首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu X  Ishima R  Ames JB 《Proteins》2011,79(6):1910-1922
Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, serves as a calcium sensor in retinal rod cells. Ca2+‐induced conformational changes in recoverin promote extrusion of its covalently attached myristate, known as the Ca2+‐myristoyl switch. Here, we present nuclear magnetic resonance (NMR) relaxation dispersion and chemical shift analysis on 15N‐labeled recoverin to probe main chain conformational dynamics. 15N NMR relaxation data suggest that Ca2+‐free recoverin undergoes millisecond conformational dynamics at particular amide sites throughout the protein. The addition of trace Ca2+ levels (0.05 equivalents) increases the number of residues that show detectable relaxation dispersion. The Ca2+‐dependent chemical shifts and relaxation dispersion suggest that recoverin has an intermediate conformational state (I) between the sequestered apo state (T) and Ca2+ saturated extruded state (R): T ? I ? R. The first step is a fast conformational equilibrium ([T]/[I] < 100) on the millisecond time scale (τexδω < 1). The final step (I ? R) is much slower (τexδω > 1). The main chain structure of I is similar in part to the structure of half‐saturated E85Q recoverin with a sequestered myristoyl group. We propose that millisecond dynamics during T ? I may transiently increase the exposure of Ca2+‐binding sites to initiate Ca2+ binding that drives extrusion of the myristoyl group during I ? R. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

2.
3.
PROPAINOR is a new algorithm developed for ab initio prediction of the 3D structures of proteins using knowledge-based nonparametric multivariate statistical methods. This algorithm is found to be most efficient in terms of computational simplicity and prediction accuracy for single-domain proteins as compared to other ab initio methods. In this paper, we have used the algorithm for the atomic structure prediction of a multi-domain (two-domain) calcium-binding protein, whose solution structure has been deposited in the PDB recently (PDB ID: 1JFK). We have studied the sensitivity of the predicted structure to NMR distance restraints with their incorporation as an additional input. Further, we have compared the predicted structures in both these cases with the NMR derived solution structure reported earlier. We have also validated the refined structure for proper stereochemistry and favorable packing environment with good results and elucidated the role of the central linker. Figure The predicted 3D Structure of EhCaBP with bound Ca2+ ions (CaBP-0). In the structure, α-helices are shown in pink and the β-strands in yellow. Ca2+ ions are depicted as fluorescent green balls. Some of the residues in the calcium-binding loops are depicted in space-fill representation.   相似文献   

4.
Ca2+ binding by Myxicola neurofilament proteins   总被引:1,自引:0,他引:1  
Titrimetric, 45Ca dialysis, and autoradiographic methods were used to examine how axoplasmic proteins from the giant neuron of the marine annelid Myxicola infundibulum bind calcium. Following the autoradiographic method of Maruyama et al., the 150-160 kD neurofilament subunits were identified as prominent intracellular Ca-binding peptides. Using equilibrium dialysis, extracts of axoplasmic proteins (greater than 50% neurofilament subunits) were examined in 300 mM KCl at different concentrations of free Ca and Mg, and at different pH. Axoplasmic proteins showed a high affinity Ca binding site (K1/2 3-6 microM, capacity 3-7 mumole g-1 protein) at pH 6.8 or pH 7.5. Changing the Mg concentration from 0 to 5 mM had no effect on the Ca binding. Elevating the dialysis pH from 7.0 to 9.0 reduced the apparent number of binding sites for Ca. Using microelectrodes to record the free Ca, microtitrations of axoplasmic proteins were completed by adding small amounts of CaCl2 to 100 microliters volumes of protein solutions. In a medium containing ionic constituents closely resembling those of the Myxicola axon, a Ca binding capacity of 5.0 mumole g-1 protein and a K1/2 of approximately 1 microM were measured.  相似文献   

5.
The partial collapse of dipolar and chemical shift tensors for peptide NH and for the amide NH at cross-link sites in cell wall peptidoglycan, of intact lyophilized cells of Aerococcus viridans, indicates NH vector root-mean-square fluctuations of 23 degrees. This result is consistent with the local mobility calculated in typical picosecond regime computer simulations of protein dynamics in the solid state. The experimental root-mean-square angular fluctuations for both types of NH vectors increase to 37 degrees for viable wet cells at 10 degrees C. The similarity in mobilities for both general protein and cell wall peptidoglycan suggests that one additional motion in wet cells involves cooperative fluctuations of segments of cell walls, attached proteins, and associated cytoplasmic proteins.  相似文献   

6.
The growing database of three-dimensional structures of EF-hand calcium-binding proteins is revealing a previously unrecognized variability in the coformations and organizations of EF-hand binding motifs. The structures of twelve different EF-hand proteins for which coordinates are publicly available are discussed and related to their respective biological and biophysical properties. The classical picture of calcium sensors and calcium signal modulators is presented, along with variants on the basic theme and new structural paradigms.© Kluwer Academic Publishers  相似文献   

7.
We have previously identified a single inhibitory Ca2+-binding site in the first EF-hand of the essential light chain of Physarum conventional myosin (Farkas, L., Malnasi-Csizmadia, A., Nakamura, A., Kohama, K., and Nyitray, L. (2003) J. Biol. Chem. 278, 27399-27405). As a general rule, conformation of the EF-hand-containing domains in the calmodulin family is "closed" in the absence and "open" in the presence of bound cations; a notable exception is the unusual Ca2+-bound closed domain in the essential light chain of the Ca2+-activated scallop muscle myosin. Here we have reported the 1.8 A resolution structure of the regulatory domain (RD) of Physarum myosin II in which Ca2+ is bound to a canonical EF-hand that is also in a closed state. The 12th position of the EF-hand loop, which normally provides a bidentate ligand for Ca2+ in the open state, is too far in the structure to participate in coordination of the ion. The structure includes a second Ca2+ that only mediates crystal contacts. To reveal the mechanism behind the regulatory effect of Ca2+, we compared conformational flexibilities of the liganded and unliganded RD. Our working hypothesis, i.e. the modulatory effect of Ca2+ on conformational flexibility of RD, is in line with the observed suppression of hydrogen-deuterium exchange rate in the Ca2+-bound form, as well as with results of molecular dynamics calculations. Based on this evidence, we concluded that Ca2+-induced change in structural dynamics of RD is a major factor in Ca2+-mediated regulation of Physarum myosin II activity.  相似文献   

8.
15N has been uniformly incorporated into the EF-hand Ca(2+)-binding protein calbindin D9k so that heteronuclear experiments can be used to further characterize the structure and dynamics of the apo, (Cd2+)1 and (Ca2+)2 states of the protein. The 15N NMR resonances were assigned by 2D 15N-resolved 1H experiments, which also allowed the identification of a number of sequential and medium-range 1H-1H contacts that are obscured by chemical shift degeneracy in homonuclear experiments. The 15N chemical shifts are analyzed with respect to correlations with protein secondary structure. In addition, the changes in 15N chemical shift found for the apo----(Cd2+)1----(Ca2+)2 binding sequence confirm that the effects on the protein are mainly associated with chelation of the first ion.  相似文献   

9.
The interaction between alpha-actinin and titin, two modular muscle proteins, is essential for sarcomere assembly. We have solved the solution structure of a complex between the calcium-insensitive C-terminal EF-hand domain of alpha-actinin-2 and the seventh Z-repeat of titin. The structure of the complex is in a semi-open conformation and closely resembles that of myosin light chains in their complexes with heavy chain IQ motifs. However, no IQ motif is present in the Z-repeat, suggesting that the semi-open conformation is a general structural solution for calcium-independent recognition of EF-hand domains.  相似文献   

10.
Summary An empirical correlation between the peptide 15N chemical shift, 15Ni, and the backbone torsion angles i, i–1 is reported. By using two-dimensional shielding surfaces (i1–1), it is possible in many cases to make reasonably accurate predictions of 15N chemical shifts for a given structure. On average, the rms error between experiment and prediction is about 3.5 ppm. Results for threonine, valine and isoleucine are worse (4.8 ppm), due presumably to 1-distribution/-gauche effects. The rms errors for the other amino acids are 3 ppm, for a typical maximal chemical shift range of 15–20 ppm. Thus, there is a significant correlation between 15N chemical shift and secondary structure.  相似文献   

11.
1H, 13C and 15N chemical shift referencing in biomolecular NMR   总被引:25,自引:2,他引:23  
Summary A considerable degree of variability exists in the way that 1H, 13C and 15N chemical shifts are reported and referenced for biomolecules. In this article we explore some of the reasons for this situation and propose guidelines for future chemical shift referencing and for conversion from many common 1H, 13C and 15N chemical shift standards, now used in biomolecular NMR, to those proposed here.Abbreviations TMS tetramethylsilane - TSP 3-(trimethylsilyl)-propionate, sodium salt - DSS 2,2-dimethyl-2-silapentane-5-sulfonate, sodium salt - TFE 2,2,2-trifluoroethanol - DMSO dimethyl sulfoxide  相似文献   

12.
K Hori  J N Kushick  H Weinstein 《Biopolymers》1988,27(12):1865-1886
The characteristics of Ca2+-binding sites and of the structural reorganization induced by Ca2+-binding in storage proteins and ion carriers are being studied as models for molecular mechanisms in Ca2+ channels and in Ca2+-dependent modulatory proteins. A first step in the study was the development of energy parameters for Ca2+ compatible with those in the CHARMM package of computer simulation software. Such parameters were obtained from an analytical fit to the potential surface for [(Ca)(OCH2)4]2+ calculated with an ab initio molecular orbital method. The resulting parametrization was tested for the hexapeptide cyclo-(Pro-Gly)3, and a 75 residue long calcium binding protein from bovine intestine (ICaBP). The geometrical parameters calculated for the hexapeptide and its 2:1 complex with Ca2+ were in good agreement with experimental data from crystallography and nmr. Similarly, the structure of ICaBP optimized with CHARMM using the new Ca2+ parameters showed good agreement with the x-ray structure both in the local structures of the calcium-binding sites and in the overall shape of the protein.  相似文献   

13.
A novel strategy is applied to obtain quantitative insights on factors influencing biological affinity in protein-ligand complexes. This approach is based on the detection of ligand binding by (15)N and (1)H amide chemical shift differences in two-dimensional (15)N-heteronuclear single-quantum correlation spectra. Essential structural features linked to affinity can be extracted using statistical analysis of (15)N and (1)H amide chemical shift differences in congeneric series relative to uncomplexed protein spectra, as demonstrated for 20 MMP-3 inhibitors in complex with human matrix metalloproteinase stromelysin (MMP-3). The statistical analysis using PLS led to a significant model, while its chemical interpretation, highlighting the importance of particular residues for affinity, are in agreement to an X-ray structure of one key compound in the homologue MMP-8 binding site.  相似文献   

14.
15.
16.
O Herzberg  M N James 《Biochemistry》1985,24(20):5298-5302
The refinement of the crystal structure of turkey skeletal muscle troponin C at 2.2-A resolution reveals that the two calcium binding loops that are occupied by Ca2+ ions adopt conformations very similar to those of the two homologous loops of parvalbumin and to that of loop III-IV of the intestinal calcium binding protein. This specific fold assures suitable spatial positioning of the Ca2+ ligands. It consists of two reverse turns, one located at each end of the loop, and four Asx turns (a cyclic hydrogen-bonded structure involving an oxygen of the side chain of residue n and the main-chain amide nitrogen of residue n + 2) whenever such a side chain coordinates to the metal ion. The fifth Ca2+ coordination position in both loops of troponin C is occupied by a water molecule that is within hydrogen-bonding distance of an aspartic acid, thus mediating indirect interaction between the cation and the negatively charged carboxylate. The same loop framework is conserved in the two Ca2+ binding loops of parvalbumin and loop III-IV of the intestinal Ca2+ binding protein in spite of the variability in the nature of the side chains at equivalent positions. The disposition of the Ca2+ and of its coordinating water molecule relative to the protein main chain is conserved in all these cases.  相似文献   

17.
The calcium binding properties of annexin I as observed by thermodynamic DSC studies have been compared to the structural information obtained from X-ray investigation. The calorimetric experiment permitted to evaluate both the reaction scheme - including binding of ligand and conformational changes - and the energetics of each reaction step. According to published X-ray data Annexin I has six calcium binding sites, three medium-affinity type II and three low-affinity type III sites.The present study shows that at 37 degrees C annexin I binds in a Hill type fashion simultaneously two calcium ions in a first step with medium affinity at a concentration of 0.6 mM and another three Ca(2+) ions again cooperatively at 30 mM with low affinity. Therefore it can be concluded that only two medium-affinity type II binding sites are available. The third site, that should be accessible in principle appears to be masked presumably due to the presence of the N terminus. In view of the large calcium concentration needed for saturation of the binding sites, annexin I may be expected to be Ca(2+) free in vivo unless other processes such as membrane interaction occur simultaneously. This assumption is consistent with the finding, that the affinity of annexins to calcium is usually markedly increased by the presence of lipids.  相似文献   

18.
《Cell calcium》2015,57(6):504-512
Imaging with Ca2+-sensitive fluorescent dye has provided a wealth of insight into the dynamics of cellular Ca2+ signaling. The spatiotemporal evolution of intracellular free Ca2+ observed in imaging experiments is shaped by binding and unbinding to cytoplasmic Ca2+ buffers, as well as the fluorescent indicator used for imaging. These factors must be taken into account in the interpretation of Ca2+ imaging data, and can be exploited to investigate endogenous Ca2+ buffer properties. Here we extended the use of Ca2+ fluorometry in the characterization of Ca2+ binding molecules within cells, building on a method of titration of intracellular Ca2+ binding sites in situ with measured amounts of Ca2+ entering through voltage-gated Ca2+ channels. We developed a systematic procedure for fitting fluorescence data acquired during a series of voltage steps to models with multiple Ca2+ binding sites. The method was tested on simulated data, and then applied to 2-photon fluorescence imaging data from rat posterior pituitary nerve terminals patch clamp-loaded with the Ca2+ indicator fluo-8. Focusing on data sets well described by a single endogenous Ca2+ buffer and dye, this method yielded estimates of the endogenous buffer concentration and Kd, the dye Kd, and the fraction of Ca2+ inaccessible cellular volume. The in situ Kd of fluo-8 thus obtained was indistinguishable from that measured in vitro. This method of calibrating Ca2+-sensitive fluorescent dyes in situ has significant advantages over previous methods. Our analysis of Ca2+ titration fluorometric data makes more effective use of the experimental data, and provides a rigorous treatment of multivariate errors and multiple Ca2+ binding species. This method offers a versatile approach to the study of endogenous Ca2+ binding molecules in their physiological milieu.  相似文献   

19.
Ca2+-dependent phospholipid- (and membrane-) binding proteins   总被引:19,自引:0,他引:19  
C B Klee 《Biochemistry》1988,27(18):6645-6653
  相似文献   

20.
In contrast with the transient pre-replicative increase in calmodulin (CaM) level observed in proliferative activated cells, postnatal development of rat testis was paralleled by 3 specific rises in CaM. The first one occurred between 5 and 10 days, coincident with the appearance and proliferation start of spermatogonia and Sertoli cells. Meiosis accomplishment and spermatid differentiation were paralleled by 2 additional rises, at 24 and 32 days, respectively. The plateau phase of testis growth was coincident with the appearance of maturating spermatids and spermatozoa in the germinal epithelium, and with a decrease in CaM content. Testicular DNA:g wet tissue ratio reached the highest level in 15-day-old rats and gradually decreased up to 35 days, when a constant level was reached. A similar level of Ca2+-CaMBPs was observed in 5- and 20-day-old rat testis. Although all subcellular fractions showed the ability to bind CaM in a Ca2+-dependent manner, CaM was mainly recovered in the nuclear and soluble fractions of adult and immature rat testis. Several Ca2+-CaMBPs with an apparent Mr of 82, 75, 64, 19, and 14 kD were purified by affinity chromatography from pachytene primary spermatocyte nuclear matrix. Ca2+-CaMBPs showing an Mr of 120, 78, 72, and 66 kD were also purified from the supernatant obtained after DNA and RNA hydrolysis of meiotic nuclei. Major cytosolic Ca2+-CaMBPs of primary spermatocytes showed an Mr of 120, 84, 44, and 39 kD. The functions that these Ca2+-CaMBPs might have during the first meiotic prophase is discussed. Mol. Reprod. Dev. 48:127–136, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号