首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature and moisture content are particularly important factors influencing the longevity of seeds, and therefore the ageing of seeds is closely tied to storage conditions. The ageing process is characterised by many physiological and biochemical changes: membranes tend to leak, enzymes lose catalytic activity, and chromosomes accumulate mutations. Since viability loss is also associated with the breakdown of nucleic acids, the aim of the study was to determine whether the damage induced by ageing could be associated with changes in the activity of RNases and nucleases in embryos and endosperms of differently stored wheat seeds. In order to better characterise seed conditions, the damage to membranes during seed ageing was evaluated by measuring the conductivity of the soaking solution during imbibition, and by using the Evans Blue colorant; lipid peroxidation was also recorded. RNases and nucleases were studied by SDS-PAGE and activity staining. Ageing of seeds stored in a dry state involved a progressive loss of membrane integrity, which increased with the degree of ageing, while lipid peroxidation remained unchanged. Changes in nucleolytic enzyme activity were recorded in embryos: a decrease in RNases and an increase in nucleases. In the endosperm compartment there were no significant differences in ribonuclease and nuclease patterns during seed ageing. Moreover, neutral RNases were absent in endosperms of dry seeds and were activated following imbibition. Present studies reveal that embryos and endosperms have different enzymatic patterns, thus highlighting that the two seed compartments age independently. A different nucleolytic pattern was present in seeds of comparable viability and membrane damage, which were stored differently, and nuclease metabolism was subject to regulation according to both ageing and the length of the storage period.  相似文献   

2.
Proteome analysis of maize seeds: the effect of artificial ageing   总被引:2,自引:0,他引:2  
Xin X  Lin XH  Zhou YC  Chen XL  Liu X  Lu XX 《Physiologia plantarum》2011,143(2):126-138
  相似文献   

3.
Accelerated ageing of Dendrocalamus strictus Ness seeds at 42 ± 1°C and 100% relative humidity for 1 to 8 d was conducted. Seeds lost viability and changed their biochemical constituents. Reductions in the contents of sugars, starch, proteins and lipids were found. Decrease in the activity of the peroxidase as well as acid and alkaline phosphatase were also observed. Increase in total free amino acids content and the activity of amylase confirmed the degradation of seed reserves.  相似文献   

4.
Two primary biochemical reactions in seed ageing (lipid peroxidation and non-enzymatic protein glycosylation with reducing sugars) have been studied under different seed water contents and storage temperatures, and the role of the glassy state in retarding biochemical deterioration examined. The viability loss of Vigna radiata seeds during storage is associated with Maillard reactions; however, the contribution of primary biochemical reactions varies under different storage conditions. Biochemical deterioration and viability loss are greatly retarded in seeds stored below a high critical temperature (approximately 40 degrees C above glass transition temperature). This high critical temperature corresponds to the cross-over temperature (T(c)) of glass transition where molecular dynamics changes from a solid-like system to a normal liquid system. The data show that seed ageing slows down significantly, even before seed tissue enters into the glassy state.  相似文献   

5.
The germination of viable seeds is the basis for new plant growth and development. Seeds lose viability during storage, but the biochemical mechanisms of seed death are not fully understood. This study aimed to investigate degradation patterns of nucleic acids during seed ageing and subsequent water uptake. Seeds of Pisum sativum L. were artificially aged at 50°C and 12% seed water content (WC). Nucleic acids degradation was studied during ageing and during imbibition of four seed lots with differential viability from highly viable to dead. As seeds lost viability during ageing, DNA was gradually degraded into internucleosomal fragments, resulting in ‘DNA laddering’, in conjunction with disintegration of 18S and 28S rRNA bands. During imbibition, non-aged controls had high levels of DNA and RNA integrity through to radicle protrusion. In an aged seed lot with 85% total germination (TG) DNA fragmentation decreased upon imbibition probably due to nucleosome degradation, while rRNA integrity did not improve. In an aged seed lot with 44% TG, neither DNA nor rRNA integrity improved upon imbibition. Dead seeds showed DNA degradation as laddering throughout imbibition along with extensive degradation of rRNA. We present a model in which interlinked programmed and non-programmed events contribute to seed ageing, and suggest that protection of nucleic acids during ageing is key to seed longevity.  相似文献   

6.
The changes in germinability and phospholipid content of naturallyand artificially aged tomato seeds, variety Kingley Cross, werecompared. Subsequent low temperature pre-sowing treatment (LTPST)was unable to prevent decreases in the germination capacityof aged samples, but significantly improved germination rates.However, in contrast to previous studies on artificial ageingusing the variety Moneymaker, losses of total phospholipid werenot always well correlated with decreased germinability. Totalphospholipid levels in naturally aged seeds were largely unaffectedby pre-sowing treatment, but the proportion of phosphatidylcholinewas greatly increased. These results strongly suggest that lossesof phospholipid are coincidental rather than causative eventsin the loss of seed viability during ageing, and that the patternof changes depends on the type of ageing experienced by theseeds. Controlled deterioration, seed ageing, tomato seeds, seed treatment, phospholipids  相似文献   

7.
Accelerated ageing is an accurate test indicator of seed vigor and storability that helps to understand the mechanisms of cellular and biochemical deterioration that occur during seed ageing. This study was carried out to elucidate the mechanisms of ageing in macaw palm embryos. Seeds were artificially aged during 4, 8 and 12 days at 45 °C and 100% relative humidity. After ageing, seeds were tested for viability (tetrazolium), electrical conductivity, lipid peroxidation (MDA) and hydrogen peroxide (H2O2) content. Part of the aged seeds was imbibed for 8 days and then determined the hydrogen peroxide content and the activity of antioxidant system enzymes (superoxide dismutase, catalase and glutathione reductase). Ageing reduced the embryo viability from 8 days of treatment and increased malondialdehyde content (MDA) and solute leakage. Hence, membrane permeability correlated with both loss of viability and lipid peroxidation. Imbibition after ageing significantly increased H2O2 content along with superoxide dismutase activity. Catalase activity was significantly higher than control in embryos aged from 8 days and imbibed, and glutathione reductase activity did not change. Our results suggest that macaw palm seed deterioration during accelerated ageing is closely related to lipid peroxidation, and that enzymatic antioxidant system is not completely efficient in reducing reactive oxygen species after imbibition, a critical phase to germination. Moreover, accelerated ageing test can be used as a reliable model to understand the mechanisms involved in palm seeds deterioration.  相似文献   

8.
甜菜(BetavulgarisLcv.Loke)种子的人工老化(30℃,100%RH)导致种子的干重、生活力和活力逐渐丧失,线粒体的呼吸速率、细胞色素c氧化酶和苹果酸脱氢酶的活性下降。线粒体蛋白质随着种子老化而显著变化,小分子量热休克蛋白(LMWHSP)22从老化的0d到30d增加,然后从30d到90d下降。可以认为甜菜种子人工老化过程中线粒体活性和LMWHSP22的含量变化与种子活力密切相关。  相似文献   

9.
Brassica napus cv Westar plants were transformed with 3-oxoacyl-ACP reductase (KR) in antisense orientation, driven by either the cauliflower mosaic virus 35S promoter or a seed-specific acyl carrier protein promoter to determine the effects on plant productivity and on the activity of other fatty acid synthase (FAS) components. In plants with altered KR activity, total seed yield was reduced in all cases. In less severely affected plant lines, seeds had a normal appearance and composition but the yield of seeds was reduced by approximately 50%. In more severely affected lines, reductions in both seed fatty acid content and the number of seeds produced per plant were evident, resulting in a 90% reduction in fatty acid synthesized per plant. These phenotypes were independent of the promoter used. In severely affected lines, a large proportion of seeds showed precocious germination, and these had a reduced oleate content and increased levels of polyunsaturated 18-carbon fatty acids, compared with normal seeds of the same line. This reduction in 18:1 fatty acids was mimicked on imbibition of seeds with a normal appearance, indicating a preferential use of oleate moieties in precocious germination events. The reduction in activity of KR was mirrored for a second fatty acid synthase component, enoyl-ACP reductase, indicating a mechanism to maintain the ratio of fatty acid synthase components throughout embryogenesis.  相似文献   

10.
During sunflower (Helianthus annuus L.) seed formation there was an active period of lipid biosynthesis between 12 and 28 days after flowering (DAF). The maximum in-vitro acyl-acyl carrier protein (ACP) thioesterase activities (EC 3.1.2.14) were found at 15 DAF, preceding the largest accumulation of lipid in the seed. Data from the apparent kinetic parameters, V max and K m, from seeds of 15 and 30 DAF, showed that changes in acyl-ACP thioesterase activity are not only quantitative, but also qualitative, since, although the preferred substrate was always oleoyl-ACP, the affinity for palmitoyl-ACP decreased, whereas that for stearoyl-ACP increased with seed maturation. Bisubstrate assays carried out at 30 DAF seemed to indicate that the total activity found in mature seeds is due to a single enzyme with 100/75/15 affinity for oleoyl-ACP/stearoyl-ACP/palmitoyl-ACP. In contrast, at 15 DAF, enzymatic data together with partial sequences from cDNAs indicated the presence of at least two enzymes with different properties, a FatA-like thioesterase, with a high affinity for oleoyl-ACP, plus a FatB-like enzyme, with preference for long-chain saturated fatty acids, both being expressed during the active lipid biosynthesis period. Competition assays carried out with CAS-5, a mutant with a higher content of palmitic acid in the seed oil, indicated that a modified FatA-type thioesterase is involved in the mutant phenotype. Received: 17 December 1999 / Accepted: 25 February 2000  相似文献   

11.
It was shown that the exposure of seeds in the rest phase to a low-frequency pulse electromagnetic field leads to substantial changes in seed physiology during germination. The changes at the physiological level in sprouting seeds depend not only on the frequency of the external EMF and its power characteristics but also on the kind of seeds. Low- and high-frequency electromagnetic fields are able to produce a biostimulation effect; however, the mechanisms of its appearance are different in their nature. The biochemical studies of seeds after EMF treatment in the modes resulting in expressed biological effects showed an increase in the activity of alpha-amylase, which testifies an increase in the gibberellin output and in the activity of the hydrolytic enzyme sour phosphatase. The response of seeds to EMF treatment demonstrates the possibility of electromagnetic control of growth processes.  相似文献   

12.
Genetic variation in protoplast-derived rice (Oryza sativa L.) plants was characterized using first and second generation selfed progenies. A total of 133 regenerated plants were obtained from ten protoplasts of the japonica rice cultivar Nipponbare. Sixty two regenerated plants which set enough seeds for the subsequent field tests at the next generation and were derived from five protoplasts were selected, and their selfed seeds were used as the first selfed-seed progeny generation). Fifteen plants were selected from each of the 15 lines, and their selfed seeds were used for tests at the generation. Thirty seven lines (60%) segregated plants with detrimental mutant characters of yellow-green phenotype, dwarf stature, dense and short panicle, or low seed fertility. According to the segregation patterns in the lines having mutated plants among those originated from the same protoplasts, the stages of mutation induction were estimated. Additionally, five quantitative traits were changed in almost all and lines. Varied quantitative traits of heading date, number of spikelets per panicle, and seed fertility, were in a heterozygous state. However, culm and panicle lengths showed high uniformity, whereas reduced culm and panicle lengths were caused by mutational changes in polygenes and/or multiple genes. Received: 20 March 1996 / Accepted: 21 June 1996  相似文献   

13.
Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols (TAG), i.e. the storage lipids. Phospholipase D (PLD) catalyses the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild‐type (WT) seeds stored for 33 months were non‐viable, 30%–50% of PLDα‐knockdown (PLD‐KD) soybean seeds stored for 33 months germinated. WT and PLD‐KD seeds increased in lysophospholipid levels and in TAG fatty acid unsaturation during ageing, but the levels of lysophospholipids increased more in WT than in PLD‐KD seeds. The loss of viability of WT seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural ageing, PLDα affects the soybean phospholipid profile and the TAG profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long‐term storage.  相似文献   

14.
Background and Aims Epigenetic regulation plays an important role in the management of plant growth, development and response to stress factors, and several reports have indicated that DNA methylation plays a critical role in seed development and viability. This study examines changes in 5-methylcytosine (m5C) levels in the DNA of seeds during ageing, a process that has important implications for plant conservation and agriculture.Methods Changes in the global level of m5C were measured in mature seeds of oak, Quercus robur. The extent of DNA methylation was measured using a protocol based on two-dimensional thin-layer chromatography. Viability of seeds was determined by germination and seedling emergence tests.Key Results An ageing-related decrease in total m5C during storage of recalcitrant seeds was highly and significantly correlated with a decrease in seed viability, as reflected by a reduction in germination (r = 0·8880) and seedling emergence (r = 0·8269).Conclusions The decrease in viability during ageing of Q. robur seeds is highly correlated with a global decline in the amount of m5C in genomic DNA, and it is possible that this may represent a typical response to ageing and senescence in recalcitrant seeds. Potential mechanisms that drive changes in genomic DNA methylation during ageing are discussed, together with their implications for seed viability.  相似文献   

15.
Kathleen Donohue 《Oecologia》1997,110(4):520-527
A factorial design of three densities of siblings at three local distances from seed parents was employed to distinguish effects of density from effects of dispersal distance on lifespan and fruit production of Cakile edentula var. lacustris, a plant with heteromorphic seeds. The segmented fruits produce two seed types: proximal and distal, with distal seeds having greater mass and greater dispersibility. Effects of longer distances (0.5 km and 30 km) on lifespan and fruit production were investigated using plants at low density. The prediction was tested that the greater seed mass of distal seeds increases fitness when seeds are dispersed into sites of unknown quality away from the home site or when seeds are dispersed to low density. High density caused earlier mortality and lower probability of reproduction. Distance from the maternal plant did not influence lifespan or reproduction at distances of 15 m or less, but lifespan was longer 0.5 km from the home site. No interaction was detected between the effects of density and distance on either lifespan or total fitness. Environmental conditions that influence fitness did not vary as a function of dispersal distance in this system, and favorable conditions at the home site did not persist between generations. Therefore, selection on dispersion patterns in natural conditions is likely to be through effects of density rather than dispersal distance. Proximal seeds had greater reproduction than distal seeds at the home site, and distal seeds had greater reproduction at the more distant sites (but not the most distant site), as expected, but these performance differences could not be attributed to differences in mass between the two seed types. Reduced seed mass was favored at the most distant site, but larger seed mass was favored most strongly at low density. Seeds that are dispersed to low density are larger, suggesting that although kin selection may limit the effectiveness of individual selection to increase seed mass under conditions of sibling competition, density-dependent individual selection on seed mass, rather than distant-dependent selection, also contributes to the observed associations among seed type, seed mass and dispersal ability. Received: 21 October 1996 / Accepted: 4 December 1996  相似文献   

16.
 Increased ethylene evolution accompanies seed germination of many species including Pisum sativum L., but only a little is known about the regulation of the ethylene biosynthetic pathway in different seed tissues. Biosynthesis of the direct ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the expression of ACC oxidase (ACO), and ethylene production were investigated in the cotyledons and embryonic axis of germinating pea seeds. An early onset and sequential induction of ACC biosynthesis, accumulation of Ps-ACO1 mRNA and of ACO activity, and ethylene production were localized almost exclusively in the embryonic axis. Maximal levels of ACC, Ps-ACO1 mRNA, ACO enzyme activity and ethylene evolution were found when radicle emergence was just complete. Treatment of germinating seeds with ethylene alone or in combination with the inhibitor of ethylene action 2,5-norbornadiene showed that endogenous ethylene regulates its own biosynthesis through a positive feedback loop that enhances ACO expression. Accumulation of Ps-ACO1 mRNA and of ACO enzyme activity in the embryonic axis during the late phase of germination required ethylene, whereas Ps-ACS1 mRNA levels and overall ACC contents were not induced by ethylene treatment. Ethylene did not induce ACO in the embryonic axis during the early phase of germination. Ethylene-independent signalling pathways regulate the spatial and temporal pattern of ethylene biosynthesis, whereas the ethylene signalling pathway regulates high-level ACO expression in the embryonic axis, and thereby enhances ethylene evolution during seed germination. Received: 28 September 1999 / Accepted: 27 December 1999  相似文献   

17.
Using the method of room temperature phosphorescence (RTP), we divided air-dry pea (Pisum sativum L.) seeds subjected to accelerated ageing (40°C, 85% relative humidity) into three fractions: (I) high-quality seeds, (II) weakened seeds, and (III) dead seeds. In the process of ageing, seed germinability firstly decreased and then increased due to so-called “improved” seeds of fraction II, which returned to fraction I as judged from the RTP level; the germinability of these seeds became equal to that of fraction I seeds. Seeds capable of germination (fractions I and II) differed in the rates of imbibition, which depended on plasma membrane permeability (opened or closed water channels) but not on the presence of the seed coat. A low activation energy of seed imbibition in fraction II (less than 5 kcal/mol) indicates that water channels are open. A mercury-containing compound (5 μM p-chloromercuribenzoate (PCMB) reduced the rate of water uptake by these seeds, and dithiothreitol restored it. A high activation energy of fraction I seed imbibition (more than 12 kcal/mol) corresponded to the water uptake mainly across the lipid bilayer when water channels are closed. PCMB did not affect the rate of fraction I seed imbibition. We supposed that mature air-dry pea seeds had open water channels. During the first stages of fraction I seed imbibition, these channels were closed, limiting water uptake. NaF (100 μM), an inhibitor of phosphatase, prevented channel closing and accelerated the imbibition of fraction I seeds. It did not affect the imbibition rate of fraction II seeds, indicating their water channels to be opened. However, NaF did not affect the water uptake of “improved” fraction II seeds as well. It seems likely that their channels were closed during accelerated ageing but otherwise than via dephosphorylation. The results obtained indicate the possibility of water inflow regulation in the weakened seeds via the state of aquaporins, which form water channels in the membranes.  相似文献   

18.
Whether seed consumers affect plant establishment is an important unresolved question in plant population biology. Seed consumption is ubiquitous; at issue is whether seedling recruitment is limited by safe-sites or seeds. If most seeds inhabit sites unsuitable for germination, post-dispersal seed consumption primarily removes seeds that would otherwise never contribute to the population and granivory has minimal impacts on plant abundance. Alternatively, if most seeds ultimately germinate before they lose viability, there is greater potential for seed consumption to affect plant recruitment. Of the many studies on seed consumption, few ask how seed loss affects seedling recruitment for species with long-lived seed banks. We examined post-dispersal seed predation and seedling emergence in bush lupine (Lupinus arboreus), a woody leguminous shrub of coastal grasslands and dunes in California. We followed the fate of seeds in paired experimental seed plots that were either protected or exposed to rodent granivores in grassland and dune habitats. Significantly more seeds were removed by rodents in dunes than grasslands. In dunes, where rodent granivory was greatest (65% and 86% of seeds removed from plots by rodents in two successive years), there is a sparse seed bank (6.6 seeds m−2), and granivory significantly reduced seedling emergence (in the same two years, 18% and 19.4% fewer seedlings emerged from exposed versus protected plots), suggesting seed rather than safe-site limited seedling recruitment. In contrast, rodents removed an average of 6% and 56% of seeds from grassland plots during the same two years, and the grassland seed bank is 43-fold that of the dunes (288 seeds m−2). Even high seed consumption in the second year of the study only marginally influenced recruitment because seeds that escaped predation remained dormant. Burial of seeds in both habitats significantly reduced the percentage of seeds removed by rodents. Results suggest that granivores exert strong but habitat-dependent effects on lupine seed survival and seedling emergence. Received: 24 October 1996 / Accepted: 4 February 1997  相似文献   

19.
Walters C  Landré P  Hill L  Corbineau F  Bailly C 《Planta》2005,222(3):397-407
Imbibing sunflower (Helianthus annuus L., cv. Briosol) seeds at water potentials between –2 MPa and –5 MPa leads to faster (priming) or slower (accelerated ageing) germination depending on the temperature and duration of treatment. Mobilization of food reserves may be associated with the changes in seed vigor. To study this, morphological, biochemical and phase properties of lipid, the major food reserve in sunflower, were compared in freshly harvested (i.e., control), primed and aged sunflower cotyledons using electron microscopy, biochemical analyses and differential scanning calorimetry, respectively. Lipid bodies became smaller and more dispersed throughout the cytoplasm during priming and ageing. Despite ultrastructural changes, there were few measured changes in biochemistry of the neutral lipid component; lipid content, proportion of saturated and unsaturated fatty acids and level of free fatty acids were unchanged in primed and slightly aged seeds, with only severely aged seeds showing a net decrease in polyunsaturated fatty acids and an increase in free fatty acids. Subtle changes in the calorimetric behavior of lipids within sunflower cotyledons were observed. Sunflower lipids exhibited polymorphic crystalline and amorphous solid phases when cooled to <–100°C, but priming decreased the rate of crystallization in vivo and ageing increased the rate of crystallization, but decreased percentage crystallinity. The observed changes in thermal behavior in vivo are consistent with losses and gains, respectively, of interacting non-lipid moieties in the triacylglycerol matrix.  相似文献   

20.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号