication and for the repair of 5'-end single-stranded tails from nicked double-stranded DNA substrates. Magnesium is a cofactor required for nuclease activity. We have used Fourier transform infrared (FTIR) spectroscopy to better understand how Mg2+ and flap DNA interact with human FEN-1. FTIR spectroscopy provides three fundamentally new insights into the structural changes induced by the interaction of FEN-1 with substrate DNA and Mg2+. First, FTIR difference spectra in the amide I vibrational band (1600-1700 cm(-1)) reveal a change in the secondary structure of FEN-1 induced by substrate DNA binding. Quantitative analysis of the FTIR spectra indicates a 4% increase in helicity upon DNA binding or about 14 residues converted from disordered to helical conformations. The observation that the residues are disordered without DNA strongly implicates the flexible loop region. The conversion to helix also suggests a mechanism for locking the flexible loop region around the bound DNA. This is the first direct experimental evidence for a binding mechanism that involves a secondary structural change of the protein. Second, in contrast with DNA binding, no change is observed in the secondary structure of FEN-1 upon Mg2+ binding to the wild type or to the noncleaving D181A mutant. Third, the FTIR results provide direct evidence (via the carboxylate ligand band at 1535 cm(-1)) that not only is D181 a ligand to Mg2+ in the human enzyme but Mg2+ binding does not occur in the D181A mutant which lacks this ligand. 相似文献
15.
16.
Stalled replication forks produced by three different ways of depleting deoxynucleoside triphosphate showed different capacities to undergo "replication fork reversal." This reaction occurred at the stalled forks generated by hydroxyurea treatment, was impaired under thermal inactivation of ribonucleoside reductase, and did not take place under thymine starvation. 相似文献
17.
The precision of the repair of linearized plasmid DNA was analyzed using a nonsense mutation inactivated beta-glucuronidase (uidA) marker gene delivered to Nicotiana plumbaginifolia protoplasts and Nicotiana tabacum leaves. The reversions at the stop-codon allowed the reactivation of the marker gene. Here we report that irradiation of plant protoplasts or plant tissue prior to the delivery of the DNA repair substrate significantly potentiated the reversion frequency leading to a two to fourfold increase over the non-irradiated samples. The increase in reversion frequency was highest upon the delivery of the linear substrates, suggesting increased sensitivity of the double-strand break (DSB) repair apparatus to UV-C. Moreover, the most significant UV irradiation effect was observed in plasmids linearized in close proximity to the stop codon. The higher reversion frequency in UV-treated samples was apparently due to the involvement of free radicals as pretreatment of irradiated tissue with radical scavenging enzyme N-acetyl-l-cysteine abolished the effect of UV-C. We discuss the UV-sensitivity of various repair enzymes as well as possible mechanisms of involvement of error-prone polymerases in processing of DSBs. 相似文献
18.
Yamaguchi T Namekawa SH Hamada FN Kasai N Nara T Watanabe K Iwabata K Ishizaki T Ishii S Koshiyama A Inagaki S Kimura S Sakaguchi K 《Fungal genetics and biology : FG & B》2004,41(5):493-500
In the basidiomycete Coprinus cinereus (C. cinereus), which shows a highly synchronous meiotic cell cycle, the meiotic prophase I cells demonstrate flap endonuclease-1 activity. To investigate its role during meiosis, we isolated a C. cinereus cDNA homolog of flap endonuclease-1 (CcFEN-1), 1377bp in length with the open reading frame (ORF) encoding a predicted molecular mass of 51 kDa. At amino-acid residues Glu276-Pro345, a specific inserted sequence composed of 70 amino acids rich in polar forms was found to exist, without sequence identity to other eukaryotic FEN-1 or the polar amino acid rich sequences found in C. cinereus PCNA and C. cinereus DNA ligase IV, although the lengths and percentages of polar amino acids were similar. Northern hybridization analysis indicated CcFEN-1 to be expressed not only in the pre-meiotic S phase but also in meiotic prophase I. The roles of CcFEN-1 during meiosis are discussed. 相似文献
19.
20.
Arginine residues 47 and 70 of human flap endonuclease-1 are involved in DNA substrate interactions and cleavage site determination 总被引:1,自引:0,他引:1
Flap endonuclease-1 (FEN-1) is a critical enzyme for DNA replication and repair. Intensive studies have been carried out on its structure-specific nuclease activities and biological functions in yeast cells. However, its specific interactions with DNA substrates as an initial step of catalysis are not defined. An understanding of the ability of FEN-1 to recognize and bind a flap DNA substrate is critical for the elucidation of its molecular mechanism and for the explanation of possible pathological consequences resulting from its failure to bind DNA. Using human FEN-1 in this study, we identified two positively charged amino acid residues, Arg-47 and Arg-70 in human FEN-1, as candidates responsible for substrate binding. Mutation of the Arg-70 significantly reduced flap endonuclease activity and eliminated exonuclease activity. Mutation or protonation of Arg-47 shifted cleavage sites with flap substrate and significantly reduced the exonuclease activity. We revealed that these alterations are due to the defects in DNA-protein interactions. Although the effect of the single Arg-47 mutation on binding activities is not as severe as R70A, its double mutation with Asp-181 had a synergistic effect. Furthermore the possible interaction sites of these positively charged residues with DNA substrates were discussed based on FEN-1 cleavage patterns using different substrates. Finally data were provided to indicate that the observed negative effects of a high concentration of Mg(2+) on enzymatic activity are probably due to the competition between the arginine residues and metal ions with DNA substrate since mutants were found to be less tolerant. 相似文献