首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
In rodent uterus, both up- and down-regulation of estrogen receptor alpha (ERalpha) messenger ribonucleic acid (mRNA) and protein levels by estradiol has been demonstrated; however, it is not known which of the uterine compartments (endometrial epithelium, stroma, myometrium) respond to estradiol with autoregulation of ERalpha. The purpose of the present study was to investigate and compare the kinetics and cell type-specific effects of estradiol on uterine ERalpha expression in immature and adult rats. Ovariectomized female rats were injected s.c. with sesame oil or estradiol-17beta. Uteri were collected and analyzed for changes in ERalpha mRNA using RNase protection assays (RPA) and in situ hybridization using radiolabeled probes specific for ERalpha. Immunohistochemical analysis was performed with a polyclonal antibody specific to ERalpha. Expression of ERalpha in the uterine epithelial cells decreased at 3 and 6 h after estradiol administration to immature and adult rats, respectively. At 24 h, ERalpha mRNA levels in the immature and mature rat uterus were higher than pretreatment levels but returned to baseline by 72 h. Pretreatment with cycloheximide did not block the 3-h repressive effect of estradiol, suggesting that the estradiol-induced decrease in ERalpha mRNA occurs independent of new protein synthesis. A decrease in ERalpha mRNA and protein was also observed in uterine epithelia at 3 and 6 h after an estradiol injection to immature and adult rats, and intensity of both the in situ hybridization signal and the immunostaining in the epithelium increased at 24 and 72 h. However, the periluminal stromal cells in the adult uterus and the majority of stromal cells of the immature uterus appeared to have increased ERalpha expression. The results indicate that down-regulation of ERalpha in the epithelia and up-regulation of stromal ERalpha play a role in early events associated with estradiol-induced cell proliferation of the uterine epithelia.  相似文献   

2.
Regulation of progesterone receptor (PR) by estradiol-17beta (E(2)) in mouse uterine and vaginal epithelia was studied. In ovariectomized mice, PR expression was low in both vaginal stroma and epithelium, but high in uterine epithelium. E(2) induced PR in vaginal epithelium and stroma, but down-regulated PR in uterine epithelium. Analysis of estrogen receptor alpha (ERalpha) knockout (ERKO) mice showed that ERalpha is essential for E(2)-induced PR expression in both vaginal epithelium and stroma, and for E(2)-induced down-regulation, but not constitutive expression of PR in uterine epithelium. Regulation of PR by E(2) was studied in vaginal and uterine tissue recombinants made with epithelium and stroma from wild-type and ERKO mice. In the vaginal tissue recombinants, PR was induced by E(2) only in wild-type epithelium and/or stroma. Hence, in vagina, E(2) induces PR directly via ERalpha within the tissue. Conversely, E(2) down-regulated epithelial PR only in uterine tissue recombinants constructed with wild-type stroma. Therefore, down-regulation of uterine epithelial PR by E(2) requires stromal, but not epithelial, ERalpha. In vitro, isolated uterine epithelial cells retained a high PR level with or without E(2), which is consistent with an indirect regulation of uterine epithelial PR in vivo. Thus, E(2) down-regulates PR in uterine epithelium through paracrine mechanisms mediated by stromal ERalpha.  相似文献   

3.
Although it is known that, in the uterus, estrogen receptor alpha (ERalpha) is involved in proliferation and progesterone receptor in differentiation, the role of the two other gonadal-hormone receptors expressed in the uterus, androgen receptor (AR) and estrogen receptor beta (ERbeta), remains undefined. In this study, the involvement of AR in 17beta-estradiol (E(2))-induced cellular proliferation in the immature rat uterus was investigated. AR levels were low in the untreated immature uterus, but 24 h after treatment of rats with E(2), there was an increase in the levels of AR and of two androgen-regulated genes, IGF-I and Crisp (cysteine-rich secretory protein). As expected, E(2) induced proliferation of luminal epithelial cells. These actions of E(2) were all blocked by both the antiestrogen tamoxifen and the antiandrogen flutamide. The E(2)-induced AR was found by immunohistochemistry to be localized exclusively in the stroma, mainly in the myometrium, where it colocalized with ERalpha but not with ERbeta. ERbeta, detected with two different ERbeta-specific antibodies, was expressed in both stromal and epithelial cells either alone or together with ERalpha. Treatment with E(2) caused down-regulation of ERalpha and ERbeta in the epithelium. The data suggest that, in E(2)-induced epithelial cell proliferation, ERalpha induces stromal AR and AR amplifies the ERalpha signal by induction of IGF-I. Because AR is never expressed in cells with ERbeta, it is unlikely that ERbeta signaling is involved in this pathway. These results indicate an important role for AR in proliferation of the uterus, where estrogen and androgen do not represent separate pathways but are sequential steps in one pathway.  相似文献   

4.
J G Betts  P J Hansen 《Life sciences》1992,51(14):1171-1176
Bovine endometrium was obtained on day 16 of pregnancy (estrus = 0) and separated into epithelial and stromal cell populations. When confluent, the two cell populations were treated for 24 h with cytokines at 1, 10 and 100 ng/ml. Prostaglandin (PG) E2 was the major prostaglandin produced by both cell types. For control cultures, more PGE2 was secreted into medium by stromal cells than by epithelial cells, whereas secretion of PGF was similar for epithelial and stromal cells. Interleukin-1 beta had no effect on prostaglandin production by stromal cell cultures but increased epithelial production of PGE2 and, to a lesser extent, PGF. Conversely, granulocyte-macrophage colony stimulating factor had no effect on epithelial cells but reduced secretion of PGE2 and PGF from stromal cells. There were no effects of interleukin-2 or tumor necrosis factor-alpha on prostaglandin secretion. Results indicate that certain cytokines can regulate endometrial prostaglandin secretion in a cell type-restricted manner.  相似文献   

5.
L A Lavia  B A Larson 《Steroids》1991,56(3):123-130
Morphologic changes at the interface of rat endometrial luminal epithelial cells and the stromal cells immediately adjacent were examined and correlated with hypertrophy of the epithelial cells during estradiol (E2) infusion (1 microgram E2/24 h). While the lamina densa in castrate endometrium was thread-like, it became thicker and apparently more granular in some areas below the luminal epithelium during E2 infusion. However, no changes were seen in the intensity of laminin-like immunoreactivity at various time points up to 96 hours after beginning infusion, suggesting that these alterations were due to changes in nonlaminin components. The stromal cells adjacent to the basal lamina in the castrate state had cell processes extending toward the epithelium that terminated on the basal lamina. Under estrogen infusion, stromal cell bodies migrated close to and became oriented along the basal lamina. No interruptions were seen in the lamina densa or in the laminin-like immunoreactivity in the basal lamina. Thus, there were no direct morphologic interactions between epithelial and stromal cells induced by estrogen. Some of the stromal cells developed a dilated rough endoplasmic reticulum and some developed multiple elaborate processes within 41 hours after minipump implantation. Within 28 hours, nuclear hypertrophy had occurred in 15% of the epithelial cell layer. If interactions occur between stromal and epithelial cells, and morphologic evidence presented here suggests they do, then all such interactions are through an intact lamina densa-laminin layer, and any chemical mediators affecting cells on opposite sides of the lamina densa must migrate through it.  相似文献   

6.
The activation function-1 (AF-1) domain of the estrogen receptor alpha (ERalpha) in stromal cells has been shown to be required for epithelial responses to estrogen in the mouse uterus. To investigate the role of the stroma in estrogenic responses of human uterine epithelium (hUtE), human/mouse chimeric uteri composed of human epithelium and mouse stroma were prepared as tissue recombinants (TR) that were grown in vivo under the renal capsule of female nude mouse hosts. In association with mouse uterine stroma (mUtS), hUtE formed normal glands surrounded by mouse endometrial stroma and the human epithelium influenced the differentiation of stroma into myometrium, such that a histologically normal appearing uterine tissue was formed. The hUtE showed a similar proliferative response and increase in progesterone receptors (PR) in response to 17beta-estradiol (E2) in association with either human or mUtS, as TRs. However, under identical endocrine and micro-environmental conditions, hUtE required 5-7 days exposure to E2 rather than 1 day, as shown for mouse uterine epithelium, to obtain a maximal proliferative response. Moreover, this extended length of E2 exposure inhibited mouse epithelial proliferation in the presence of mouse stroma. In addition, unlike the mouse epithelium, which does not proliferate or show regulation of PR expression in response to E2 in association with uterine stroma derived from mice that are null for the AF-1 domain of ERalpha, hUtE proliferates and PR are up-regulated in response to E2 in association genetically identical ERalpha knock-out mouse stromal cells. These results clearly demonstrate fundamental differences between mouse and human uterine epithelia with respect to the mechanisms that regulate estrogen-induced proliferation and expression of PR. Moreover, we show that genetically engineered mouse models could potentially aid in dissecting molecular pathways of stromal epithelial interactions in the human uterus.  相似文献   

7.
Expression of the gene for prostaglandin synthase (PGS) was examined in whole endometrial tissue derived from ewes during the oestrous cycle (Days 4-14), on Day 15 of pregnancy and following ovariectomy and treatment with ovarian steroid hormones. Whilst no significant differences were seen in PGS mRNA concentrations analysed by Northern blot analysis in endometrial tissue during the oestrous cycle or in early pregnancy, treatment of ovariectomized (OVX) ewes with oestradiol-17 beta markedly reduced endometrial PGS mRNA concentration. There was no difference in PGS mRNA concentration in ewes treated with progesterone, either alone or in conjunction with oestrogen, from that in OVX controls. In contrast, differences in immunolocalization of PGS observed in uterine tissue from OVX-steroid-treated ewes were much more marked and reflected similar changes seen previously in the immunocytochemical distribution of endometrial PGS during the oestrous cycle. In OVX ewes and those treated with oestrogen, immunocytochemical staining for PGS was seen in stromal cells, but little immunoreactive PGS was located in the endometrial epithelial cells. However, in ewes treated with progesterone alone or with oestrogen plus progesterone, PGS was found in luminal and glandular epithelial cells and in stromal cells. Intensity of immunostaining for PGS in endothelial cells and myometrium did not differ between the treatments. Thus, whilst oestrogen lowers PGS mRNA in the endometrium, presumably in stroma, it may also increase the stability of the enzyme itself in the stromal cells. Although oestradiol-17 beta has no effect on PGS in endometrial epithelium, progesterone stimulates the production of PGS in endometrial epithelial cells without altering the overall abundance of PGS mRNA in the endometrium as a whole. Conceptus-induced changes in PGF-2 alpha release by ovine endometrium would not appear to be mediated via effects on PGS gene expression or protein synthesis.  相似文献   

8.
The uterus is an important target organ for steroid hormones. The effects of these hormones are mediated via specific receptors. The aim of this study was to compare the expression, distribution, and regulation of estrogen receptor (ER) alpha and beta in the rat uterus in order to establish possible different biological roles for the two receptor forms. Ovariectomized rats were treated with either estradiol (E(2)), progesterone (P(4)), or combinations of these for 24 or 48 h. The mRNA levels were measured by solution hybridization. Distribution of the mRNAs and receptor proteins was detected by in situ hybridization and immunohistochemistry. The results showed that ERalpha is the dominating subtype in the rat uterus. E(2) seemed to increase the ERalpha mRNA level in the glandular and luminal epithelium, but it caused a decrease of the immunostaining intensity in the glandular epithelium. P(4) reduced ERalpha expression in luminal epithelium whereas no effect was seen in the glandular epithelium. E(2) or P(4) did not alter the expression of ERbeta, on either the mRNA or protein level. In conclusion, the distribution and regulation of ERalpha and ERbeta differ in the different compartments of the rat uterus. The complex uterine responses to E(2) and P(4) are directly or indirectly mediated by differential cell-specific expression of their receptors. The low expression in the uterus and the limited regulation by gonadal steroids in this study suggest that ERbeta probably plays a minor role in the regulation of uterine physiology.  相似文献   

9.
10.
We have suggested that in the nonhuman primate endometrium, stromal cells might play a role in mediating the effects of estrogen on the epithelium, especially during the luteal-follicular transition (LFT) when target cells normally escape from the inhibitory influence of progesterone (P). We now report that like estrogen receptors (ER), endometrial progestin receptors (PR) are detectable only in stromal cells until the fifth day of the LFT. With a technique that combined immunocytochemistry and autoradiography on the same sections, we characterized the cellular distribution of ER or PR coincidentally with the localization of [3H]thymidine taken up in vitro by endometria from monkeys undergoing an LFT. DNA synthesis in the glands of the upper endometrium was E2-dependent, but the distribution of [3H]thymidine was not positively correlated with the presence of ER or PR. Readministration of P to animals on days 3 or 4 of the LFT significantly reduced the [3H]thymidine labeling index of the glandular epithelium and caused stromal ER to decline, but P did not block the eventual appearance of ER in epithelial cells on day 5 of the LFT. Thus, E2 stimulated DNA synthesis in epithelial cells that lacked ER, and P suppressed DNA synthesis in these cells even though PR was only detected in the stroma when P treatment began. These data are consistent with a role for endometrial stromal cells in mediating the effects of E2 and P on the epithelium during the LFT.  相似文献   

11.
Exogenous estradiol (E2) has been shown to elevate PGF2 alpha output by explants of human secretory endometrium and in monolayer cultures of glandular epithelial, but not of stromal cells isolated from endometrium. In this study, PGF2 alpha output was measured in each of these cultures in the presence of E2 and the calcium ionophore A23187, added singly or in combination. The ionophore, known to liberate arachidonic acid (AA) by stimulating phospholipase activity, produced a calcium-dependent increase in PGF2 alpha output in the cultures of epithelial cells, whereas greater than additive effects were obtained with mixtures of E2 and A23187. In contrast, PGF2 alpha levels were not elevated by A23187 in the stromal cell cultures even in medium supplemented with CaCl2 or when E2 was added. A calcium-dependent increase in PGF2 alpha output was also observed in fragments of secretory endometrium incubated with A23187. Effects on PGF2 alpha output by endometrial fragments incubated with E2 and A23187 were essentially additive and intermediate between those of the two component cells types. Arachidonic acid produced similar increases in PGF2 alpha output in the epithelial and stromal cell cultures but only in the epithelial cell cultures was there greater utilization of AA in the presence of E2. When mixtures of E2 and AA were added to the cultures of epithelial cells the increase in PGF2 alpha output was 2.5-fold greater than the sum of the increases elicited by E2 or AA alone. In contrast, no enhancement of the AA effect by E2 was observed in the stromal cell cultures. Extrapolation of these results from cell cultures to intact tissue suggests that the epithelium and not the stroma is the primary target for the effects of E2 on PGF2 alpha output by secretory endometrium. The synergistic actions of E2 and either AA, the obligatory precursor of PGF2 alpha, or A23187, an enhancer of AA release from phospholipid stores, point to a stimulatory effect of E2 on prostaglandin synthase activity.  相似文献   

12.
Androgens are known to attenuate some effects of estradiol-17beta (E) in the uterus. The objectives of the present experiment were to determine effects of 5alpha-dihydrotestosterone (DHT) on estrogenic actions in the pig uterus and its associations with changes in expression of the estrogen receptor (ER) alpha and ERbeta. Postpubertal gilts (120-130 kg of body weight; n = 16) were ovariectomized, and 3-4 weeks later received once-a-day injections (i.m.) of one of the following treatments during four consecutive days: 1) vehicle (corn oil), 2) E (250 microg), 3) E (250 microg) plus 1 mg DHT, or 4) E (250 microg) plus 10 mg DHT. Uterine tissues were collected 24 h after the last treatment. Gilts receiving E or E plus 1 mg DHT had greater uterine wet weight, uterine horn diameter, luminal epithelium thickness, and endometrial gland diameter compared with gilts treated with vehicle or E plus 10 mg DHT. Gilts receiving E or E plus 1 mg DHT were not different in these characteristics. Relative amounts of mRNAs in the endometrium for the cell proliferation marker histone H2a and the E-inducible protein complement component C3 increased in gilts treated with E compared with gilts treated with vehicle. E-induced increases in histone H2a and C3 mRNAs were not altered by cotreatment with E plus 1 mg DHT but were inhibited by E plus 10 mg DHT. Androgen receptor (AR) mRNA in the endometrium increased by treatment with E. Cotreatment of gilts with E and DHT did not alter the E-induced AR mRNA increase. Gilts treated with E plus 10 mg DHT had lesser amounts of immunoreactive ERalpha in cell nuclei of the myometrium and endometrial stroma and a tendency for a decrease in luminal epithelium compared with gilts treated with E. Amounts of immunoreactive ERalpha in glandular epithelium were not influenced by the treatments. Relative amounts of ERalpha and ERbeta mRNAs decreased in the endometrium of gilts treated with E plus 10 mg DHT compared with gilts treated with E. Downregulation of the ERs, particularly ERalpha in the myometrium and endometrial stroma, might be a relevant mechanism in the antagonism of estrogenic effects by DHT in the pig uterus.  相似文献   

13.
To obtain more insight into the relationship between cyclic and regional changes in steroid receptor expression and function-related changes in the various types of cell of the normal human uterus, we performed an immunocytochemical study on paraffin-embedded sections. The distribution and intensity of immunostaining for the oestrogen receptor and the progesterone receptor in the various types of cell were semiquantitatively scored. The data were statistically compared for the different phases of the menstrual cycle and after the menopause, and for the different regions of the corpus and (endo)cervix uteri. During the menstrual cycle, significant changes in oestrogen receptor score were observed in glandular and stromal cells of endometrium basalis and functionalis and in smooth muscle cells of the myometrium. In all types of cell, oestrogen receptor expression reached a maximum in the late proliferative phase. During the early secretory phase, oestrogen receptor staining declined sharply in stromal and smooth muscle cells, whereas, in glandular epithelium, oestrogen receptor expression decreased more gradually. During mid- and late-secretory phases, an increase in oestrogen receptor staining was also observed in predecidualizing stromal cells and smooth muscle cells. Progesterone receptor numbers changed significantly in glandular epithelium but not in stromal and smooth muscle cells. Glandular progesterone receptor expression reached a maximum in the early secretory phase and was then drastically reduced. During mid- and late-secretory phases stromal cells were moderately stained for progesterone receptor in contrast to epithelial gland cells which showed no or very weak staining. No regional variations in steroid receptor distribution in endometrium and myometrium were found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In combination with androgens, estrogens can induce aberrant growth and malignancy of the prostate gland. Estrogen action is mediated through two receptor subtypes: estrogen receptors alpha (ERalpha) and beta (ERbeta). Wild-type (wt) and transgenic mice lacking a functional ERalpha (alphaERKO) or ERbeta (betaERKO) were treated with the synthetic estrogen diethylstilbestrol (DES). DES induced prostatic squamous metaplasia (SQM) in wt and betaERKO but not in alphaERKO mice, indicating an essential role for ERalpha, but not ERbeta, in the induction of SQM of prostatic epithelium. In order to determine the respective roles of epithelial and stromal ERalpha in this response, the following tissue recombinants were constructed with prostatic epithelia (E) and stroma (S) from wt and ERKO mice: wt-S+wt-E, alphaERKO-S+alphaERKO-E, wt-S+alphaERKO-E, and alphaERKO-S+wt-E. A metaplastic response to DES was observed in wt-S+wt-E tissue recombinants. This response to DES involved multilayering of basal epithelial cells, expression of cytokeratin 10, and up-regulation of the progesterone receptor. Tissue recombinants containing alphaERKO-E and/or -S (alphaERKO-S+alphaERKO-E, wt-S+alphaERKO-E, and alphaERKO-S+wt-E) failed to respond to DES. Therefore, full and uniform epithelial SQM requires ERalpha in the epithelium and stroma. These results provide a novel insight into the cell-cell interactions mediating estrogen action in the prostate via ERalpha.  相似文献   

15.
Signals from the developing mammalian blastocyst rescue the corpus luteum (CL) and modulate the uterine environment in preparation for implantation and early pregnancy. Our previous studies demonstrated that both short- and long-term administration of chorionic gonadotropin (CG) markedly alters the morphology and the biochemical activity of the receptive endometrium. Because the effects of CG were superimposed on a progesterone-primed endometrium, this study was undertaken to determine if the inhibition of progesterone action by progesterone receptor antagonists (PRa) in intact and ovariectomized baboons would alter the action of CG on the endometrium at the time of uterine receptivity. In the short-term hCG-treated baboons, the PRa reduced the epithelial plaque reaction, completely inhibited alpha-smooth muscle actin (alphaSMA) expression in stromal fibroblasts, and induced the reappearance of the progesterone (PR) and estrogen (ERalpha) receptors in epithelial cells. However, this treatment protocol had no effect on the expression of glycodelin in the glandular epithelium. In contrast, glycodelin expression in addition to alphaSMA was suppressed in the ovariectomized animals. In the long-term hCG-treated baboons, the PRa had a similar effect on both alphaSMA, PR, and ER. In addition, this treatment also resulted in an inhibition of glycodelin expression in the glandular epithelium. These results indicate that blocking the action of progesterone on the endometrium even for a short period of time has a profound effect on the hCG-induced response in stromal fibroblasts. In contrast, for the diminution of glandular epithelial function in the presence of an ovary requires prolonged inhibition of progesterone action, suggesting a potential paracrine effect on the endometrium from the CL in response to hCG.  相似文献   

16.
Glandular epithelial and stromal cells were isolated from the endometrium of mares by collagenase digestion and were incubated on plastic for 7-9 days until the cells formed confluent monolayers. The cells differed in morphology: epithelial cells appeared polyhedral and stromal cells were spindle like. The monolayers were incubated in the presence and absence of oxytocin. Medium was removed from wells after 2, 8 and 24 h of incubation. Concentrations of prostaglandin F (PGF) in the medium increased significantly during this time. Glandular epithelial cells produced significantly more PGF than did stromal cells. Both types of cell responded significantly to oxytocin stimulation by increased secretion of PGF; the response of glandular epithelial cells tended to be greater than that of stromal cells. Secretion of PGF by cultured cells was not affected by cycle stage or pregnancy.  相似文献   

17.
During organogenesis, the middle to caudal portion of Müllerian epithelium differentiates into uterine and vaginal epithelia in females. Functional differentiation of uterine and vaginal epithelia occurs in adulthood, and is regulated by 17beta-estradiol (E(2)) and progesterone. In this report, the roles of mesenchyme/stroma in differentiation of uterine and vaginal epithelia were studied in tissue recombination experiments. At birth, Müllerian epithelium was negative for uterine and vaginal epithelial markers. Tissue recombinant experiments showed that uterine and vaginal gene expression patterns were induced in neonatal Müllerian epithelium by the respective mesenchymes. Differentiated adult uterine and vaginal epithelia did not change their original gene expression in response to heterotypic mesenchymal induction. In the adult vagina, E(2) induced expression of involucrin, a CCAAT/enhancer-binding protein beta and cytokeratin 1 via estrogen receptor alpha (ERalpha). Tissue recombination experiments with wild-type and ERalpha knockout mice demonstrated that epithelial gene expression is regulated by E(2) via epithelial-stromal tissue interactions. Uterine/vaginal heterotypic tissue recombinations demonstrated that functional differentiation of uterine and vaginal epithelia required organ-specific stromal factors. In contrast, stromal signals regulating epithelial proliferation appeared to be nonspecific in the uterus and vagina.  相似文献   

18.
Phase-dependent apoptotic changes in the human endometrium during an ovarian cycle imply a potential role of steroids in the regulation of apoptosis. The present study was undertaken to determine the direct role of hormones in endometrial apoptosis in marmosets (Callithrix jacchus), a primate species which shows similarity to humans in terms of the cycle length and pattern. Endometrial apoptosis was detected by 3'-end labeling (TUNEL) in various phases of ovarian cycle in naturally cycling healthy marmosets (n=14) and also in ovariectomized marmosets (n=13) treated with either estradiol alone (E) or progesterone alone (P) or estradiol followed by progesterone (E+P). Expressions of apoptosis associated genes such as Bcl-2 family members (Bax and Bcl-2), proliferating cell nuclear antigen (PCNA)--a proliferation marker and steroid receptors, ERalpha and PR A were analysed by immunohistochemical methods. Apoptosis was intense in the glandular epithelial cells of endometrium during the mid-luteal phase as compared to other phases in naturally cycling animals; in the E+P group as compared to other groups of ovariectomized animals (P<0.05). Pronounced apoptosis in the mid-luteal phase was accompanied by the increased expression of Bax in glandular epithelial cells; while Bcl-2 immunoreactivity remained unchanged. PCNA expression was higher in the naturally cycling animals in the follicular phase and in the E group of the ovariectomized animals as compared those in the other groups. Immunoreactive ERalpha and PR A in glandular epithelial cells were most abundant during early follicular phase in naturally cycling animals and in both E and E+P groups among the ovariectomized animals. The present study highlights the importance of apoptosis in endometrial remodeling during the ovarian cycle and secondly, the role of both estradiol and progesterone in the regulation of apoptosis.  相似文献   

19.
Tumor necrosis factor alpha (TNFalpha) has been shown to be a potent stimulator of prostaglandin (PG) F(2alpha) secretion in the bovine endometrium. The aims of the present study were to determine the cell types in the endometrium (epithelial or stromal cells) responsible for the secretion of PGF(2alpha) in response to TNFalpha, and the intracellular mechanisms of TNFalpha action. Cultured bovine epithelial and stromal cells were exposed to TNFalpha (0.006-6 nM) or oxytocin (100 nM) for 4 h. TNFalpha resulted in a dose-dependent increase of PGF(2alpha) production in the stromal cells (P < 0.001) but not in the epithelial cells. On the other hand, oxytocin stimulated PGF(2alpha) output in the epithelial cells but not in the stromal cells. When the stromal cells were incubated for 24 h with TNFalpha and inhibitors of phospholipase (PL) C or PLA(2), only PLA(2) inhibitor completely stopped the actions of TNFalpha (P < 0.001). When the stromal cells were exposed to TNFalpha and arachidonic acid, the action of TNFalpha was augmented (P < 0.001). When the stromal cells were incubated for 24 h with a nitric oxide (NO) donor (S-NAP), S-NAP stimulated the PGF(2alpha) production dose-dependently. Although an NO synthase (NOS) inhibitor (L-NAME) reduced TNFalpha-stimulated PGF(2alpha) production, an inhibitor of phosphodiesterase augmented the actions of TNFalpha and S-NAP (P < 0. 05). The overall results indicate that the target of TNFalpha for stimulation of PGF(2alpha) production in cattle is the endometrial stromal cells, and that the actions of TNFalpha are mediated via the activation of PLA(2) and arachidonic acid conversion. Moreover, TNFalpha may exert a stimulatory effect on PGF(2alpha) production via the induction of NOS and the subsequent NO-cGMP formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号