首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Chronic treatment with the adenosine receptor antagonist caffeine evokes an up-regulation of A1 adenosine receptors and increased coupling of the receptor to G proteins in rat brain membranes. However, chronic agonist exposure has not been explored. Primary cultures of cerebellar granule cells were exposed chronically to A1 adenosine receptor agonists and antagonists. Exposure to the A1 adenosine receptor agonist N 6-cyclopentyladenosine resulted in (1) a time- and concentration-dependent reduction in the density of receptors labeled by 1,3-[3H]dipropyl-8-cyclopentylxanthine, (2) an enhanced ability of guanyl nucleotides to decrease the fraction of A1 adenosine receptor sites displaying high affinity for 2-chloroadenosine, and (3) a functional uncoupling of receptors from adenylyl cyclase (EC 4.6.1.1). The adenosine antagonists caffeine and 8- p -sulfophenyltheophylline produced alterations in A1 adenosine receptor homeostasis that were antipodal to those associated with agonist treatment. Antagonist exposure (1) increased the density of A1 adenosine receptors in cerebellar granule cell membranes, (2) blunted the effect of guanyl nucleotides on receptor coupling to G proteins, and (3) increased the functional coupling of receptors to adenylyl cyclase inhibition. Forskolin treatment of cerebellar granule cells did not affect receptor density, suggesting that cyclic AMP is not involved in the regulation of A1 adenosine receptor expression.  相似文献   

2.
Abstract: Adenosine deaminase is an enzyme of purine metabolism that has largely been considered to be cytosolic. A few years ago, adenosine deaminase was reported to appear on the surface of cells. Recently, it has been demonstrated that adenosine deaminase interacts with a type II membrane protein known as either CD26 or dipeptidylpeptidase IV. In this study, by immunoprecipitation and affinity chromatography it is shown that adenosine deaminase and A1 adenosine receptors interact in pig brain cortical membranes. This is the first report in brain demonstrating an interaction between a degradative ectoenzyme and the receptor whose ligand is the enzyme substrate. By means of this interaction adenosine deaminase leads to the appearance of the high-affinity site of the receptor, which corresponds to the receptor-G protein complex. Thus, it seems that adenosine deaminase is necessary for coupling A1 adenosine receptors to heterotrimeric G proteins.  相似文献   

3.
Abstract: Adenosine A1 receptors as well as other components of the adenylate cyclase system have been studied in cultured cerebellar granule cells. No significant changes in adenosine A1 receptor number, assayed by radioligand binding in intact cells, were detected from 2 days in vitro (DIV) until 7 DIV. Nevertheless, a decline in this parameter was detected at 9 DIV. The steady-state levels of α-Gs and α-Gi, detected by immunoblotting, showed similar profiles, increasing from 2 to 5 DIV and decreasing afterward. Forskolin-stimulated adenylate cyclase levels also showed an increase until 5 DIV, decreasing at 7 and 9 DIV. The adenosine A1 receptor analogue cyclopentyladenosine (CPA) was able to inhibit cyclic AMP accumulation at 2, 5, and 7 DIV but failed to do so at 9 DIV. This inhibition was prevented by the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The presence of adenosine deaminase in the culture increased adenosine A1 receptor number during the period studied and induced recovery of the inhibitory effect of CPA, lost after 7 DIV. These data suggest that functional expression of adenosine A1 receptors and the other components of the adenylate cyclase system is subjected to regulation during the maturation of cultured cerebellar granule cells and demonstrates a key role for endogenous adenosine in the process.  相似文献   

4.
Adenosine Transport by Primary Cultures of Neurons from Chick Embryo Brain   总被引:7,自引:6,他引:1  
Abstract: The transport of adenosine was studied in pure cultures of neurons from chick embryo brain. In order to avoid complications due to adenosine metabolism, the cells were depleted of ATP by treatment with cyanide and iodoacetate prior to incubation with [3H]adenosine. During the 5-25-s periods used for transport assays, no significant adenosine metabolism was detectable. ATP depletion reduced the initial rate of adenosine entry by less than 10%, but blocked over 90% of the radioactivity accumulated by untreated cells after 15 min. Elimination of sodium or chloride from the uptake medium had no effect on adenosine transport activity. The kinetics of adenosine entry into ATP depleted neurons obeyed the Michaelis-Menten relationship and yielded a Km of 13 μM and Vmax of 0.15 nmol/min/mg protein. The neuronal transport system has apparent selectivity for adenosine, since thymidine, inosine, or guanosine gave significant inhibition only at levels 10-100-fold higher than [3H]adenosine. Adenosine derivatives ( N 6-cyclohexyl-, N6-benzyl-, N6-methyl-, and 2-chloroadenosine) were more effective inhibitors; p -nitrobenzylthioinosine and dipyridamole were the most potent compounds found. These results describe a high-affinity, facilitated diffusion system for adenosine in cerebral neurons, which could participate in terminating regulatory actions of this compound in the nervous system.  相似文献   

5.
Adenosine Transport into Guinea-pig Synaptosomes   总被引:17,自引:15,他引:2  
Abstract: Kinetics for transport of adenosine into guinea-pig neocortex synaptosomes were studied by incubating them with [14C]adenosine for up to 30 s. The apparent K m value of the high-affinity transport system for adenosine was 21.1 μM and the V max value was 257.3 pmol/min/mg protein. The transport system was inhibited by both compounds structurally related (compounds 554 and 555) and unrelated (dipyridamole) to adenosine. Because electrically stimulated synaptosomes release up to 1.5% of the adenosine derivative content per min, the physiological significance of adenosine uptake is discussed as a possible mechanism to compensate for the loss of adenine nucleotides from synaptosomes preparations.  相似文献   

6.
Abstract: The uptake of Ca2+ by a K+-depolarized rat brain cerebral cortical crude synaptosomal preparation (P2 fraction) was investigated. The characteristics of the Ca2+ uptake system are similar to those observed by other investigators. The preparation is also a suitable model with which to study the effects of adenosine on Ca2+ uptake and neurotransmitter release, as it is generally accepted that K+-evoked Ca2+ uptake is intimately related to depolarization-induced release of neurotransmitters. We have demonstrated that an extracellular receptor is involved in mediating the adenosine-evoked inhibition of K+-evoked Ca2+ uptake. The pharmacological properties of the receptor suggest that it may be similar in some respects to the A2-receptor associated with adenylate cyclase. The adenosine uptake inhibitor, dipyridamole, potentiated the action of adenosine, suggesting that re-uptake is important in controlling the extracellular adenosine concentration and thus in the regulation of the adenosine receptor. The adenosine receptor antagonist theophylline inhibited the effects of adenosine. Calmodulin inhibited K+- evoked uptake of Ca2+ by the synaptosomal fraction.  相似文献   

7.
Abstract: The cytokine interleukin (IL)-6 has recently been demonstrated to play a role in the pathology of Alzheimer's disease (AD). The mechanisms leading to increased IL-6 levels in brains of AD patients are still unknown. Because in experimental animals ischemia increases both the level of cytokines and the extracellular concentrations of adenosine in the brain, we hypothesized that these two phenomena may be functionally connected and that adenosine might increase IL-6 gene expression in the brain. Here we show that the mixed A1 and A2 agonist 5'-( N -ethylcarboxamido)adenosine (NECA) induces an increase in IL-6 mRNA levels and protein synthesis in the human astrocytoma cell line U373 MG. The A1-specific agonists R -phenylisopropyladenosine and cyclopentyladenosine are much less potent, and the A2a-specific agonist CGS-21680 shows only marginal effects. Increased levels of mRNA are already found within 30 min after NECA treatment. The A2a-selective antagonists 8-(3-chlorostyryl)caffeine and KF17837 [( E )-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine], which have also some antagonistic properties at A2b receptors, and the nonspecific adenosine antagonist 8-phenyltheophylline were equipotent at inhibiting the NECA-induced increase in IL-6 protein synthesis, whereas the specific A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine is much less potent. The results indicate that adenosine A2b receptors participate in the regulation of the IL-6 gene in astrocytoma cells.  相似文献   

8.
Abstract: The potential involvement of L- and N-type voltage-sensitive calcium (Ca2+) channels and a voltage-independent receptor-operated Ca2+ channel in the release of adenosine from dorsal spinal cord synaptosomes induced by depolarization with K+ and capsaicin was examined. Bay K 8644 (10 n M ) augmented release of adenosine in the presence of a partial depolarization with K+ (addition of 6 m M ) but not capsaicin (1 and 10 μ M ). This augmentation was dose dependent from 1 to 10 n M and was followed by inhibition of release from 30 to 100 n M . Nifedipine and nitrendipine inhibited the augmenting effect of Bay K 8644 in a dose-dependent manner, but neither antagonist had any effect on release of adenosine produced by K+ (24 m M ) or capsaicin (1 and 10 μ M ) ω-Conotoxin inhibited K+-evoked release of adenosine in a dose-dependent manner but had no effect on capsaicin-evoked release. Ruthenium red blocked capsaicin-induced release of adenosine but had no effect on K+-evoked release. Although L-type voltage-sensitive Ca2+ channels can modulate release of adenosine when synaptosomes are partially depolarized with K+, N-type voltage-sensitive Ca2+ channels are primarily involved in K+-evoked release of adenosine. Capsaicin-evoked release of adenosine does not involve either L- or N-type Ca2+ channels, but is dependent on a mechanism that is sensitive to ruthenium red.  相似文献   

9.
10.
Abstract: We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 m M KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

11.
Abstract: The effects of adenosine analogues on phosphoinositide metabolism in rat sciatic nerve were examined. Sciatic nerve segments were prelabeled with [3H]-cytidine and incubated in the presence of LiCl and varying concentrations of adenosine analogues. The formation of [3H]cytidine monophosphate phosphatidic acid ([3H]-CMP-PA) was determined as an index of phosphoinositide breakdown. Liponucleotide accumulation was elevated significantly in the presence of 5'- N -ethylcarboxamidoadenosine (NECA), a nonselective analogue, and two different A2-selective analogues, N 6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine and 2- p -(2-carboxyethyl)phenethylamino-NECA (CGS 21680), but not by N 6-cyclopentyladenosine, an A1-selective analogue. The stimulatory action of CGS 21680 was blocked by the A2-selective adenosine receptor antagonists 3,7-dimethyl-1-propargylxanthine (DMPX) and 1,3-dipropyl-7-methylxanthine. Inositol phosphate formation was also stimulated to a comparable degree by CGS 21680 and this response was antagonized by DMPX. Carbamylcholine, which was previously shown to stimulate phosphoinositide breakdown, also enhanced the accumulation of CMP-PA. When adenosine analogues and carbamylcholine were simultaneously present, their effects were additive. Taken together, these data suggest that an adenosine receptor, possibly of the A2 subtype, is coupled to enhanced phosphoinositide hydrolysis in peripheral nerve. However, adenosine-receptor activation does not appear to modulate phosphoinositide hydrolysis stimulated via muscarinic receptors.  相似文献   

12.
Abstract: Identification of A1 adenosine receptors (A1Rs) in a tumor cell line derived from rat pituitary (GH4 cells) was performed by ligand binding and immunological experiments. Subsequently, the involvement of A1Rs in the regulation of calcium conductance was studied in these cells. The agonist N 6-( R )-(2-phenylisopropyl)adenosine ( R -PIA) did not modify the intracellular calcium basal levels, whereas it inhibited the increase produced by 15 m M KCl depolarization. The antagonist 1,3-dipropyl-8-cyclopentylxanthine led to the opening of voltage-dependent cell surface calcium channels in the absence of exogenous KCl. The channels were of the L type because the effect was abolished by calciseptine and by verapamil. These results suggest that endogenous adenosine exerts a tonic inhibitory effect on calcium transport. This was confirmed by the high adenosine concentration found in cell supernatants (up to 1 µ M ) and by the calcium mobilization produced by exogenously added adenosine deaminase. In depolarizing conditions, the calcium peak in the presence of adenosine deaminase was reduced when cells were preincubated with R -PIA, thus suggesting that A1R activation regulates the intensity of depolarization. These results demonstrate that adenosine is an important regulator of the physiological state of pituitary tumor cells by modulating, in an autocrine manner, the activity of L-type voltage-dependent calcium channels.  相似文献   

13.
Abstract: The adenosine modulation of glutamate exoeytosis from guinea pig cerebrocortical synaptosomes is investigated. Endogenously leaked adenosine is sufficient to cause a partial tonic inhibition of 4-aminopyridine-evoked glutamate release, which can be relieved by adenosine deaminase. The adenosine A1 receptor is equally effective in mediating inhibition of glutamate exocytosis evoked by 4-aminopyridine (where K+-channel activation would inhibit release) and by elevated KC1 (where K+-channel activation would have no effect), arguing for a central role of Ca2+-channel modulation. In support of this, the plateau phase of depolarization-evoked free Ca2+ elevation is decreased by adenosine with both depolarization protocols. No effect of adenosine agonists is seen on membrane potential in polarized or KC1- or 4-aminopyridine-stimulated synaptosomes. The interaction of protein kinase C with the A1 receptormediated inhibition is examined. Activation of protein kinase C by 4β-phorbol dibutyrate has been shown previously by this laboratory to modulate glutamate release via K+-channel inhibition, and is shown here to have an additional action of decoupling the adenosine inhibition of glutamate exocytosis.  相似文献   

14.
Abstract: The incorporation of [14C]adenosine into various metabolites was studied in a hippocampal slice preparation in order to assess the extent of adenosine metabolism via synthesis of S -adenosylhomocysteine, a potent inhibitor of transmethylation reactions. Highest incorporation of 14C occurred into nucleotides, with only a few percent being recovered in inosine + hypoxanthine, S -adenosylhomocysteine, and the free adenosine pool. Labeling of S -adenosylhomocysteine did not significantly increase with higher concentrations of added adenosine despite greater accumulation of free [14C]adenosine in the tissue. Addition of l -homocysteine significantly increased the labelling of S -adenosylhomocysteine. The results indicate that S -adenosylhomocysteine synthesis is a minor pathway of adenosine metabolism in brain tissue under steady-state conditions. Further, changes in adenosine concentration, without a concomitant change in l -homocysteine availability, are unlikely to lead to a significant accumulation of S -adenosylhomocysteine. S -Adenosylhomocysteine is therefore not likely to play a significant role in mediating the biological effects of adenosine in the CNS via inhibition of transmethylations.  相似文献   

15.
Abstract: We have characterized the new potent and selective nonxanthine adenosine A2A receptor antagonist SCH 58261 as a new radioligand for receptor autoradiography. In autoradiographic studies using agonist radioligands for A2A receptors ([3H]CGS 21680) or A1 receptors ( N 6-[3H]cyclohexyladenosine), it was found that SCH 58261 is close to 800-fold selective for rat brain A2A versus A1 receptors ( K i values of 1.2 n M versus 0.8 µ M ). Moreover, receptor autoradiography showed that [3H]SCH 58261, in concentrations below 2 n M , binds only to the dopamine-rich regions of the rat brain, with a K D value of 1.4 (0.8–1.8) n M . The maximal number of binding sites was 310 fmol/mg of protein in the striatum. Below concentrations of 3 n M , the nonspecific binding was <15%. Three adenosine analogues displaced all specific binding of [3H]SCH 58261 with the following estimated K i values (n M ): 2-hex-1-ynyl-5'- N -ethylcarboxamidoadenosine, 3.9 (1.8–8.4); CGS 21680, 130 (42–405); N 6-cyclohexyladenosine, 9,985 (3,169–31,462). The binding of low concentrations of SCH 58261 was not influenced by either GTP (100 µ M ) or Mg2+ (10 m M ). The present results show that in its tritium-labeled form, SCH 58261 appears to be a good radioligand for autoradiographic studies, because it does not suffer from some of the problems encountered with the currently used agonist radioligand [3H]CGS 21680.  相似文献   

16.
Abstract: Cultured astroglia express both adenosine and ATP purinergic receptors that are coupled to increases in intracellular calcium concentration ([Ca2+]i). Currently, there is little evidence that such purinergic receptors exist on astrocytes in vivo. To address this issue, calcium-sensitive fluorescent dyes were used in conjunction with confocal microscopy and immunocytochemistry to examine the responsiveness of astrocytes in acutely isolated hippocampal slices to purinergic neuroligands. Both ATP and adenosine induced dynamic increases in astrocytic [Ca2+]i that were blocked by the adenosine receptor antagonist 8-( p -sulfophenyl)theophylline. The responses to adenosine were not blocked by tetrodotoxin, 8-cyclopentyltheophylline, 8-(3-chlorostyryl)caffeine, dipyridamole, or removal of extracellular calcium. The P2Y-selective agonist 2-methylthioadenosine triphosphate was unable to induce increases in astrocytic [Ca2+]i, whereas the P2 agonist adenosine 5'- O -(2-thiodiphosphate) induced astrocytic responses in a low percentage of astrocytes. These results indicate that the majority of hippocampal astrocytes in situ contain P1 purinergic receptors coupled to increases in [Ca2+]i, whereas a small minority appear to contain P2 purinergic receptors. Furthermore, individual hippocampal astrocytes responded to adenosine, glutamate, and depolarization with increases in [Ca2+]i. The existence of both purinergic and glutamatergic receptors on individual astrocytes in situ suggests that astrocytes in vivo are able to integrate information derived from glutamate and adenosine receptor stimulation.  相似文献   

17.
Abstract— A single isotope radioenzymatic procedure for the measurement of DOPA has been developed. The assay combines O -methylation of DOPA by purified COMT using [3H]SAM as the methyl donor and subsequent purification as the DNFB derivative of 3- O -[methyl-3H]DOPA. The present method is about 100 times more sensitive than currently available DOPA methods. This is due to decreased blank values and increased enzymatic conversion giving transmethylation values of 50% with tissue extracts and values of almost 100% with pure solutions. Although COMT methylates a wide variety of catechol compounds, specificity of the assay is achieved by selective extraction and purification of the final product by tlc.
The method has good inter-assay reliability, the coefficient of variation being about 3.5%.
This ultramicromethod was used to determine the steady-state concentrations of endogenous DOPA in minute samples of brain areas of the rat. In untreated rats brain DOPA levels varied with the mode of death; the highest levels were found in animals killed by microwave irradiation. Unconjugated DOPA was measured in microlitre aliquots of human body fluids.  相似文献   

18.
Abstract— Adenosine metabolism in the homogenate of brain mainly undergoes deamination to inosine and hypoxanthine, while uniformly labelled [14C]adenosine injected into the carotid artery or [8-14C]adenosine incubated with brain slices was mostly phosphorylated to [14C]adenine nucleotides in brain cells. Adenosine kinase has now been partially purified from homogenates of guinea pig brain. The kinase preparation was free of adenosine deaminase, almost free of adenosine triphosphatase and had a Km of the order of 2 × 10-5M for adenosine.
Kinetic studies with brain slices showed that adenosine reached the cells by diffusion and that the diffusion was facilitated by subsequent phosphorylation to adenine nucleotides. From the following experimental results, it is concluded that the phosphorylation is catalysed by adenosine kinase quantitatively. (1) During the uptake and phosphorylation of adenosine by brain slices, the nucleoside did not split to adenine and ribose moieties. (2) The rate of formation of adenine nucleotides in the slices was a hyperbolic function of the concentration of adenosine in the medium, showing an apparent Km foradenosine of the order of 2 × 10-5 M. (3) Some analogues of adenosine inhibited both the facilitated diffusion of adenosine and the kinase activity, but ouabain (0.005 mM) did not inhibit either.  相似文献   

19.
Activation of Ethanolamine Phospholipase A2 in Brain During Ischemia   总被引:20,自引:20,他引:0  
Abstract: Extracts of acetone-dried powders from ischemic gerbil brain were examined for phospholipase A1 and A2 activities with phosphatidylethanolamine at pH 7.2. Ischemia was induced by bilateral ligation, and the animals were killed by immersion into liquid nitrogen. Bilateral ligation with ketamine as general anesthetic resulted in a rapid, transient increase in phospholipase A2 activity. The activity increased from 0.46 nmolihimg protein at 0 time to 0.82 nmol/h/mg protein at 1 min of ligation. Phospholipase A1 activity also increased from 0.7 to 1.3 nmol/h/mg protein within the 1st min. When Nembutal was used as anesthetic, the phospholipase activation was earlier, within the first 30 s. Similar results were found for ischemia induced by decapitation of Wistar rats without anesthesia. Bilateral ligation of the carotid arteries of the gerbil is known to increase the concentration of free fatty acids, particularly arachidonate. This increase is, at least in part, due to phospholipase A activation. As ethanolamine phospholipase A2 in brain does not require Ca2+ for activity, these results suggest that phospholipase A2 activation in ischemic brain results from a covalent modification of the enzyme.  相似文献   

20.
Abstract: Brain fatty acid incorporation into phospholipids can be measured in vivo following intravenous injection of fatty acid tracer. However, to calculate a cerebral incorporation rate, knowledge is required of tracer specific activity in the final brain precursor pool. To determine this for one tracer, unesterified [3H]arachidonate was infused intravenously in pentobarbital-anesthetized rats to maintain constant plasma specific activity for 1–10 min. At the end of infusion, animals were killed by microwave irradiation and analyzed for tracer specific activity and concentration in brain phospholipid, neutral lipid, and lipid precursor, i.e., unesterified arachidonate and arachidonoyl-CoA, pools. Tracer specific activity in brain unesterified arachidonate and arachidonoyl-CoA rose quickly ( t 1/2 < 1 min) to steady-state values that averaged <5% of plasma specific activity. Incorporation was rapid, as >85% of brain tracer was present in phospholipids at 1 min of infusion. The results demonstrate that unesterified arachidonate is rapidly taken up and incorporated in brain but that brain phospholipid precursor pools fail to equilibrate with plasma in short experiments. Low brain precursor specific activity may result from (a) dilution of label with unlabeled arachidonate from alternate sources or (b) precursor pool compartmentalization. The results suggest that arachidonate turnover in brain phospholipids is more rapid than previously assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号