首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiratory responses and gastric processing were examined during hyposaline exposure in two crab species of differing osmoregulatory ability. The efficient osmoregulator, Callinectes sapidus, displayed an immediate increase in oxygen uptake when exposed to low salinity in isolation. In contrast, the weak osmoregulator, Cancer magister, showed no change in oxygen uptake upon acute exposure (<6 h), but slight increases in oxygen uptake tended to occur over longer time scales (12–24 h). These changes were likely attributable to an increase in avoidance activity after 6 h hyposaline exposure. Following feeding in 100% SW, oxygen uptake doubled for both species and remained elevated for 15 h. When postprandial crabs were exposed to low salinities, C. sapidus were able to sum the demands of osmoregulation and digestion. Thus, gastric processes continued unabated in low salinity. Conversely, postprandial C. magister prioritized responses to low salinity over those of digestion, resulting in a decrease in oxygen uptake when exposed to low salinity. This decrease in oxygen uptake corresponded to a reduction in the rate of contraction of the pyloric stomach and a subsequent doubling of gastric evacuation time. The current study is one of the few to illustrate how summation or prioritization of competing physiological systems is manifested in digestive processes.  相似文献   

2.
Summary Frequencies of scaphognathite (ventilatory,f sc) and heart (f h) pumping, oxygen consumption ( ), and hemolymph oxygen, carbon dioxide and pH levels were measured in adult Dungeness crabs (Cancer magister) during 7–10 day periods of exposure to 7, 12, and 17°C seawater. Ventilation volume ( ) was calculated for individual animals fromf sc and a previously determined relationship between stroke volume and animal mass. increases (Q10=2.3) with temperature were associated with larger increases inf sc (Q10=3.3) and (Q10=3.5) and smaller increases inf h (Q10=1.5). The incidence of unilateral scaphognathite pumping and pausing decreased as temperature rose.Postbranchial oxygen tension was maintained in vivo but hemolymph oxygen content decreased both in vivo and in vitro as temperature rose. Postbranchial carbon dioxide tension did not change significantly but relative alkalinity was maintained as temperature rose by loss of hemolymph bicarbonate. The effects of increased ventilation volume and potential mechanisms of bicarbonate regulation are discussed.The responses of the essentially subtidalCancer magister are compared with those of subtidal, intertidal and terrestrial crabs demonstrating that the concepts of acid-base regulation developed for water and air breathing vertebrates are also applicable to water and air breathing crabs, and that intertidal crabs may exhibit transitional states.This work was supported by Grant No. A.5762 National Research Council of Canada  相似文献   

3.
Exercise and digestive processes are known to elevate the metabolic rate of organisms independently. In this study, the effects of simultaneous exercise and digestion were examined in the graceful crab Cancer gracilis. This species exhibited resting oxygen uptake levels between 29 and 42 mg O(2) kg(-1) h(-1). In postprandial crabs, oxygen uptake was approximately double that of unfed crabs. During exercise, oxygen uptake increased three- to fourfold, reaching maximal levels of more than 130 mg O(2) kg(-1 ) h(-1). However, there was no difference in oxygen uptake during activity between unfed and postprandial animals. There was also no difference in exercise endurance levels between unfed and postprandial animals; both sets of animals were unable to right themselves after being turned on their backs, reaching exhaustion after 13-15 attempts. To determine whether increased activity affected gastric processes, the passage of a meal through the digestive system was followed using a fluoroscope. Passage of digesta through the gut system was slower in active animals than in resting crabs. Resting crabs cleared the foregut after approximately 18 h, which was significantly faster than the 34.5 h for constantly active animals. Likewise, the midgut region of resting animals was cleared at a faster rate than that of active animals. Because of residual amounts of digesta remaining in the hindgut, no difference in clearance rates of this section of the gut was evident. The slower clearance times of the foregut were due to a significantly slower rate of mastication of food, as evidenced by a lower cardiac stomach contraction rate. Contraction of the pyloric region of the foregut functions to move the digesta along the midgut, and there was a direct correlation between slower contraction rates of this region and the increased time of passage for digesta through the midgut of active animals. Because increased activity levels affected gastric processing, the crabs exhibited a behavioral response. During a 24-h period after feeding, there was a significant reduction in locomotor activity. The findings of this study suggest a prioritization of metabolic responses toward activity at the expense of digestion. This is discussed in relation to the ability of the crabs to balance the demands of competing physiological systems.  相似文献   

4.
The metabolic response of the crab Carcinus maenas to short‐term hypoxia (60% and 35% saturated seawater) was studied at 17.5°C in fed, 3 day‐unfed and 6 day‐unfed crabs.

Ammonia excretion rate decreased under hypoxia: a 40% and 45% decrease in the normoxic rate was observed in fed crabs at 35% saturation and in 3 day‐unfed crabs at both hypoxic levels respectively. In the 6 day‐unfed crabs, the effect of hypoxia was concealed by the effect of starvation.

Oxygen consumption rate was directly related to the external O2 tension irrespective of the crab's nutritional state. Stressed crabs behaved as a whole, as oxygen‐conformers.

A strong relationship was observed between ammonia excretion and oxygen consumption rates in fed crabs under hypoxia but not in starved crabs.  相似文献   

5.
The energetic consequences of fighting, which may depend on environmental conditions, can be an important factor shaping contest strategy and duration. Energy expenditure may be costly to fitness because it depletes reserves that could otherwise have been allocated to reproduction, and metabolites are produced that may constrain subsequent activities. We examined the variation in the metabolic consequences of fighting in relation to hypoxia. Contests were staged between pairs of size-matched male shore crabs Carcinus maenas L., under a range of water oxygen tensions (between 10 and 100% oxygen saturation) which crabs experience in their natural habitat. Fighting under normoxic and hypoxic conditions resulted in significantly elevated concentrations of haemolymph metabolites (L-lactate and glucose) compared with crabs at rest. However, these concentrations were much lower than in crabs that had been walking on a treadmill. Glycogen concentrations differed only under hypoxic conditions: glycogen stores were reduced in crabs after fighting and this reduction was similar to that after exercise on a treadmill. Contests were shorter when they were staged below a water P o2of 6.7 kPa ( approximately 30% normoxia). As water oxygen tensions were reduced, fighting crabs had greater concentrations of L-lactate and glucose in their blood and tissues whilst glycogen stores were reduced. Fights became shorter when crabs were exposed to severe hypoxia (P o2=2 kPa) for increasing lengths of time, and blood L-lactate concentrations increased. The results suggest that as fights progressed, crabs experienced an increasing metabolic debt, in the form of accumulation of L-lactate and a reduction in energy stores, which was amplified by hypoxic conditions. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

6.
A ciliate infection ascribed to the genus Paranophrys was found in early adult Dungeness crabs, Cancer magister, held in laboratory bioassay facilities, and in outdoor flow-through tanks in Newport, Oregon. Infections proved lethal as ciliates multiplied to high densities in the blood and tissues causing degeneration and necrosis of musculature. All infected crabs had recent wounds through the exoskeleton which probably provided a portal of entry, and the elapsed time between infliction of a wound and gross symptoms of stress was estimated at 9 days although animals died as late as 26 days. The nature of Paranophrys infections in C. magister, i.e., as an opportunistic pathogen of cultured animals and/or a disease in wild populations of this crab is discussed.  相似文献   

7.
The European green crab, Carcinus maenas, is an introduced marine predator established on the west coast of North America. We conducted laboratory experiments on the host specificity of a natural enemy of the green crab, the parasitic barnacle Sacculina carcini, to provide information on the safety of its use as a possible biological control agent. Four species of non-target, native California crabs (Hemigrapsus oregonensis, H. nudus, Pachygrapsus crassipes and Cancer magister) were exposed to infective larvae of S. carcini. Settlement by S. carcini on the four native species ranged from 33 to 53%, compared to 79% for green crabs. Overall, cyprid larvae tended to settle in higher numbers on individual green crabs than on either C. magister or H. oregonensis. However, for C. magister this difference was significant for soft-shelled, but not hard-shelled individuals. Up to 29% of the native crabs arrested early infections by melanizing the rootlets of the parasite. Most native and green crabs settled on by S. carcini became infected, especially when settled on by >3 cyprids. Infected green crabs died at more than twice the rate of uninfected green crabs. In contrast to green crabs, all infected native crabs died without producing an externa (reproductive sac). At high settlement intensities, infected native crabs frequently exhibited neurological symptoms (twitching, loss of movement) before death. These results indicate that use of S. carcini as a biological control agent could result in the death of native crabs. The magnitude of this effect would be proportional to the density of infected green crabs in the environment and the probability that cyprids would contact native crabs in the wild. Potential benefits of biological control should be assessed in relation to these potential non-target effects.  相似文献   

8.
The effect of severe acute hypoxia (fractional concentration of inspired oxygen equalled 0.104) was studied in nine male subjects performing an incremental exercise test. For power outputs over 125 W, all the subjects in a state of hypoxia showed a decrease in oxygen consumption ( O2) relative to exercise intensity compared with normoxia (P < 0.05). This would suggest an increased anaerobic metabolism as an energy source during hypoxic exercise. During submaximal exercise, for a given O2, higher blood lactate concentrations were found in hypoxia than in normoxia (P < 0.05). In consequence, the onset of blood lactate accumulation (OBLA) was shifted to a lower O2 ( O2 1.77 l·min–1 in hypoxia vs 3.10 l·min–1 in normoxia). Lactate concentration increases relative to minute ventilation ( E) responses were significantly higher during hypoxia than in normoxia (P < 0.05). At OBLA, E during hypoxia was 25% lower than in the normoxic test. This study would suggest that in hypoxia subjects are able to use an increased anaerobic metabolism to maintain exercise performance.  相似文献   

9.
The present study is the first to simultaneously and continuously measure oxygen consumption (MO2) and gastrointestinal blood flow (qgi) in fish. In addition, while it is the first to compare the effects of three isoenergetic diets on qgi in fish, no significant differences among diets were found for postprandial MO2, qgi or heart rate (fH) in rainbow trout, Oncorhynchus mykiss. Postprandial qgi, fH and MO2 were significantly elevated above baseline levels by 4 h. Postprandial qgi peaked at 136% above baseline after 11 h, fH peaked at 110% above baseline after 14 h and MO2 peaked at 96% above baseline after 27 h. Moreover, postprandial MO2 remained significantly elevated above baseline longer than qgi (for 41 h and 30 h, respectively), perhaps because most of the increase in MO2 associated with feeding is due to protein handling, a process that continues following the absorption of nutrients which is thought to be the primary reason for the elevation of qgi. In addition to the positive relationships found between postprandial MO2 and qgi and between postprandial MO2 and fH, we discovered a novel relationship between postprandial qgi and fH.  相似文献   

10.
Physiological parameters associated with burying were investigated in the Dungeness crab, Cancer magister, and the red rock crab, Cancer productus. Ventilation frequency of the branchial chambers increased while the crabs were burying, this was associated with the greater oxygen demand of the tissues. The number of ventilatory reversals in C. magister increased in number as well as in duration and magnitude when the crabs were buried, which functioned to clear the branchial chambers of sediment. In contrast, the number of ventilatory reversals in C. productus decreased. On the surface of the sand, cardiac parameters (heart rate, stroke volume, cardiac output) of both species remained stable. During the burial process, there was a large increase in cardiac output which was afforded primarily by an increased stroke volume of the heart. Once buried, cardiac output declined in both species; this was due to a decrease in stroke volume in C. productus, but a decreased heart rate in C. magister. There were also differences in haemolymph flows through each arterial system. During the burying process, both species increased haemolymph flow to the muscles of the limbs via the sternal artery. Once buried haemolymph flows to the limbs decreased, and increased flow to eyestalks and antennae via the anterior aorta occurred. Perfusion of the digestive organs via the anterolateral and hepatic arteries did not change when the crabs were buried. There was an increase in flow through the posterior aorta, of C. magister, but flow through this artery did not change in C. productus. Periods of spontaneous cardiac arrest were observed in both species while resting on the surface. These increased in duration in C. productus when buried, but there was no change in C. magister. Changes in ventilatory and cardiac variables were closely linked on the surface, but tended to uncouple when the animals were buried. The physiological responses of C. magister resembled those of true sand-dwelling crabs, whereas the responses of C. productus paralleled those of crabs that only bury occasionally in the substrate. Although these two species often occur sympatrically, they employ different physiological mechanisms when buried in the sediment.  相似文献   

11.
  • 1.1. The oxygen consumption of red and green Carcinus in normoxic and hypoxic sea water was determined, using an oxygen electrode in a sealed respirometer.
  • 2.2. The red crabs had significantly higher “excited” oxygen uptake rates and a lower ability to compensate for hypoxia than the green crabs.
  • 3.3. Red Carcinus display an emersion response to declining oxygen at lower oxygen tensions than the green crabs.
  • 4.4. Mortality of red crabs exposed to prolonged anoxia was much greater.
  • 5.5. The relationship of these findings to the zonation of the two colour forms on the shore is discussed.
  相似文献   

12.
Perfused rainbow trout Oncorhynchus mykiss hearts exposed to simulated exercise conditions (hypoxia, hyperkalemia and acidosis) at 18° C experienced complete failure of maximum cardiac performance at oxygen tensions <5·6 kPa and partial failure at <6·7 kPa. This hypoxic threshold, which occurred in the presence of maximal adrenergic stimulation (500 nM adrenaline), is unusually high compared with previous results at a colder acclimation temperature. Cardiac failure was primarily due to significant decreases ( P < 0·05) in heart rate rather than cardiac stroke volume at all hypoxia levels tested.  相似文献   

13.
Feeding by host hermit crabs Dardanus pedunculatus on their symbiotic sea anemones Calliactis polypus was investigated using animals collected at Shirahama, Wakayama Prefecture, Japan. In the first experiment, changes in the number of sea anemones on hermit crab shells were recorded in single‐and double‐crab trials without food and single‐crab trials with food. The number of sea anemones significantly decreased under starved conditions. The extent of this decrease per single hermit crab was higher in the double‐crab trials than in the single‐crab trials. Direct observations and video recordings showed that hermit crabs occasionally removed sea anemones from their own shells, and also from partners’ shells in the double‐crab trials, and consumed them. In the second experiment, fed and unfed hermit crabs with or without sea anemones were examined for body weight changes. Fed hermit crabs gained weight whereas unfed hermit crabs lost it. The degree of weight loss in unfed hermit crabs was significantly higher in those without sea anemones, which indicates some value of the latter as food. We offer some speculations on the course of development of this symbiosis, with predation on sea anemones having played an important initial role.  相似文献   

14.
Summary While on land and recirculating branchial water the Australian semaphore crab Heloecius cordiformis (Decapoda: Ocypodidae), a semi-terrestrial airbreathing mangrove crab, sequentially depresses and elevates its carapace in a regular pump-like manner. The functional role of these carapace movements in aerial oxygen consumption is investigated. Carapace immobilisation (reversible and non-injurious) did not appear to affect branchial water circulation. In dry crabs (branchial water removed) carapace immobilisation had no effect on the rate of oxygen consumption (VO2), heart rate or whole-body lactate (WBL) levels. In wet crabs (with branchial water) carapace immobilisation caused VO2 to drop by 38% from 81 to 46 l O2 · g-1 · h-1, heart rate to decline by 32%, from 2.5 to 1.7 Hz, and WBL levels to increase over 2.5-fold, from 0.27 to 0.67 mg · g-1, after 3 h of carapace immobilisation. The (VO2) of carapace-immobilised crabs with branchial water was similar to lung-occluded crabs with branchial water. Severe hypoxia induced physiological responses similar to those of carapace-immobilised crabs with branchial water. After 3 h of severe hypoxia, heart rate had declined by 80%, from 2.2 to 0.43 Hz, and the incidence of carapace pumping slowed by 85%, from 2.4 to 0.37 cycles · min-1. It is concluded that in the absence of carapace movements branchial water in some way inteferes with lung ventilation. Under normal circumstances water circulation and lung ventilation are mutually exclusive processes (due to their singular dependence on the scaphognathites), yet in Heloecius these processes must be carried out simultaneously. Carapace movements may alleviate this conflict.Abbreviations FF, FR, SF, SR fast-forward, fast-reverse, slow-forward, slow-reverse scaphognathite pumping - MEA Milne Edwards aperture - VO2 rate of oxygen consumption - WBL whole-body lactate  相似文献   

15.
Summary Responses to acute hypoxia were measured in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) (1–3 kg body weight). Fish were prevented from making swimming movements by a spinal injection of lidocaine and were placed in front of a seawater delivery pipe to provide ram ventilation of the gills. Fish could set their own ventilation volumes by adjusting mouth gape. Heart rate, dorsal and ventral aortic blood pressures, and cardiac output were continuously monitored during normoxia (inhalant water (PO 2>150 mmHg) and three levels of hypoxia (inhalant water PO 2130, 90, and 50 mmHg). Water and blood samples were taken for oxygen measurements in fluids afferent and efferent to the gills. From these data, various measures of the effectiveness of oxygen transfer, and branchial and systemic vascular resistance were calculated. Despite high ventilation volumes (4–71·min-1·kg-1), tunas extract approximately 50% of the oxygen from the inhalant water, in part because high cardiac outputs (115–132 ml·min-1·kg-1) result in ventilation/perfusion conductance ratios (0.75–1.1) close to the theoretically ideal value of 1.0. Therefore, tunas have oxygen transfer factors (ml O2·min-1·mmHg-1·kg-1) that are 10–50 times greater than those of other fishes. The efficiency of oxygen transfer from water in tunas (65%) matches that measured in teleosts with ventilation volumes and order of magnitude lower. The high oxygen transfer factors of tunas are made possible, in part, by a large gill surface area; however, this appears to carry a considerable osmoregulatory cost as the metabolic rate of gills may account for up 70% of the total metabolism in spinally blocked (i.e., non-swimming) fish. During hypoxia, skipjack and yellowfin tunas show a decrease in heart rate and increase in ventilation volume, as do other teleosts. However, in tunas hypoxic bradycardia is not accompanied by equivalent increases, in stroke volume, and cardiac output falls as HR decreases. In both tuna species, oxygen consumption eventually must be maintained by drawing on substantial venous oxygen reserves. This occurs at a higher inhalant water PO2 (between 130 and 90 mmHg) in skipjack tuna than in yellowfin tuna (between 90 and 50 mmHg). The need to draw on venous oxygen reserves would make it difficult to meet the oxygen demand of increasing swimming speed, which is a common response to hypoxia in both species. Because yellowfin tuna can maintain oxygen consumption at a seawater oxygen tension of 90 mmHg without drawing on venous oxygen reserves, they could probably survive for extended periods at this level of hypoxia.Abbreviations BPda, BPva dorsal, ventral aortic blood pressure - C aO2, C vO2 oxygen content of arterial, venous blood - DO2 diffusion capacity - Eb, Ew effectiveness of O2 uptake by blood, and from water, respectively - Hct hematocrit - HR heart rate - PCO2 carbon dioxide tension - P aCO2, P vCO2 carbon dioxide tension of arterial and venous blood, respectively - PO2 oxygen tension - P aO2, P vO2, P iO2, P cO2 oxygen tension of arterial blood, venous blood, and inspired and expired water, respectively - pHa, pHv pH of arterial and venous blood, respectively - Pw—b effective water to blood oxygen partial pressure difference - Pg partial pressure (tension) gradient - cardiac output - R vascular resistance - SV stroke volume - SEM standard error of mean - TO2 transfer factor - U utilization - g ventilation volume - O2 oxygen consumption  相似文献   

16.
The mean haemoglobin concentration of Noemacheilus barbatulus was found to be significantly higher than that of Cobitis taenia. Under conditions of reduced oxygen saturation, both species achieved maximum rates of ventilation at 10% 02. An alteration in opercular beat pattern accounted for the increased ventilation rates between 20% and 30%. A slightly higher tolerance for lowered oxygen concentrations was demonstrated by Cobitis taenia with disorientation and aerial respiration occurring at lower oxygen tensions than in Noemacheilus barbatulus.  相似文献   

17.
To quantify the tolerance of summer flounder Paralichthys dentatus to episodic hypoxia, resting metabolic rate, oxygen extraction, gill ventilation and heart rate were measured during acute progressive hypoxia at the fish's acclimation temperature (22° C) and after an acute temperature increase (to 30° C). Mean ±s.e. critical oxygen levels (i.e. the oxygen levels below which fish could not maintain aerobic metabolism) increased significantly from 27 ± 2% saturation (2·0 ± 0·1 mg O(2) l(-1) ) at 22° C to 39 ± 2% saturation (2·4 ± 0·1 mg O(2) l(-1) ) at 30° C. Gill ventilation and oxygen extraction changed immediately with the onset of hypoxia at both temperatures. The fractional increase in gill ventilation (from normoxia to the lowest oxygen level tested) was much larger at 22° C (6·4-fold) than at 30° C (2·7-fold). In contrast, the fractional decrease in oxygen extraction (from normoxia to the lowest oxygen levels tested) was similar at 22° C (1·7-fold) and 30° C (1·5-fold), and clearly smaller than the fractional changes in gill ventilation. In contrast to the almost immediate effects of hypoxia on respiration, bradycardia was not observed until 20 and 30% oxygen saturation at 22 and 30° C, respectively. Bradycardia was, therefore, not observed until below critical oxygen levels. The critical oxygen levels at both temperatures were near or immediately below the accepted 2·3 mg O(2) l(-1) hypoxia threshold for survival, but the increase in the critical oxygen level at 30° C suggests a lower tolerance to hypoxia after an acute increase in temperature.  相似文献   

18.
Summary Heart, ventilation and oxygen consumption rates ofLeiopotherapon unicolor were studied at temperatures ranging from 5 to 35°C, and during progressive hypoxia from 100% to 5% oxygen saturation. Biopotentials recorded from the water surrounding the fish corresponded to ventilation movements, and are thought to originate from the ventilatory musculature. Cardio-respiratory responses to temperature and dissolved oxygen follow the typical teleost pattern, with bradycardia, increased ventilation rate and reduced oxygen consumption occurring during hypoxia. However, ventilation rate did not increase at 15°C and below. Ventilation rate showed a slower response to increasing temperature (normoxic Q10=1.39) than heart rate and oxygen consumption (normoxic Q10=2.85 and 2.38).L. unicolor is unable to survive prolonged hypoxia by utilising anaerobic metabolism, but has a large gill surface area which presumably facilitates oxygen uptake in hypoxic environments. Periodic ventilation during normoxia in restingL. unicolor may improve ventilation efficiency by increasing the oxygen diffusion gradient across the gills.Abbreviations EBG electrobranchiogram - ECG electrocardiogram  相似文献   

19.
20.
The effects of temperature acclimation and acute temperature change were investigated in postprandial green shore crabs, Carcinus maenas. Oxygen uptake, gut contractions and transit rates and digestive efficiencies were measured for crabs acclimated to either 10 °C or 20 °C and subsequently exposed to treatment temperatures of 5, 15, or 25 °C. Temperature acclimation resulted in a partial metabolic compensation in unfed crabs, with higher oxygen uptake rates measured for the 10 °C acclimated group exposed to acute test temperatures. The Q10 values were higher than normal, probably because the acute temperature change prevented crabs from fully adjusting to the new temperature. Both the acclimation and treatment temperature altered the characteristics of the specific dynamic action (SDA). The duration of the response was longer for 20 °C acclimated crabs and was inversely related to the treatment temperature. The scope (peak oxygen consumption) was also higher for 20 °C acclimated crabs with a trend towards an inverse relationship with treatment temperature. Since the overall SDA (energy expenditure) is a function of both duration and scope, it was also higher for 20 °C acclimated crabs, with the highest value measured at the treatment temperature of 15 °C. The decline in total SDA after acute exposure to 5 and 25 °C suggests that both cold stress and limitations to oxygen supply at the temperature extremes could be affecting the SDA response. The contractions of the pyloric sac of the foregut region function to propel digesta through the gut, and contraction rates increased with increasing treatment temperature. This translated into faster transit rates with increasing treatment temperatures. Although pyloric sac contractions were higher for 20 °C acclimated crabs, temperature acclimation had no effect on transit rates. This suggests that a threshold level in pyloric sac contraction rates needs to be reached before it manifests itself on transit rates. Although there was a correlation between faster transit times and the shorter duration of the SDA response with increasing treatment temperature, transit rates do not make a good proxy for calculating the SDA characteristics. The digestive efficiency showed a trend towards a decreasing efficiency with increasing treatment temperature; the slower transit rates at the lower treatment temperatures allowing for more efficient nutrient absorption. Even though metabolic rates of 10 °C acclimated crabs were higher, there was no effect of acclimation temperature on digestive efficiency. This probably occurred because intracellular enzymes and digestive enzymes are modulated through different control pathways. These results give an insight into the metabolic and digestive physiology of Carcinus maenas as it makes feeding excursions between the subtidal and intertidal zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号