共查询到20条相似文献,搜索用时 0 毫秒
1.
Association of the hypha‐related protein Pra1 and zinc transporter Zrt1 with biofilm formation by the pathogenic yeast Candida albicans 下载免费PDF全文
2.
A Dbf4p BRCA1 C-terminal-like domain required for the response to replication fork arrest in budding yeast 下载免费PDF全文
Dbf4p is an essential regulatory subunit of the Cdc7p kinase required for the initiation of DNA replication. Cdc7p and Dbf4p orthologs have also been shown to function in the response to DNA damage. A previous Dbf4p multiple sequence alignment identified a conserved approximately 40-residue N-terminal region with similarity to the BRCA1 C-terminal (BRCT) motif called "motif N." BRCT motifs encode approximately 100-amino-acid domains involved in the DNA damage response. We have identified an expanded and conserved approximately 100-residue N-terminal region of Dbf4p that includes motif N but is capable of encoding a single BRCT-like domain. Dbf4p orthologs diverge from the BRCT motif at the C terminus but may encode a similar secondary structure in this region. We have therefore called this the BRCT and DBF4 similarity (BRDF) motif. The principal role of this Dbf4p motif was in the response to replication fork (RF) arrest; however, it was not required for cell cycle progression, activation of Cdc7p kinase activity, or interaction with the origin recognition complex (ORC) postulated to recruit Cdc7p-Dbf4p to origins. Rad53p likely directly phosphorylated Dbf4p in response to RF arrest and Dbf4p was required for Rad53p abundance. Rad53p and Dbf4p therefore cooperated to coordinate a robust cellular response to RF arrest. 相似文献
3.
FAR1 is required for oriented polarization of yeast cells in response to mating pheromones 总被引:15,自引:4,他引:15 下载免费PDF全文
《The Journal of cell biology》1995,131(4):863-873
Cell polarization involves specifying an area on the cell surface and organizing the cytoskeleton towards that landmark. The mechanisms by which external signals are translated into internal landmarks for polarization are poorly understood. The yeast Saccharomyces cerevisiae exhibits polarized growth during mating: the actin cytoskeleton of each cell polarizes towards its partner, presumably to allow efficient cell fusion. The external signal which determines the landmark for polarization is thought to be a gradient of peptide pheromone released by the mating partner. Here we described mutants that exhibit random polarization. Using two assays, including a direct microscope assay for orientation (Segall, J. 1993. Proc. Natl. Acad. Sci. USA. 90:8332- 8337), we show that these mutants cannot locate the source of a pheromone gradient although they are able to organize their cytoskeleton. These mutants appear to be defective in mating because they are unable to locate the mating partner. They carry mutations of the FAR1 gene, denoted far1-s, and identify a new function for the Far1 protein. Its other known function is to promote cell cycle arrest during mating by inhibiting a cyclin-dependent kinase (Peter, M., and I. Herskowitz. 1994. Science (Wash. DC). 265:1228-1232). The far1-s mutants exhibit normal cell cycle arrest in response to pheromone, which suggests that Far1 protein plays two distinct roles in mating: one in cell cycle arrest and the other in orientation towards the mating partner. 相似文献
4.
The yeast histidine kinase, Sln1p, is a plasma membrane-associated osmosensor that regulates the activity of the osmotic stress MAP kinase pathway. Changes in the osmotic environment of the cell influence the autokinase activity of the cytoplasmic kinase domain of Sln1p. Neither the nature of the stimulus, the mechanism by which the osmotic signal is transduced nor the manner in which the kinase is regulated is currently clear. We have identified several mutations located in the linker region of the Sln1 kinase (just upstream of the kinase domain) that cause hyperactivity of the Sln1 kinase. This region of histidine kinases is largely uncharacterized, but its location between the transmembrane domains and the cytoplasmic kinase domain suggests that it may have a potential role in signal transduction. In this study, we have investigated the Sln1 linker region in order to understand its function in signal transduction and regulation of Sln1 kinase activity. Our results indicate that the linker region forms a coiled-coil structure and suggest a mechanism by which alterations induced by osmotic stress influence kinase activity by altering the alignment of the phospho-accepting histidine with respect to the catalytic domain of the kinase. 相似文献
5.
6.
Vatamaniuk OK Bucher EA Sundaram MV Rea PA 《The Journal of biological chemistry》2005,280(25):23684-23690
Phytochelatins (PCs), (gamma-Glu-Cys)n Gly polymers that were formerly considered to be restricted to plants and some fungal systems, are now known to play a critical role in heavy metal (notably Cd2+) detoxification in Caenorhabditis elegans. In view of the functional equivalence of the gene encoding C. elegans PC synthase 1, ce-pcs-1, to its homologs from plant and fungal sources, we have gone on to explore processes downstream of PC fabrication in this organism. Here we describe the identification of a half-molecule ATP-binding cassette transporter, CeHMT-1, from C. elegans with an equivalent topology to that of the putative PC transporter SpHMT-1 from Schizosaccharomyces pombe. At one level, CeHMT-1 satisfies the requirements of a Cd2+ tolerance factor involved in the sequestration and/or elimination of Cd x PC complexes. Heterologous expression of cehmt-1 in S. pombe alleviates the Cd2+-hypersensitivity of hmt- mutants concomitant with the localization of CeHMT-1 to the vacuolar membrane. Suppression of the expression of ce-hmt-1 in intact worms by RNA interference (RNAi) confers a Cd2+-hypersensitive phenotype similar to but more pronounced than that exhibited by ce-pcs-1 RNAi worms. At another level, it is evident from comparisons of the cell morphology of ce-hmt-1 and cepcs-1 single and double RNAi mutants that CeHMT-1 also contributes to Cd2+ tolerance in other ways. Whereas the intestinal epithelial cells of ce-pcs-1 RNAi worms undergo necrosis upon exposure to toxic levels of Cd2+, the corresponding cells of ce-hmt-1 RNAi worms instead elaborate punctate refractive inclusions within the vicinity of the nucleus. Moreover, a deficiency in CeHMT-1 does not interfere with the phenotype associated with CePCS-1 deficiency and vice versa. Double ce-hmt-1; ce-pcs-1 RNAi mutants exhibit both cell morphologies when exposed to Cd2+. These results and those from our previous investigations of the requirement for PC synthase for heavy metal tolerance in C. elegans demonstrate PC-dependent, HMT-1-mediated heavy metal detoxification not only in S. pombe but also in some invertebrates while at the same time indicating that the action of CeHMT-1 does not depend exclusively on PC synthesis. 相似文献
7.
8.
9.
10.
Growth of yeast strains, either deleted for the vacuolar ABC transporter Ycf1 or deleted for the plasma membrane ABC transporter Yor1p or overexpressing Yor1p, were compared for their sensitivity to cadmium. On solid medium cell death (or growth inhibition) was observed at cadmium concentrations higher than 100 microM when yeasts were grown at 30 degrees C for 24 h. However, for all tested strains cell death (or growth inhibition) was already observed at 40 microM cadmium when incubated at 23 degrees C for 60 h. Thus cadmium is more toxic to yeast at 23 degrees C than at 30 degrees C. At 23 degrees C, the Deltayor1 strain grew more slowly than the wild-type strain and the double Deltayor1, Deltaycf1 deleted strain was much more sensitive to cadmium than each single Deltayor1 or Deltaycf1 deletant. Overexpression of Yor1p in a Deltaycf1 strain restores full growth. Cadmium uptake measurements show that Deltaycf1 yeast strains expressing or overexpressing Yor1p store less cadmium than the corresponding Deltaycf1, Deltayor1 strain. The strains expressing Yor1p display an energy-dependent efflux of cadmium estimated for the yeast overexpressing Yor1p to be about 0.02 nmol 109Cd/mg protein/min. Yeast cells loaded with radiolabeled glutathione and then with radioactive cadmium displayed a twice-higher efflux of glutathione than that of cadmium suggesting that Yor1p transports both compounds as a bis-glutathionato-cadmium complex. All together, these results suggest that in addition to being accumulated in the yeast vacuole by Ycf1p, cadmium is also effluxed out of the cell by Yor1p. 相似文献
11.
12.
An ATP transporter is required for protein translocation into the yeast endoplasmic reticulum. 总被引:6,自引:2,他引:6 下载免费PDF全文
The transfer of precursor proteins through the membrane of the rough endoplasmic reticulum (ER) in yeast is strictly dependent on the presence of ATP. Since Kar2p (the yeast homologue of mammalian BiP) is required for translocation, and is an ATP binding protein, an ATP transport system must be coupled to the translocation machinery of the ER. We report here the characterization of a transport system for ATP in vesicles derived from yeast ER. ATP uptake into vesicles was found to be saturable in the micromolar range with a Km of 1 x 10(-5) M. ATP transport into ER vesicles was specifically inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a stilbene derivative known to inhibit a number of other anion transporters, and by 3'-O-(4-benzoyl)benzoyl-ATP (Bz2-ATP). Inhibition of ATP uptake into yeast microsomes by DIDS and Bz2-ATP blocked protein translocation in vitro measured co- as well as post-translationally. The inhibitory effect of DIDS on translocation was prevented by coincubation with ATP. Moreover, selective membrane permeabilization, allowing ATP access to the lumen, restored translocation activity to DIDS-treated membranes. These results demonstrate that translocation requires a DIDS and Bz2-ATP-sensitive component whose function is to transport ATP to the lumen of the ER. These findings are consistent with current models of protein translocation in yeast which stipulate the participation of Kar2p in the translocation process. 相似文献
13.
14.
15.
16.
An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast. 总被引:14,自引:1,他引:14 下载免费PDF全文
In an attempt to identify a mitochondrial ATP binding cassette (ABC) transporter, we have used the polymerase chain reaction to amplify 10 DNA fragments homologous to members of the ABC family from the yeast Saccharomyces cerevisiae. We disrupted five of the corresponding genes and found that one of the resulting null mutants barely grew on rich medium and failed to grow on minimal medium. This gene, termed ATM1, encodes a putative 'half-transporter' of 694 amino acids. Atm1p is synthesized with an N-terminal mitochondrial matrix-targeting signal and is located in the mitochondrial inner membrane, with its C-terminal ATPase domain exposed to the matrix. Cells lacking a functional ATM1 gene have an unstable mitochondrial genome and have white mitochondria that completely lack cytochromes. Atm1p is the first mitochondrial member of the ABC family to be identified and the only eukaryotic ABC transporter that has been shown to be necessary for normal cellular growth. 相似文献
17.
Furman MH Loureiro J Ploegh HL Tortorella D 《The Journal of biological chemistry》2003,278(37):34804-34811
Human cytomegalovirus US2 and US11 target newly synthesized class I major histocompatibility complex (MHC) heavy chains for rapid degradation by the proteasome through a process termed dislocation. The presence of US2 induces the formation of class I MHC heavy chain conjugates of increased molecular weight that are recognized by a conformation-specific monoclonal antibody, W6/32, suggesting that these class I MHC molecules retain their proper tertiary structure. These conjugates are properly folded glycosylated heavy chains modified by attachment of an estimated one, two, and three ubiquitin molecules. The folded ubiquitinated class I MHC heavy chains are not observed in control cells or in cells transfected with US11, suggesting that US2 targets class I MHC heavy chains for dislocation in a manner distinct from that used by US11. This is further supported by the fact that US2 and US11 show different requirements in terms of the conformation of the heavy chain molecule. Although ubiquitin conjugation may occur on the cytosolic tail of the class I MHC molecule, replacement of lysines in the cytosolic tail of heavy chains with arginine does not prevent their degradation by US2. In an in vitro system that recapitulates US2-mediated dislocation, heavy chains that lack these lysines still occur in an ubiquitin-modified form, but in the soluble (cytoplasmic) fraction. Such ubiquitin conjugation can only occur on the class I MHC lumenal domain and is likely to take place once class I MHC heavy chains have been discharged from the endoplasmic reticulum. We conclude that ubiquitinylation of class I MHC heavy chain is not required during the initial step of the US2-mediated dislocation reaction. 相似文献
18.
A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region 总被引:34,自引:15,他引:34 下载免费PDF全文
The E1 glycoprotein of the avian coronavirus infectious bronchitis virus contains a short, glycosylated amino-terminal domain, three membrane-spanning domains, and a long carboxy-terminal cytoplasmic domain. We show that E1 expressed from cDNA is targeted to the Golgi region, as it is in infected cells. E1 proteins with precise deletions of the first and second or the second and third membrane-spanning domains were glycosylated, thus suggesting that either the first or third transmembrane domain can function as an internal signal sequence. The mutant protein with only the first transmembrane domain accumulated intracellularly like the wild-type protein, but the mutant protein with only the third transmembrane domain was transported to the cell surface. This result suggests that information specifying accumulation in the Golgi region resides in the first transmembrane domain, and provides the first example of an intracellular membrane protein that is transported to the plasma membrane after deletion of a specific domain. 相似文献
19.
Cells of a Saccharomyces cerevisiae mutant that is temperature-sensitive for secretion and cell surface growth become dense during incubation at the non-permissive temperature (37°C). This property allows the selection of additional secretory mutants by sedimentation of mutagenized cells on a Ludox density gradient. Colonies derived from dense cells are screened for conditional growth and secretion of invertase and acid phosphatase. The sec mutant strains that accumulate an abnormally large intracellular pool of invertase at 37°C (188 mutant clones) fall into 23 complementation groups, and the distribution of mutant alleles suggests that more complementation groups could be found. Bud emergence and incorporation of a plasma membrane sulfate permease activity stop quickly after a shift to 37°C. Many of the mutants are thermoreversible; upon return to the permissive temperature (25°C) the accumulated invertase is secreted. Electron microscopy of sec mutant cells reveals, with one exception, the temperature-dependent accumulation of membrane-enclosed secretory organelles. We suggest that these structures represent intermediates in a pathway in which secretion and plasma membrane assembly are colinear. 相似文献
20.
A membrane-embedded glutamate is required for ligand binding to the multidrug transporter EmrE 总被引:8,自引:0,他引:8 下载免费PDF全文
EmrE is an Escherichia coli multidrug transporter that confers resistance to a variety of toxins by removing them in exchange for hydrogen ions. The detergent-solubilized protein binds tetraphenylphosphonium (TPP(+)) with a K(D) of 10 nM. One mole of ligand is bound per approximately 3 mol of EmrE, suggesting that there is one binding site per trimer. The steep pH dependence of binding suggests that one or more residues, with an apparent pK of approximately 7.5, release protons prior to ligand binding. A conservative Asp replacement (E14D) at position 14 of the only membrane-embedded charged residue shows little transport activity, but binds TPP(+) at levels similar to those of the wild-type protein. The apparent pK of the Asp shifts to <5.0. The data are consistent with a mechanism requiring Glu14 for both substrate and proton recognition. We propose a model in which two of the three Glu14s in the postulated trimeric EmrE homooligomer deprotonate upon ligand binding. The ligand is released on the other face of the membrane after binding of protons to Glu14. 相似文献