首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unconventional myosins.   总被引:1,自引:0,他引:1  
The unconventional myosins form a large and diverse group of molecular motors. The number of known unconventional myosins is increasing rapidly and in the past year alone two new classes have been identified. Substantial progress has been made towards characterizing the properties and functions of these motor proteins, which have been hypothesized to play fundamental roles in processes such as cell locomotion, phagocytosis and vesicle transport.  相似文献   

2.
Myosins I were the first unconventional myosins to be purified and they remain the best characterized. They have been implicated in various motile processes, including organelle translocation, ion channel gating and cytoskeletal reorganization but their exact cellular functions are still unclear. All members of the myosin I family, from yeast to man, have three structural domains: a catalytic head domain that binds ATP and actin; a tail domain believed to be involved in targeting the myosins to specific subcellular locations and a junction or neck domain that connects them and interacts with light chains. In this review we discuss how each of these three domains contributes to the regulation of myosin I enzymatic activity, motor activity and subcellular localization.  相似文献   

3.
Unconventional myosins: new frontiers in actin-based motors   总被引:4,自引:0,他引:4  
The unconventional myosins are a superfamily of actin-based motors responsible for a rich array of intracellular motility events. Recent evidence suggests that these motors play important roles in cell migration, endocytosis and intracellular transport. Several genetic mutants have been identified whose abnormalities are the result of the loss of a specific myosin. This article describes how analysis of these mutants, coupled with basic studies of the intracellular localization and biochemical properties of individual myosins, is leading to a clearer understanding of the in vivo function of a number of these interesting motor proteins.  相似文献   

4.
The motor properties of the two yeast class V myosins, Myo2p and Myo4p, were examined using in vitro motility assays. Both myosins are active motors with maximum velocities of 4.5 microm/s for Myo2p and 1.1 microm/s for Myo4p. Myo2p motility is Ca(2+) insensitive. Both myosins have properties of a nonprocessive motor, unlike chick myosin-Va (M5a), which behaves as a processive motor when assayed under identical conditions. Additional support for the idea that Myo2p is a nonprocessive motor comes from actin cosedimentation assays, which show that Myo2p has a low affinity for F-actin in the presence of ATP and Ca(2+), unlike chick brain M5a. These studies suggest that if Myo2p functions in organelle transport, at least five molecules of Myo2p must be present per organelle to promote directed movement.  相似文献   

5.
Unconventional myosins have now been identified in amoeba as well as in higher eucaryotic cells. Their cellular localization, their ability to bind membrane vesicles and their ability to produce in vitro movement suggest that they can generate forces on the plasma membrane relative to actin filaments as well as on membrane compartments relative to actin. Genetic approaches and biochemical analysis of cells over-producing nonfunctional domains of unconventional myosins have provided direct evidence for a role of unconventional myosins in movement of intracellular vesicles and have allowed us to formulate hypotheses about the possible mechanisms by which unconventional myosins could participate in the intracellular transport of membrane proteins and secretory proteins.  相似文献   

6.
Sugita M  Iwataki Y  Nakano K  Numata O 《Gene》2011,480(1-2):10-20
Myosins are eukaryotic actin-dependent molecular motors that play important roles in many cellular events. The function of each myosin is determined by a variety of functional domains in its tail region. In some major model organisms, the functions and properties of myosins have been investigated based on their amino acid sequences. However, in protists, myosins have been little studied beyond the level of genome sequences. We therefore investigated the mRNA expression levels and amino acid sequences of 13 myosin genes in the ciliate Tetrahymena thermophila. This study is an overview of myosins in T. thermophila, which has no typical myosins, such as class I, II, or V myosins. We showed that all 13 myosins were expressed in vegetative cells. Furthermore, these myosins could be divided into 3 subclasses based on four functional domains in their tail regions. Subclass 1 comprised of 8 myosins has both MyTH4 and FERM domains, and has a potential to function in vesicle transport or anchoring between membrane and actin filaments. Subclass 2 comprised of 4 myosins has RCC1 (regulator of chromosome condensation 1) domains, which are found only in some protists, and may have unconventional features. Subclass 3 is comprised of one myosin, which has a long coiled-coil domain like class II myosin. In addition, phylogenetic analysis on the basis of motor domains showed that T. thermophila myosins are separated into two clusters: one consists of subclasses 1 and 2, and the other consists of subclass 3.  相似文献   

7.
Unconventional myosins: anchors in the membrane traffic relay   总被引:4,自引:0,他引:4  
The family of unconventional myosins is ever growing and the functions attributed to them seem to expand in parallel. These actin-based motor proteins have been implicated in processes as seemingly diverse as endocytosis and exocytosis, the transport of organelles, in spermatogenesis and in neurosensory functions such as hearing and sight. A common myosin function may underlie them all — the regulation of intracellular membrane traffic.  相似文献   

8.
As class III unconventional myosins are motor proteins with an N-terminal kinase domain, it seems likely they play a role in both signaling and actin based transport. A growing body of evidence indicates that the motor functions of human class IIIA myosin, which has been implicated in progressive hearing loss, are modulated by intermolecular autophosphorylation. However, the phosphorylation sites have not been identified. We studied the kinase activity and phosphorylation sites of mouse class III myosins, mMyo3A and 3B, which are highly similar to their human orthologs. We demonstrate that the kinase domains of mMyo3A and 3B are active kinases, and that they have similar, if not identical, substrate specificities. We show that the kinase domains of these proteins autophosphorylate, and that they can phosphorylate sites within their myosin and tail domains. Using liquid chromatography-mass spectrometry, we identified phosphorylated sites in the kinase, myosin motor and tail domains of both mMyo3A and 3B. Most of the phosphorylated sites we identified and their consensus phosphorylation motifs are highly conserved among vertebrate class III myosins, including human class III myosins. Our findings are a major step toward understanding how the functions of class III myosins are regulated by phosphorylation.  相似文献   

9.
All eukaryotic cells contain large numbers of motor proteins (kinesins, dyneins and myosins), each of which appears to carry out a specialized force-generating function within the cell. They are known to have roles in muscle contraction, ciliary movement, organelle and vesicle transport, mitosis and cytokinesis. These motor proteins operate on different cytoskeletal filaments; myosins move along actin filaments, and kinesins and dyneins along microtubules. Recently published crystal structures of the motor domains of two members of the kinesin superfamily reveal that they share the same overall fold that is also found at the core of the larger myosin motor. This suggests that they may share a common mechanism as well as a common ancestry.  相似文献   

10.
Phagocytosis and membrane traffic in general are largely dependent on the cytoskeleton and their associated molecular motors. The myosin family of motors, especially the unconventional myosins, interact with the actin cortex to facilitate the internalization of external materials during the early steps of phagocytosis. Members of the kinesin and dynein motor families, which mediate transport along microtubules (MTs), facilitate the intracellular processing of the internalized materials and the movement of membrane. Recent studies indicate that some unconventional myosins are also involved in membrane transport, and that the MT- and actin-dependent transport systems might interact with each other. Studies in Dictyostelium have led to the discovery of many motors involved in critical steps of phagocytosis and membrane transport. With the ease of genetic and biochemical approaches, the established functional analysis to test phagocytosis and vesicle transport, and the effort of the Dictyostelium cDNA and Genome Projects, Dictyostelium will continue to be a superb model system to study phagocytosis in particular and cytoskeleton and motors in general.  相似文献   

11.
Myosins are a large superfamily of motor proteins which, in association with actin, are involved in intra- cellular motile processes. In addition to the conventional myosins involved in muscle contractility, there is, in animal cells, a wide range of unconventional myosins implicated in membrane-associated processes, such as vesicle transport and membrane dynamics. In plant cells, however, very little is known about myosins. We have raised an antibody to the recombinant tail region of Arabidopsis thaliana myosin 1 (a class VIII myosin) and used it in immunofluorescence and EM studies on root cells from cress and maize. The plant myosin VIII is found to be concentrated at newly formed cross walls at the stage in which the phragmoplast cytoskeleton has depolymerized and the new cell plate is beginning to mature. These walls are rich in plasmodesmata and we show that they are the regions where the longitudinal actin cables appear to attach. Myosin VIII appears to be localized in these plasmodesmata and we suggest that this protein is involved in maturation of the cell plate and the re-establishment of cytoplasmic actin cables at sites of intercellular communication.  相似文献   

12.
Ever since the discovery of class I myosins, the first nonmuscle myosins, about 30 years ago, the history of unconventional myosins has been linked to the organization and working of actin filaments. It slowly emerged from studies of class I myosins in lower eukaryotes that they are involved in mechanisms of endocytosis. Most interestingly, a flurry of recent findings assign a more active role to class I myosins in regulating the spatial and temporal organization of actin filament nucleation and elongation. The results highlight the multiple links between class I myosins and the major actin nucleator, the Arp2/3 complex, and its newly described activators. Two additional types of unconventional myosins, myosinIX, and Dictyostelium discoideum MyoM, have recently been tied to the signaling pathways controlling actin cytoskeleton remodeling. The present review surveys the links between these three classes of molecular motors and the complex cellular processes of endocytosis and actin dynamics, and concentrates on a working model accounting for the function of class I myosins via recruitment of the machinery responsible for actin nucleation and elongation .  相似文献   

13.
Neuronal migration and growth cone motility are essential aspects of the development and maturation of the nervous system. These cellular events result from dynamic changes in the organization and function of the cytoskeleton, in part due to the activity of cytoskeletal motor proteins such as myosins. Although specific myosins such as Myo2 (conventional or muscle myosin), Myo1, and Myo5 have been well characterized for roles in cell motility, the roles of the majority of unconventional (other than Myo2) myosins in cell motility events have not been investigated. To address this issue, we have undertaken an analysis of unconventional myosins in zebrafish, a premier model for studying cellular and growth cone motility in the vertebrate nervous system. We describe the characterization and expression patterns of several members of the unconventional myosin gene family. Based on available genomic sequence data, we identified 18 unconventional myosin- and 4 Myo2-related genes in the zebrafish genome in addition to previously characterized myosin (1, 2, 3, 5, 6, 7) genes. Phylogenetic analyses indicate that these genes can be grouped into existing classifications for unconventional myosins from mouse and man. In situ hybridization analyses using EST probes for 18 of the 22 identified genes indicate that 11/18 genes are expressed in a restricted fashion in the zebrafish embryo. Specific myosins are expressed in particular neuronal or neuroepithelial cell types in the developing zebrafish nervous system, spanning the periods of neuronal differentiation and migration, and of growth cone guidance and motility.  相似文献   

14.
Myosins constitute a superfamily of motor proteins that convert energy from ATP hydrolysis into mechanical movement along the actin filaments. Phylogenetic analysis currently places myosins into 17 classes based on class-specific features of their conserved motor domain. Traditionally, the myosins have been divided into two classes depending on whether they form monomers or dimers. The conventional myosin of muscle and nonmuscle cells forms class II myosins. They are complex molecules of four light chains bound to two heavy chains that form bipolar filaments via interactions between their coiled-coil tails (type II). Class I myosins are smaller monomeric myosins referred to as unconventional myosins. Now, at least 15 other classes of unconventional myosins are known. How many myosins are needed to ensure the proper development and function of eukaryotic organisms? Thus far, three types of myosins were found in budding yeast, six in the nematode Caenorhabditis elegans, and at least 12 in human. Here, we report on the identification and classification of Drosophila melanogaster myosins. Analysis of the Drosophila genome sequence identified 13 myosin genes. Phylogenetic analysis based on the sequence comparison of the myosin motor domains, as well as the presence of the class-specific domains, suggests that Drosophila myosins can be divided into nine major classes. Myosins belonging to previously described classes I, II, III, V, VI, and VII are present. Molecular and phylogenetic analysis indicates that the fruitfly genome contains at least five new myosins. Three of them fall into previously described myosin classes I, VII, and XV. Another myosin is a homolog of the mouse and human PDZ-containing myosins, forming the recently defined class XVIII myosins. PDZ domains are named after the postsynaptic density, disc-large, ZO-1 proteins in which they were first described. The fifth myosin shows a unique domain composition and a low homology to any of the existing classes. We propose that this is classified when similar myosins are identified in other species.  相似文献   

15.
曹洋  沈梅  张洁  李向东 《昆虫知识》2011,48(2):239-246
肌球蛋白是一类重要的分子马达,可以将ATP水解产生的能量转化成动能,沿由肌动蛋白组成的细丝运动。肌球蛋白构成一个大的基因家族,在许多细胞活动中起着重要作用,包括肌肉收缩、胞内转运、听觉、视觉等。果蝇基因组有13种肌球蛋白基因,包括2种常规肌球蛋白和11种非常规肌球蛋白。本文综述了近年来果蝇非常规肌球蛋白的研究进展。  相似文献   

16.
There are 16 classes of unconventional myosins. Class V myosins have been shown to be involved in transporting cargo to and from the cell periphery. Class VI myosins have also been shown to transport cargo from the cell periphery, although it seems that these proteins have many roles which include the mediation of cell migration and stereocillia stabilisation. With the requirement of myosin VI for Drosophila oogenesis, the localised expression of Myosin V in the developing egg chamber and recent mounting evidence which links myosin VI to the migration of human ovarian cancer cell lines, we wanted to investigate the expression pattern of these two myosin classes in the normal mouse ovary. Here we show that these myosins are expressed, localised and regulated within the oocyte and granulosa cells of the developing mouse follicle.  相似文献   

17.
Cells use molecular motors, such as myosins, to move, position and segregate their organelles. Class V myosins possess biochemical and structural properties that should make them ideal actin-based cargo transporters. Indeed, studies show that class V myosins function as cargo transporters in yeast, moving a range of organelles, such as the vacuole, peroxisomes and secretory vesicles. There is also increasing evidence in vertebrate cells that class V myosins not only tether organelles to actin but also can serve as short-range, point-to-point organelle transporters, usually following long-range, microtubule-dependent organelle transport.  相似文献   

18.
Myosins in melanocytes: to move or not to move?   总被引:2,自引:0,他引:2  
The actin network has been implicated in the intracellular transport and positioning of the melanosomes, organelles that are specialized in the biosynthesis and the storage of melanin. It contributes also to molecular mechanisms that underlie the intracellular membrane dynamics and thereby can control the biogenesis of melanosomes. Two mechanisms for actin-based movements have been identified: one is dependent on the motors associated to actin namely the myosins; the other is dependent on actin polymerization. This review will focus on to the role of the actin cytoskeleton and myosins in the transport and in the biogenesis of melanosomes. Myosins involved in membrane traffic are largely seen as transporters of organelles or membrane vesicles containing cargos along the actin networks. Yet increasing evidence suggests that some of the myosins contribute to the dynamics of internal membrane by using other mechanisms. The role of the myosins and the different molecular mechanisms by which they contribute or may contribute to the distribution, the movement and the biogenesis of the melanosomes in epidermal melanocytes and retinal pigmented epithelial (RPE) cells will be discussed.  相似文献   

19.
The actin network has been implicated in the intracellular transport and positioning of the melanosomes, organelles that are specialized in the biosynthesis and the storage of melanin. It contributes also to molecular mechanisms that underlie the intracellular membrane dynamics and thereby can control the biogenesis of melanosomes. Two mechanisms for actin‐based movements have been identified: one is dependent on the motors associated to actin namely the myosins; the other is dependent on actin polymerization. This review will focus on to the role of the actin cytoskeleton and myosins in the transport and in the biogenesis of melanosomes. Myosins involved in membrane traffic are largely seen as transporters of organelles or membrane vesicles containing cargos along the actin networks. Yet increasing evidence suggests that some of the myosins contribute to the dynamics of internal membrane by using other mechanisms. The role of the myosins and the different molecular mechanisms by which they contribute or may contribute to the distribution, the movement and the biogenesis of the melanosomes in epidermal melanocytes and retinal pigmented epithelial (RPE) cells will be discussed.  相似文献   

20.
This report presents an initial comparison of motor, neck, and tail domains of myosin genes in Tetrahymena thermophila. An unrooted phylogenetic tree drawn from alignment of predicted amino acid translations determined the relationship among 13 myosins in Tetrahymena and their relationship to the myosin superfamily. The myosins in Tetrahymena did not align with any of the previously named myosin classes. Twelve of the Tetrahymena myosins form a new class designated as XX. The other Tetrahymena myosin is divergent from the twelve. Surprisingly, none of the myosins in Tetrahymena aligned with either class I, class II, or class V myosins. Apparent absence of a class II myosin is an indication that cytokinesis in Tetrahymena either utilizes an unconventional myosin or does not require a myosin motor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号