首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sun L  Gu S  Li X  Sun Y  Zheng D  Yu K  Ji C  Tang R  Xie Y  Mao Y 《Molekuliarnaia biologiia》2006,40(5):808-815
Human protein kinases make up a large superfamily of homologous proteins, which are related by virtue of their kinase domains (also known as catalytic domains). Here we report the cloning and characterization of a novel human MAST4 (microtubule associated serine/threonine kinase family member 4) gene, which locates on human chromosome 5q13. The MAST4 cDNA is 7587 base pairs in length and encodes a putative protein of 2435 amino acids which contains a serine/threonine kinase domain and a PDZ domain. MAST4 protein has 64%, 63%, 59% and 39% identical aminoacid residues with MAST1, MAST2, MAST3 and MASTL respectively. RT-PCR analysis revealed relatively high expression level of MAST4 in most normal human tissues, with an exception of in testis, small intestine, colon and peripheral blood leukocyte.  相似文献   

2.
In the moss Ceratodon purpureus a phytochrome gene encodes a phytochrome type (PhyCer) which has a C-terminal domain homologous to the catalytic domain of eukaryotic protein kinases (PKs). PhyCer exhibits sequence conservation to serine/ threonine as well to tyrosine kinases. Since PhyCer is expressed very weakly in moss cells, to investigate the proposed PK activity of PhyCer, we overexpressed PhyCer transiently in fibroblast cells. For this purpose we made a chimeric receptor, EC-R, which consists of the extracellular, the membrane-spanning and the juxtamembrane domains of the human epidermal growth-factor receptor (EGF-R) linked to the PK catalytic domain of PhyCer (CerKin). The expression of EC-R in transiently transfected cells was confirmed with antibodies directed against the extracellular domain of EGF-R or against CerKin. Both EGF-R and EC-R were immunoprecipitated from lysates of overexpressing cells with antibodies against the extracellular domain of EGF-R. Phosphorylation experiments were performed with the immunoprecipitates and the phosphorylation products were subjected to phosphoamino acid analysis. Phosphorylation products specifically obtained with EC-R-transfected cells exhibit phosphorylation on serine and threonine residues. In EC-R transfected cells the endogenous EGF-R showed enhanced phosphorylation of serine and threonine residues compared to EGF-R immuno-precipitated from control cells. Although CerKin is closest to the catalytic domain of a protein tyrosine kinase from Dictyostelium discoideum, EC-R does not appear to phosphorylate tyrosine residues in vitro. From our data we conclude that PhyCer carries an active PK domain capable of phosphorylating serine and threonine residues.Abbreviations CerKin protein kinase catalytic domain of PhyCer - EC-R chimeric receptor consisting of the extracellular, the membrane spanning and the juxtamembrane domains of the human epidermal growth factor receptor (EGF-R) linked to the protein kinase catalytic domain of PhyCer - EGF-R epidermal growth factor receptor - mAb monoclonal antibody - PhyCer phytochrome gene in Ceratodon encoding a phytochrome type which has a C-terminal domain homologous to the catalytic domain of eucaryotic protein kinases - PK protein kinase - PVDF polyvinyl difluoride - Ser serine - Thr threonine - Tyr tyrosine Dr. Patricia Algarra was supported by the Alexander von Humboldt Foundation, Germany. This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany.  相似文献   

3.
Wada S  Watanabe T 《Genetica》2007,131(3):307-314
Mitogen-activated protein (MAP) kinases, a closely related family of protein kinases, are involved in cell cycle regulation and differentiation in yeast and human cells. They have not been documented in ciliates. We used PCR to amplify DNA sequences of a ciliated protozoan—Paramecium caudatum—using primers corresponding to amino acid sequences that are common to MAP kinases. We isolated and sequenced one putative MAP kinase-like serine/threonine kinase cDNA from P. caudatum. This cDNA, called pcstk1 (Paramecium caudatum Serine/Threonine Kinase 1) shared approximately 35% amino acid identity with MAP kinases from yeast. MAP kinases are activated by phosphorylation of specific threonine and tyrosine residues. These two amino acid residues are conserved in the PCSTK1 sequence at positions Thr 159 and Tyr 161. The PSTAIRE motif, which is characteristic of the CDK2 gene family, cannot be found in ORF of PCSTK1. The highest homology score was to human STK9, which contains MAP type kinase domains. Comparisons of expression level have shown that pcstk1 is expressed equally in cells at different stages (sexual and asexual). We discussed the possibility, as in other organisms, that a family of MAP kinase genes exists in P. caudatum.  相似文献   

4.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   

5.
The tumor suppressor phosphatase PTEN is a key regulator of cell growth and apoptosis that interacts with PDZ domains from regulatory proteins, including MAGI-1/2/3, hDlg, and MAST205. Here we identified novel PTEN-binding PDZ domains within the MAST205-related proteins, syntrophin-associated serine/threonine kinase and MAST3, characterized the regions of PTEN involved in its interaction with distinctive PDZ domains, and analyzed the functional consequences on PTEN of PDZ domain binding. Using a panel of PTEN mutations, as well as PTEN chimeras containing distinct domains of the related protein TPTE, we found that the PTP and C2 domains of PTEN do not affect PDZ domain binding and that the C-terminal tail of PTEN (residues 350-403) provides selectivity to recognize specific PDZ domains from MAGI-2, hDlg, and MAST205. Binding of PTEN to the PDZ-2 domain from MAGI-2 increased PTEN protein stability. Furthermore, binding of PTEN to the PDZ domains from microtubule-associated serine/threonine kinases facilitated PTEN phosphorylation at its C terminus by these kinases. Our results suggest an important role for the C-terminal region of PTEN in the selective association with scaffolding and/or regulatory molecules and provide evidence that PDZ domain binding stabilizes PTEN and targets this tumor suppressor for phosphorylation by microtubule-associated serine/threonine kinases.  相似文献   

6.
A 4.2-kb SphI-BamHI fragment of chromosomal DNA from Streptomyces granaticolor was cloned and shown to encode a protein with significant sequence similarity to the eukaryotic protein serine/threonine kinases. It consists of 701 amino acids and in the N-terminal part contains all conserved catalytic domains of protein kinases. The C-terminal domain of Pkg2 contains seven tandem repeats of 11 or 12 amino acids with similarity to the tryptophan-docking motif known to stabilize a symmetrical three-dimensional structure called a propeller structure. The pkg2 gene was overexpressed in Escherichia coli, and the gene product (Pkg2) has been found to be autophosphorylated at serine and threonine residues. The N- and C-terminal parts of Pkg2 are separated with a hydrophobic stretch of 21 amino acids which translocated a PhoA fusion protein into the periplasm. Thus, Pkg2 is the first transmembrane protein serine/threonine kinase described for streptomycetes. Replacement of the pkg2 gene by the spectinomycin resistance gene resulted in changes in the morphology of aerial hyphae.  相似文献   

7.
We find that overexpression in yeast of the yeast MCK1 gene, which encodes a meiosis and centromere regulatory kinase, suppresses the temperature-sensitive phenotype of certain mutations in essential centromere binding protein genes CBF2 and CBF5. Since Mck1p is a known serine/threonine protein kinase, this suppression is postulated to be due to Mck1p-catalyzed in vivo phosphorylation of centromere binding proteins. Evidence in support of this model was provided by the finding that purified Mck1p phosphorylates in vitro the 110 kDa subunit (Cbf2p) of the multimeric centromere binding factor CBF3. This phosphorylation occurs on both serine and threonine residues in Cbf2p.  相似文献   

8.
In this study we report identification of six members of a protein kinase gene family from soybean (Glycine max L.). Two fully degenerate oligonucleotide primers corresponding to two conserved motifs (DLK-PENV and GTHEYLAPE) in the catalytic domains of eukaryotic protein serine/threonine kinases were used in a polymerase chain reaction (PCR) to amplify soybean cDNA. Sequence analysis showed that 28 of the PCR sequences represented six different putative protein serine/threonine kinases. These results not only demonstrate that catalytic domains of protein kinases are highly conserved between plants and other eukaryotes but also suggest that there are multiple genes encoding protein kinases in plants.  相似文献   

9.
10.
PDZ domain‐containing proteins (PDZ proteins) act as scaffolds for protein–protein interactions and are crucial for a variety of signal transduction processes. However, the role of PDZ proteins in organismal lifespan and aging remains poorly understood. Here, we demonstrate that KIN‐4, a PDZ domain‐containing microtubule‐associated serine‐threonine (MAST) protein kinase, is a key longevity factor acting through binding PTEN phosphatase in Caenorhabditis elegans. Through a targeted genetic screen for PDZ proteins, we find that kin‐4 is required for the long lifespan of daf‐2/insulin/IGF‐1 receptor mutants. We then show that neurons are crucial tissues for the longevity‐promoting role of kin‐4. We find that the PDZ domain of KIN‐4 binds PTEN, a key factor for the longevity of daf‐2 mutants. Moreover, the interaction between KIN‐4 and PTEN is essential for the extended lifespan of daf‐2 mutants. As many aspects of lifespan regulation in C. elegans are evolutionarily conserved, MAST family kinases may regulate aging and/or age‐related diseases in mammals through their interaction with PTEN.  相似文献   

11.
The Drosophila segment polarity gene fused, which encodes a serine threonine kinase, is required to transmit the Hedgehog (Hh) signal in imaginal discs. To explore the functional homology between the human protein FUSED (hFU) and the Drosophila protein fused (dFu), we have subjected hFU to a precise and well-defined Hh signalling assay of Drosophila wing development. In the wildtype, hFU affects the expression of Hh target genes leading thus to defects in adult wings. In fu mutants, overexpression of hFU cannot rescue the fu phenotype. These results suggest that hFU in Drosophila interferes with endogenous Hh signalling probably by competing with endogenous dFu when binding its partners but cannot perform the normal Fu function.Edited by C. Desplan  相似文献   

12.
Summary The cdc2 gene of the fission yeast Schizosaccharomyces pombe encodes a 34 kDa phosphoprotein with serine/threonine protein kinase activity that acts as the key component in regulation of the eukaryotic cell cycle. We used a repressible promoter fused to the cdc2 cDNA to isolate conditionally dominant negative mutants of cdc2. One of these mutants, DL5, is described in this paper. Overexpression of the mutant protein in a wild-type cdc2 background is lethal and confers cell cycle arrest with a typical cdc phenotype. Sequencing of the mutant cdc2 gene revealed a single amino acid substitution in a region highly conserved in cdc2-like proteins. The mutant protein exhibits no protein kinase activity, but is able to bind a component(s) required for an active protein kinase complex and thereby prevents binding of this component(s) to the co-existing wild-type cdc2 protein. We also demonstrate that S. pombe p34cdc2 contains no phosphoserine.  相似文献   

13.
AKT1 (NP_005154.2) is a member of the serine/threonine AGC protein kinase family involved in cellular metabolism, growth, proliferation and survival. The three human AKT isozymes are highly homologous multi-domain proteins with both overlapping and distinct cellular functions. Dysregulation of the AKT pathway has been identified in multiple human cancers. Several clinical trials are in progress to test the efficacy of AKT pathway inhibitors in treating cancer. Recently, a series of AKT isozyme-selective allosteric inhibitors have been reported. They require the presence of both the pleckstrin-homology (PH) and kinase domains of AKT, but their binding mode has not yet been elucidated. We present here a 2.7 Å resolution co-crystal structure of human AKT1 containing both the PH and kinase domains with a selective allosteric inhibitor bound in the interface. The structure reveals the interactions between the PH and kinase domains, as well as the critical amino residues that mediate binding of the inhibitor to AKT1. Our work also reveals an intricate balance in the enzymatic regulation of AKT, where the PH domain appears to lock the kinase in an inactive conformation and the kinase domain disrupts the phospholipid binding site of the PH domain. This information advances our knowledge in AKT1 structure and regulation, thereby providing a structural foundation for interpreting the effects of different classes of AKT inhibitors and designing selective ones.  相似文献   

14.
15.
Protein kinases play important roles in various cellular interactions underlying metazoan development. To complement existing analyses of protein kinase function in the development of members of the three phyla, Chordata, Arthropoda, and Nematoda, we have begun to examine the cell-and tissue-specific localization of protein kinases in another metazoan phylum, the Annelida. For this purpose, we used the polymerase chain reaction to amplify putative protein kinase catalytic domain cDNAs from the medicinal leech, Hirudo medicinalis. This strategy allowed us to identify 11 cytoplasmic and receptor tyrosine kinase catalytic domains, and 2 cytoplasmic serine/threonine kinase catalytic domains. Using these cDNAs as probes for nonradioactive whole-mount in situ hybridization, we examined the embryonic expression pattern of each of the corresponding putative kinase mRNAs. As has been found in other species, most of the Hirudo protein kinase mRNAs were expressed in a highly specific manner in certain embryonic cells and tissues. We found both neuron-and glia-specific kinases within the nervous system, as well as kinases expressed in non-nervous tissues, such as the haemocoelomic, muscular, and excretory systems. These kinase cDNAs encode proteins likely to be critical for proper development, and can be used as cell-and tissue-specific histological probes for the analysis of Hirudo embryogenesis.  相似文献   

16.
17.
Cao X  Li K  Suh SG  Guo T  Becraft PW 《Planta》2005,220(5):645-657
The maize (Zea mays L.) CRINKLY4 (CR4) gene encodes a serine/threonine receptor-like kinase that controls an array of developmental processes in the plant and endosperm. The Arabidopsis thaliana (L.) Heynh. genome encodes an ortholog of CR4, ACR4, and four CRINKLY4-RELATED (CRR) proteins: AtCRR1, AtCRR2, AtCRR3 and AtCRK1. The available genome sequence of rice (Oryza sativa L.) encodes a CR4 ortholog, OsCR4, and four CRR proteins: OsCRR1, OsCRR2, OsCRR3 and OsCRR4, not necessarily orthologous to the Arabidopsis CRRs. A phylogenetic study showed that AtCRR1 and AtCRR2 form a clade closest to the CR4 group while all the other CRRs form a separate cluster. The five Arabidopsis genes are differentially expressed in various tissues. A construct formed by fusion of the ACR4 promoter and the GUS reporter, ACR4::GUS, is expressed primarily in developing tissues of the shoot. The ACR4 cytoplasmic domain functions in vitro as a serine/threonine kinase, while the AtCRR1 and AtCRR2 kinases are not active. The ability of ACR4 to phosphorylate AtCRR2 suggests that they might function in the same signal transduction pathway. T-DNA insertions were obtained in ACR4, AtCRR1, AtCRR2, AtCRR3 and AtCRK1. Mutations in acr4 show a phenotype restricted to the integuments and seed coat, suggesting that Arabidopsis might contain a redundant function that is lacking in maize. The lack of obvious mutant phenotypes in the crr mutants indicates they are not required for the hypothetical redundant function.  相似文献   

18.
Dictyostelium myosin II heavy chain kinase A (MHCK A), MHCK B, and MHCK C contain a novel type of protein kinase catalytic domain that displays no sequence identity to the catalytic domain present in conventional serine, threonine, and/or tyrosine protein kinases. Several proteins, including myelin basic protein, myosin regulatory light chain, caldesmon, and casein were phosphorylated by the bacterially expressed MHCK A, MHCK B, and MHCK C catalytic domains. Phosphoamino acid analyses of the proteins showed that 91 to 99% of the phosphate was incorporated into threonine with the remainder into serine. Acceptor amino acid specificity was further examined using a synthetic peptide library (MAXXXX(S/T)XXXXAKKK; where X is any amino acid except cysteine, tryptophan, serine, and threonine and position 7 contains serine and threonine in a 1.7:1 ratio). Phosphorylation of the peptide library with the three MHCK catalytic domains resulted in 97 to 99% of the phosphate being incorporated into threonine, while phosphorylation with a conventional serine/threonine protein kinase, the p21-activated kinase, resulted in 80% of the phosphate being incorporated into serine. The acceptor amino acid specificity of MHCK A was tested directly by substituting serine for threonine in a synthetic peptide and a glutathione S-transferase fusion peptide substrate. The serine-containing substrates were phosphorylated at a 25-fold lower rate than the threonine-containing substrates. The results indicate that the MHCKs are specific for the phosphorylation of threonine.  相似文献   

19.
We have isolated clones of an Arabidopsis gene (ROF1, forrotamaseFKBP) encoding a high molecular weight member of the FK506 binding protein (FKBP) family. The deduced amino acid sequence of ROF1 predicts a 551-amino acid, 62 kDa polypeptide which is 44% identical to human FKBP59 — a 59 kDa FKBP which binds to the 90 kDa heat shock protein and is associated with inactive steroid hormone receptors. ROF1 contains three FKBP12-like domains in the N-terminal portion of the protein (in contrast to two domains in mammalian FKBP59), an internal repeat structure associated with protein-protein interactions (tetratricopeptide repeats), and a putative calmodulin binding domain near the C-terminal region of the protein. No sequences associated with protein translocation out of the cytosol were found in ROF1.ROF1 mRNA was found at equivalent low levels in light-grown roots, stems, and flowers and at slightly higher levels in leaves. The abundance ofROF1 mRNA increased several-fold under stress conditions such as wounding or exposure to elevated NaCl levels.The nucleotide sequences in this paper have been submitted to the GenBank/EMBL Data bank with accession numbers U49453 and U57838  相似文献   

20.
The acpI gene encoding an alkaline protease (AcpI) from a deep-sea bacterium, Alkalimonas collagenimarina AC40T, was shotgun-cloned and sequenced. It had a 1,617-bp open reading frame encoding a protein of 538 amino acids. Based on analysis of the deduced amino acid sequence, AcpI is a subtilisin-like serine protease belonging to subtilase family A. It consists of a prepropeptide, a catalytic domain, and a prepeptidase C-terminal domain like other serine proteases from the genera Pseudomonas, Shewanella, Alteromonas, and Xanthomonas. Heterologous expression of the acpI gene in Escherichia coli cells yielded a 28-kDa recombinant AcpI (rAcpI), suggesting that both the prepropeptide and prepeptidase C-terminal domains were cleaved off to give the mature form. Analysis of N-terminal and C-terminal amino acid sequences of purified rAcpI showed that the mature enzyme would be composed of 273 amino acids. The optimal pH and temperature for the caseinolytic activity of the purified rAcpI were 9.0–9.5 and 45°C in 100 mM glycine–NaOH buffer. Calcium ions slightly enhanced the enzyme activity and stability. The enzyme favorably hydrolyzed gelatin, collagen, and casein. AcpI from A. collagenimarina AC40T was also purified from culture broth, and its molecular mass was around 28 kDa, indicating that the cleavage manner of the enzyme is similar to that in E. coli cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号