首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Association of specific language impairment (SLI) to the region of 7q31   总被引:16,自引:0,他引:16  
FOXP2 (forkhead box P2) was the first gene characterized in which a mutation affects human speech and language abilities. A common developmental language disorder, specific language impairment (SLI), affects 6%-7% of children with normal nonverbal intelligence and has evidence of a genetic basis in familial and twin studies. FOXP2 is located on chromosome 7q31, and studies of other disorders with speech and language impairment, including autism, have found linkage to this region. In the present study, samples from children with SLI and their family members were used to study linkage and association of SLI to markers within and around FOXP2, and samples from 96 probands with SLI were directly sequenced for the mutation in exon 14 of FOXP2. No mutations were found in exon 14 of FOXP2, but strong association was found to a marker within the CFTR gene and another marker on 7q31, D7S3052, both adjacent to FOXP2, suggesting that genetic factors for regulation of common language impairment reside in the vicinity of FOXP2.  相似文献   

2.
Human chromosome 7q31 contains putative susceptibility loci for autism (AUTS1) and speech and language disorder (SPCH1). We report here the identification and characterization of a novel gene encoding cortactin-binding protein-2 (CORTBP2), which is located 45 kb telomeric to the cystic fibrosis transmembrane conductance regulator gene (CFTR) at 7q31.3. The full-length (5975-bp) gene was isolated and found to be composed of 23 exons encompassing 170 kb of DNA. In addition to being a positional candidate for AUTS1, CORTBP2 was expressed at highest levels in the brain, as shown by northern blot analysis. Subsequent mutation analysis of CORTBP2 in 90 autistic patients identified two polymorphisms, including a leucine to valine change caused by a T to G substitution in exon 15. However, comparison of allele frequencies between autistic and control populations (n=96) showed no significant difference, suggesting that this variant is not a susceptibility factor for autism.  相似文献   

3.
We report here the identification and characterization of a novel gene (AUTS2) that spans the 7q11.2 breakpoint in a monozygotic twin pair concordant for autism and a t(7;20) (q11.2; p11.2) translocation. AUTS2 is 1.2 Mb and has 19 exons. The predicted protein is 1295 amino acids and does not correspond to any known protein. DNA sequence analysis of autism subjects and controls revealed 22 biallelic polymorphic sites. For all sites, both alleles were observed in both cases and controls. Thus no autism-specific mutation was observed. Association analysis with two exonic polymorphic sites and linkage analysis of four dinucleotide repeat markers, two within and two flanking AUTS2, was negative. Thus, although it is unlikely that AUTS2 is an autism susceptibility gene for idiopathic autism, it may be the gene responsible for the disorder in the twins studied here.  相似文献   

4.
To identify genetic loci for autism-spectrum disorders, we have performed a two-stage genomewide scan in 38 Finnish families. The detailed clinical examination of all family members revealed infantile autism, but also Asperger syndrome (AS) and developmental dysphasia, in the same set of families. The most significant evidence for linkage was found on chromosome 3q25-27, with a maximum two-point LOD score of 4.31 (Z(max )(dom)) for D3S3037, using infantile autism and AS as an affection status. Six markers flanking over a 5-cM region on 3q gave Z(max dom) >3, and a maximum parametric multipoint LOD score (MLS) of 4.81 was obtained in the vicinity of D3S3715 and D3S3037. Association, linkage disequilibrium, and haplotype analyses provided some evidence for shared ancestor alleles on this chromosomal region among affected individuals, especially in the regional subisolate. Additional potential susceptibility loci with two-point LOD scores >2 were observed on chromosomes 1q21-22 and 7q. The region on 1q21-22 overlaps with the previously reported candidate region for infantile autism and schizophrenia, whereas the region on chromosome 7q provided evidence for linkage 58 cM distally from the previously described autism susceptibility locus (AUTS1).  相似文献   

5.
Specific language impairment is a neurodevelopmental disorder characterized by impairments essentially restricted to the domain of language and language learning skills. This contrasts with autism, which is a pervasive developmental disorder defined by multiple impairments in language, social reciprocity, narrow interests and/or repetitive behaviors. Genetic linkage studies and family data suggest that the two disorders may have genetic components in common. Two samples, from Canada and the US, selected for specific language impairment were genotyped at loci where such common genes are likely to reside. Significant evidence for linkage was previously observed at chromosome 13q21 in our Canadian sample (HLOD 3.56) and was confirmed in our US sample (HLOD 2.61). Using the posterior probability of linkage (PPL) to combine evidence for linkage across the two samples yielded a PPL over 92%. Two additional loci on chromosome 2 and 7 showed weak evidence for linkage. However, a marker in the cystic fibrosis transmembrane conductance regulator (7q31) showed evidence for association to SLI, confirming results from another group (O'Brien et al. 2003). Our results indicate that using samples selected for components of the autism phenotype may be a useful adjunct to autism genetics.  相似文献   

6.
7.
8.
Most genome linkage scans for autism spectrum disorders (ASDs) have failed to be replicated. Recently, a new ASD phenotypic sub-classification method was developed which employed cluster analyses of severity scores from the Autism Diagnostic Interview-Revised (ADI-R). Here, we performed linkage analysis for each of the four identified ADI-R stratified subgroups. Additional stratification was also applied to reduce intra-family heterogeneity and to investigate the impact of gender. For the purpose of replication, two independent sets of single nucleotide polymorphism markers for 392 families were used in our study. This deep subject stratification protocol resulted in 16 distinct group-specific datasets for linkage analysis. No locus reached significance for the combined non-stratified cohort. However, study-wide significant (P = 0.02) linkage scores were reached for chromosomes 22q11 (LOD = 4.43) and 13q21 (LOD = 4.37) for two subsets representing the most severely language impaired individuals with ASD. Notably, 13q21 has been previously linked to autism with language impairment, and 22q11 has been separately associated with either autism or language disorders. Linkage analysis on chromosome 5p15 for a combination of two stratified female-containing subgroups demonstrated suggestive linkage (LOD = 3.5), which replicates previous linkage result for female-containing pedigrees. A trend was also found for the association of previously reported 5p14-p15 SNPs in the same female-containing cohort. This study demonstrates a novel and effective method to address the heterogeneity in genetic studies of ASD. Moreover, the linkage results for the stratified subgroups provide evidence at the gene scan level for both inter- and intra-family heterogeneity as well as for gender-specific loci.  相似文献   

9.
Analysis of genetic linkage to dyslexia was performed using 133,165 array‐based SNPs genotyped in 718 persons from 101 dyslexia‐affected families. Results showed five linkage peaks with lod scores >2.3 (4q13.1, 7q36.1‐q36.2, 7q36.3, 16p12.1, and 17q22). Of these five regions, three have been previously implicated in dyslexia (4q13.1, 16p12.1, and 17q22), three have been implicated in attention‐deficit hyperactivity disorder (ADHD, which highly co‐occurs with dyslexia; 4q13.1, 7q36.3, 16p12.1) and four have been implicated in autism (a condition characterized by language deficits; 7q36.1‐q36.2, 7q36.3, 16p12.1, and 17q22). These results highlight the reproducibility of dyslexia linkage signals, even without formally significant lod scores, and suggest dyslexia predisposing genes with relatively major effects and locus heterogeneity. The largest lod score (2.80) occurred at 17q22 within the MSI2 gene, involved in neuronal stem cell lineage proliferation. Interestingly, the 4q13.1 linkage peak (lod 2.34) occurred immediately upstream of the LPHN3 gene, recently reported both linked and associated with ADHD. Separate analyses of larger pedigrees revealed lods >2.3 at 1–3 regions per family; one family showed strong linkage (lod 2.9) to a known dyslexia locus (18p11) not detected in our overall data, demonstrating the value of analyzing single large pedigrees. Association analysis identified no SNPs with genome‐wide significance, although a borderline significant SNP (P = 6 × 10–7) occurred at 5q35.1 near FGF18, involved in laminar positioning of cortical neurons during development. We conclude that dyslexia genes with relatively major effects exist, are detectable by linkage analysis despite genetic heterogeneity, and show substantial overlapping predisposition with ADHD and autism.  相似文献   

10.
In a previous study, we mapped two quantitative trait loci (QTL) approximately 50cM apart, both influencing the number of corpora lutea in pigs on chromosome 3. One locus included functional candidate genes for proteins related to specific aspects of fertility, such as the follicle-stimulating hormone receptor and the luteinizing hormone/choriogonadotropin receptor. However, specific genes related to the second locus have not yet been identified. This study aims to identify another candidate gene influencing the number of corpora lutea in pigs. Using 12 polymorphic markers, we fine-mapped a narrow region of pig chromosome 3 that had been shown to contain a QTL for corpora lutea. In the critical region, only 1 gene, autism susceptibility candidate 2 (AUTS2), was identified as a positional candidate. Our results demonstrate that the porcine AUTS2 gene consists of 19 exons with a complete open reading frame of 3768bp encoding an AUTS2 protein of 1256 amino acids. We screened the whole coding sequence and parts of the untranslated region for polymorphisms in an F(2) population of Duroc×Meishan crosses. We found 1 ins/del and 7 single nucleotide polymorphisms (SNP), including 2 nonsynonymous variants, c.943C>T in exon 7 and c.2828C>T in exon 19, resulting in P315S and A943V, respectively. The SNP c.943C>T within a proline-rich domain was genotyped in several breeds; the C allele occurred in all breeds, whereas the T allele occurred only in Meishan pigs. Using in situ hybridization, the mRNA expression of the AUTS2 gene was observed on granulosa cells in the porcine ovary and thus may be associated with hormone sensitivity.  相似文献   

11.
The recent identification of some of the components involved in regulated and constitutive exocytotic pathways has yielded important insights into the mechanisms of membrane trafficking and vesicle secretion. To understand precisely the molecular events taking place during vesicle exocytosis, we must identify all of the proteins implicated in these pathways. In this paper we describe the full-length cloning and characterization of human CADPS and CADPS2, two new homologs of the mouse Cadps protein involved in large dense-core vesicle (LDCV)-regulated exocytosis. We show that these two genes have disparate RNA expression patterns, with CADPS restricted to neural and endocrine tissues and CADPS2 expressed ubiquitously. We also identify a C2 domain, a known protein motif involved in calcium and phospholipid interactions, in both CADPS and CADPS2. We propose that CADPS functions as a calcium sensor in regulated exocytosis, whereas CADPS2 acts as a calcium sensor in constitutive vesicle trafficking and secretion. CADPS and CADPS2 were determined to span 475 kb and 561 kb on human chromosomes 3p21.1 and 7q31.3, respectively. The q31-q34 of human chromosome 7 has recently been identified to contain a putative susceptibility locus for autism (AUTS1). The function, expression profile, and location of CADPS2 make it a candidate gene for autism, and thus we conducted mutation screening for all 28 exons in 90 unrelated autistic individuals. We identified several nucleotide substitutions, including only one that would affect the amino acid sequence. No disease-specific variants were identified.  相似文献   

12.
We report on three unrelated mentally disabled patients, each carrying a de novo balanced translocation that truncates the autism susceptibility candidate 2 (AUTS2) gene at 7q11.2. One of our patients shows relatively mild mental retardation; the other two display more profound disorders. One patient is also physically disabled, exhibiting urogenital and limb malformations in addition to severe mental retardation. The function of AUTS2 is presently unknown, but it has been shown to be disrupted in monozygotic twins with autism and mental retardation, both carrying a translocation t(7;20)(q11.2;p11.2) (de la Barra et al. in Rev Chil Pediatr 57:549–554, 1986; Sultana et al. in Genomics 80:129–134, 2002). Given the overlap of this autism/mental retardation (MR) phenotype and the MR-associated disorders in our patients, together with the fact that mapping of the additional autosomal breakpoints involved did not disclose obvious candidate disease genes, we ascertain with this study that AUTS2 mutations are clearly linked to autosomal dominant mental retardation.  相似文献   

13.
14.
Nucleotide changes in the AUTS2 locus, some of which affect only noncoding regions, are associated with autism and other neurological disorders, including attention deficit hyperactivity disorder, epilepsy, dyslexia, motor delay, language delay, visual impairment, microcephaly, and alcohol consumption. In addition, AUTS2 contains the most significantly accelerated genomic region differentiating humans from Neanderthals, which is primarily composed of noncoding variants. However, the function and regulation of this gene remain largely unknown. To characterize auts2 function, we knocked it down in zebrafish, leading to a smaller head size, neuronal reduction, and decreased mobility. To characterize AUTS2 regulatory elements, we tested sequences for enhancer activity in zebrafish and mice. We identified 23 functional zebrafish enhancers, 10 of which were active in the brain. Our mouse enhancer assays characterized three mouse brain enhancers that overlap an ASD–associated deletion and four mouse enhancers that reside in regions implicated in human evolution, two of which are active in the brain. Combined, our results show that AUTS2 is important for neurodevelopment and expose candidate enhancer sequences in which nucleotide variation could lead to neurological disease and human-specific traits.  相似文献   

15.
16.
FOXP2, the first gene to have been implicated in a developmental communication disorder, offers a unique entry point into neuromolecular mechanisms influencing human speech and language acquisition. In multiple members of the well-studied KE family, a heterozygous missense mutation in FOXP2 causes problems in sequencing muscle movements required for articulating speech (developmental verbal dyspraxia), accompanied by wider deficits in linguistic and grammatical processing. Chromosomal rearrangements involving this locus have also been identified. Analyses of FOXP2 coding sequence in typical forms of specific language impairment (SLI), autism, and dyslexia have not uncovered any etiological variants. However, no previous study has performed mutation screening of children with a primary diagnosis of verbal dyspraxia, the most overt feature of the disorder in affected members of the KE family. Here, we report investigations of the entire coding region of FOXP2, including alternatively spliced exons, in 49 probands affected with verbal dyspraxia. We detected variants that alter FOXP2 protein sequence in three probands. One such variant is a heterozygous nonsense mutation that yields a dramatically truncated protein product and cosegregates with speech and language difficulties in the proband, his affected sibling, and their mother. Our discovery of the first nonsense mutation in FOXP2 now opens the door for detailed investigations of neurodevelopment in people carrying different etiological variants of the gene. This endeavor will be crucial for gaining insight into the role of FOXP2 in human cognition.  相似文献   

17.
A significant proportion of children (up to 7% in the UK) present with pronounced language difficulties that cannot be explained by obvious causes like other neurological and medical conditions. A substantial genetic component is predicted to underlie such language problems. Copy number variants (CNVs) have been implicated in neurodevelopmental and psychiatric conditions, such as autism and schizophrenia, but it is not fully established to what extent they might contribute to language disorders. We conducted a CNV screen in a longitudinal cohort of young children with language-related difficulties (n = 85), focusing on single events at candidate loci. We detected a de novo deletion on chromosome 15q13.1–13.3. The adjacent 15q11-13.1 locus is disrupted in Prader-Willi and Angelman syndromes, while disruptions across the breakpoints (BP1-BP6) have previously been implicated in different neurodevelopmental phenotypes including autism, intellectual disability (ID), seizures and developmental delay (DD). This is the first report of a deletion at BP3-BP5 being linked to a deficit confined to language impairment, in the absence of ID, expanding the range of phenotypes that implicate the chromosome 15q13 locus.  相似文献   

18.
Genome scans indicate a linkage of autism to the chromosome 7q21-q36 region. Recent studies suggest that the Reelin gene may be one of the loci contributing to the positive linkage between chromosome 7q and autism. However, these studies were relatively small scale, using a few markers in the gene. We investigated 34 single nucleotide polymorphisms (SNPs) in the Reelin gene with an average spacing between the SNPs of 15 kb for evidence of association with autism. There were significant differences in the transmission of the alleles of exon 22 and intron 59 SNP to autistic subjects. Our findings support a role for the Reelin gene in the susceptibility to autism.  相似文献   

19.
Autism is a spectrum of neurodevelopmental disorders with a primarily genetic etiology exhibiting deficits in (1) development of language and (2) social relationships and (3) patterns of repetitive, restricted behaviors or interests and resistance to change. Elevated platelet serotonin (5-HT) in 20%-25% of cases and efficacy of selective 5-HT reuptake inhibitors (SSRIs) in treating anxiety, depression, and repetitive behaviors points to the 5-HT transporter (5-HTT; SERT) as a strong candidate gene. Association studies involving the functional insertion/deletion polymorphism in the promoter (5-HTTLPR) and a polymorphism in intron 2 are inconclusive, possibly because of phenotypic heterogeneity. Nonetheless, mounting evidence for genetic linkage of autism to the chromosome 17q11.2 region that harbors the SERT locus (SLC6A4) supports a genetic effect at or near this gene. We confirm recent reports of sex-biased genetic effects in 17q by showing highly significant linkage driven by families with only affected males. Association with common alleles fails to explain observed linkage; therefore, we hypothesized that preferential transmission of multiple alleles does explain it. From 120 families, most contributing to linkage at 17q11.2, we found four coding substitutions at highly conserved positions and 15 other variants in 5' noncoding and other intronic regions transmitted in families exhibiting increased rigid-compulsive behaviors. In the aggregate, these variants show significant linkage to and association with autism. Our data provide strong support for a collection of multiple, often rare, alleles at SLC6A4 as imposing risk of autism.  相似文献   

20.
Isolation of a polymorphic genomic clone from chromosome 7   总被引:1,自引:1,他引:0  
Summary A peptide prepared from purified factor 13B (F13B) was sequenced, and a single, long oligonucleotide corresponding to its cognate DNA sequence was constructed and used to screen a chromosome 7 specific genomic library. The positive clone isolated, designated pKV13, was only related to F13B at the oligonucleotide region, but has proved to be a valuable chromosome 7 marker. pKV13 maps to 7pter-q22 in hybrid cell lines, and is present in a chromosome-mediated gene transfer (CMGT) cell line that also contains met and other 7q probes. pKV13 defines a common MspI restriction fragment length polymorphism (RFLP), and is genetically linked to two markers on the long arm of chromosome 7, B79a and COL1A2, both themselves linked to the cystic fibrosis locus. Multipoint linkage analysis demonstrates that KV13 maps centromeric to both B79a and COLIA2. pKV13 has been used to demonstrate the existence of rearrangements within CMGT hybrisd, and will also prove valuable in multipoint linkage studies of other 7q markers. Finally, pKV13 provides a new polymorphic locus for the characterisation of 7q deletions in myeloid disorders such as myelodysplastic syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号