首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have applied double-quantum-filtered (DQF) NMR of 35Cl to study binding of Cl- to external sites on intact red blood cells, including the outward-facing anion transport sites of band 3, an integral membrane protein. A DQF 35Cl NMR signal was observed in cell suspensions containing 150 mM KCl, but the DQF signal can be totally eliminated by adding 500 microM 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS), an inhibitor that interferes with Cl- binding to the band 3 transport site. Therefore, it seems that only the binding of Cl- to transport sites of band 3 can give rise to a 35Cl DQF signal from red blood cell suspensions. In accordance with this concept, analysis of the single quantum free induction decay (FID) revealed that signals from buffer and DNDS-treated cells were fitted with a single exponential function, whereas the FID signals of untreated control cells were biexponential. The DQF signal remained after the cells were treated with eosin-5-maleimide (EM), a noncompetitive inhibitor of chloride exchange. This result supports previous reports that EM does not block the external chloride binding site. The band 3-dependent DQF signal is shown to be caused at least in part by nonisotropic motions of Cl- in the transport site, resulting in incompletely averaged quadrupolar couplings.  相似文献   

2.
Molecular mechanisms of band 3 inhibitors. 1. Transport site inhibitors   总被引:4,自引:0,他引:4  
J J Falke  S I Chan 《Biochemistry》1986,25(24):7888-7894
The band 3 protein of red cells is a transmembrane ion transport protein that catalyzes the one-for-one exchange of anions across the cell membrane. 35Cl NMR studies of Cl- binding to the transport sites of band 3 show that inhibitors of anion transport can be grouped into three classes: (1) transport site inhibitors (examined in this paper), (2) channel-blocking inhibitors (examined in the second of three papers in this issue), and (3) translocation inhibitors (examined in the third of three papers in this issue). Transport site inhibitors fully or partially reduce the affinity of Cl- for the transport site. The dianion 4,4'-di-nitrostilbene-2,2'-disulfonate (DNDS) and the arginine-specific reagent phenylglyoxal (PG) each completely eliminate the transport site 35Cl NMR line broadening, and each compete with Cl- for binding. These results indicate that DNDS and PG share a common inhibitory mechanism involving occupation of the transport site: one of the DNDS negative charges occupies the site, while PG covalently modifies one or more essential positive charges in the site. In contrast, 35Cl NMR line broadening experiments suggest that 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) leaves the transport site partially intact so that the affinity of Cl- for the site is reduced but not destroyed. This result is consistent with a picture in which DIDS binds near the transport site and partially occupies the site.  相似文献   

3.
Molecular mechanisms of band 3 inhibitors. 2. Channel blockers   总被引:2,自引:0,他引:2  
J J Falke  S I Chan 《Biochemistry》1986,25(24):7895-7898
Band 3 is proposed to contain substrate channels that lead from the aqueous medium to a transport site buried within the membrane, and which can be blocked by inhibitors. The inhibitors 1,2-cyclohexanedione (CHD) and dipyridamole (DP) each inhibit the transport site 35Cl NMR line broadening, but neither competes with Cl- for binding. Thus these inhibitors do not occupy the transport site; instead they slow the migration of Cl- between the transport site and the medium. The simplest explanation for this behavior is that CHD and DP block one or more substrate channels. CHD is an arginine-specific covalent modification reagent, and its effectiveness as a channel blocker indicates that the channel contains arginine positive charges to facilitate the migration of anions through the channel. DP is a noncovalent channel blocker that binds with a stoichiometry of 1 molecule per band 3 dimer. DP binding is unaffected by CHD but is prevented by phenylglyoxal (PG), 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS), or niflumic acid. Thus the DP and CHD binding sites are distinct, with DP binding sufficiently close to the transport site to interact with PG and DNDS. It is proposed that substrate channels may be a general feature of transport proteins.  相似文献   

4.
Studies of binding of the reversible inhibitor DNDS (for abbreviations, see Nomenclature) and red blood cell membranes revealed 8.6 +/- 0.7 x 10(5) high-affinity binding sites per cell (KD = 0.8 +/- 0.4 muM). Under conditions of "mutual depletion," inhibition studies of anion exchange revealed 8.0 +/- 0.7 x 10(5) DNDS inhibitory sites per cell (KD = 0.87 +/- 0.04 muM). Binding and kinetics studies with DNDS indicate that there are 0.8 -- 0.9 x 10(6) functional anion transport sites per blood cell. The transport of DNDS displayed high temperature and concentration dependencies, chemical specificity, susceptibility to inhibition by DIDS, and differences between egress and ingress properties. Under conditions of no DNDS penetration (e.g., 0 degrees C), inhibition of anion exchange by DNDS showed marked sidedness from the outside inhibitions and were demonstrable at micromolar concentrations, whereas from the inside no inhibition occurred even at millimolar concentrations. The asymmetry of DNDS transport properties and the sidedness of binding and inhibition suggest that anion transport sites have a very low affinity for or are inaccessible to DNDS at the inner membrane face. The site of DNDS permeation, although susceptible to DIDS, is apparently not the site of anion exchange.  相似文献   

5.
The anion exchange system of human red blood cells is highly inhibited and specifically labeled by isothiocyano derivatives of benzene sulfonate (BS) or stilbene disulfonate (DS). To learn about the site of action of these irreversibly binding probes we studied the mechanism of inhibition of anion exchange by the reversibly binding analogs p-nitrobenzene sulfonic acid (pNBS) and 4,4'-dinitrostilbene-disulfonic acid (DNDS). In the absence of inhibitor, the self-exchange flux of sulfate (pH 7.4, 25 degrees C) at high substrate concentration displayed self-inhibitory properties, indicating the existence of two anion binding sites: one a high-affinity transport site and the other a low-affinity modifier site whose occupancy by anions results in a noncompetitive inhibition of transport. The maximal sulfate exchange flux per unit area was JA = (0.69 +/- 0.11) X 10(-10) moles . min-1 . cm-2 and the Michaelis-Menten constants were for the transport site KS = 41 +/- 14 mM and for the modifier site Ks' = 653 +/- 242 mM. The addition to cells of either pNBS at millimolar concentrations or DNDS at micromolar concentrations led to reversible inhibition of sulfate exchange (pH 7.4, 25 degrees C). The relationship between inhibitor concentration and fractional inhibition was linear over the full range of pNBS or DNDS concentrations (Hill coefficient n approximately equal to 1), indicating a single site of inhibition for the two probes. The kinetics of sulfate exchange in the presence of either inhibitor was compatible with that of competitive inhibition. Using various analytical techniques it was possible to determine that the sulfate transport site was the target for the action of the inhibitors. The inhibitory constants (Ki) for the transport sites were 0.45 +/- 0.10 microM for DNDS and 0.21 +/- 0.07 mM for pNBS. From the similarities between reversibly and irreversibly binding BS and DS inhibitors in structures, chemical properties, modus operandi, stoichiometry of interaction with inhibitory sites, and relative inhibitory potencies, we concluded that the anion transport sites are also the sites of inhibition and of labeling of covalent binding analogs of BS and DS.  相似文献   

6.
Anion exchange in human red blood cell membranes was inactivated using the impermeant carbodiimide 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)-carbodiimide (EAC). The inactivation time course was biphasic: at 30 mM EAC, approximately 50% of the exchange capacity was inactivated within approximately 15 min; this was followed by a phase in which irreversible exchange inactivation was approximately 100-fold slower. The rate and extent of inactivation was enhanced in the presence of the nucleophile tyrosine ethyl ester (TEE), suggesting that the inactivation is the result of carboxyl group modification. Inactivation (to a maximum of 10% residual exchange activity) was also enhanced by the reversible inhibitor of anion exchange 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) at concentrations that were 10(3)-10(4) times higher than those necessary for inhibition of anion exchange. The extracellular binding site for stilbenedisulfonates is essentially intact after carbodiimide modification: the irreversible inhibitor of anion exchange 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) eliminated (most of) the residual exchange activity: DNDS inhibited the residual (DIDS-sensitive) Cl- at concentrations similar to those that inhibit Cl- exchange of unmodified membranes: and Cl- efflux is activated by extracellular Cl-, with half-maximal activation at approximately 3 mM Cl-, which is similar to the value for unmodified membranes. But the residual anion exchange function after maximum inactivation is insensitive to changes of extra- and intracellular pH between pH 5 and 7. The titratable group with a pKa of approximately 5.4, which must be deprotonated for normal function of the native anion exchanger, thus appears to be lost after EAC modification.  相似文献   

7.
Tracer anion exchange flux measurements have been carried out in human red blood cells with the membrane potential clamped at various values with gramicidin. The goal of the study was to determine the effect of membrane potential on the anion translocation and binding events in the catalytic cycle for exchange. The conditions were arranged such that most of the transporters were recruited into the same configuration (inward-facing or outward-facing, depending on the direction of the Cl- gradient). We found that the membrane potential has no detectable effect on the anion translocation event, measured as 36Cl(-)-Cl- or 36Cl(-)-HCO3- exchange. The lack of effect of potential is in agreement with previous studies on red cells and is different from the behavior of the mouse erythroid band 3 gene expressed in frog oocytes (Grygorczyk, R., W. Schwarz, and H. Passow. 1987. J. Membr. Biol. 99:127-136). A negative potential decreases the potency of extracellular SO4= as an inhibitor of either Cl- or HCO3- influx. Because of the potential-dependent inhibition by SO4=, conditions could be found in which a negative intracellular potential actually accelerates 36Cl- influx. This effect is observed only in media containing multivalent anions. The simplest interpretation of the effect is that the negative potential lowers the inhibitory potency of the multivalent anion by lowering its local concentration near the transport site. The magnitude of the effect is consistent with the idea that the anions move through 10-15% of the transmembrane potential between the extracellular medium and the outward-facing transport site. In contrast to its effect on extracellular substrate binding, there is no detectable effect of membrane potential on the competition between intracellular Cl- and SO4= for transport sites. The lack of effect of potential on intracellular substrate binding suggests that the access pathway leading to the inward-facing transport site is of lower electrical resistance than that leading to the extracellular substrate site.  相似文献   

8.
The kinetics of binding of the mercurial sulfhydryl reagent, pCMBS (p-chloromercuribenzene sulfonate), to the extracellular site(s) at which pCMBS inhibits water and urea transport across the human red cell membrane, have previously been characterized. To determine whether pCMBS binding alters Cl- transport, we measured Cl-/NO3- exchange by fluorescence enhancement, using the dye SPQ (6-methoxy-N-(3-sulfopropyl)quinolinium). An essentially instantaneous extracellular phase of pCMBS inhibition is followed by a much slower intracellular phase, correlated with pCMBS permeation. We attribute the instantaneous phase to competitive inhibition of Cl- binding to band 3 by the pCMBS anion. The ID50 of 2.0 +/- 0.1 mM agrees with other organic sulfonates, but is very much greater than that of pCMBS inhibition of urea and water transport, showing that pCMBS reaction with water and urea transport inhibition sites has no effect on anion exchange. The intracellular inhibition by 1 mM pCMBS (1 h) is apparently non-competitive with Ki = 5.5 +/- 6.3 mM, presumably an allosteric effect of pCMBS binding to an intracellular band 3-related sulfhydryl group. After N-ethylmaleimide (NEM) treatment to block these band 3 sulfhydryl groups, there is apparent non-competitive inhibition with Ki = 2.1 +/- 1.2 mM, which suggests that pCMBS reacts with one of the NEM-insensitive sulfhydryl groups on a protein that links band 3 to the cytoskeleton, perhaps ankyrin or bands 4.1 and 4.2.  相似文献   

9.
To determine which arginine residues are responsible for band 3-mediated anion transport, we analyzed hydroxyphenylglyoxal (HPG)-modified band 3 protein in native erythrocyte membranes. HPG-modification leads to inhibition of the transport of phosphoenolpyruvate, a substrate for band 3-mediated transport. We analyzed the HPG-modified membranes by reverse phase-HPLC, and determined that arginine 901 was modified by HPG. To determine the role of Arg 901 in the conformational change induced by anion exchange, we analyzed HPG-modification of the membranes when 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethypyrocarbonate (DEPC) was present. DNDS and DEPC fix band 3 in the outward and inward conformations, respectively. HPG-modification was unaffected in the presence of DEPC but decreased in the presence of DNDS. In addition to that, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), which specifically reacts with the outward conformation of band 3, did not react with HPG-modified membranes. Furthermore, we expressed a band 3 mutant in which Arg 901 was replaced by alanine (R901A) on yeast membranes. The kinetic parameters indicated that the R901A mutation affected the rate of conformational change of the band 3 protein. From these results, we conclude that the most C-terminal arginine, Arg 901, has a functional role in the conformational change that is necessary for anion transport.  相似文献   

10.
Intracellular pH (pHi) of the squid axon is regulated by a stilbenesensitive transporter that couples the influx of Na+ and HCO3- (or the equivalent) to the efflux of Cl-. According to one model, the extracellular ion pair NaCO3- exchanges for intracellular Cl-. In the present study, the ion-pair model was tested by examining the interaction of the reversible stilbene derivative 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) with extracellular Na+ and HCO3-. Axons (initial pHi approximately 7.4) were internally dialyzed with a pH 6.5 solution containing 400 mM Cl- but no Na+. After pHi, as measured with a glass microelectrode, had fallen to approximately 6.6, dialysis was halted. In the presence of both external Na+ and HCO3- (pHo = 8.0, 22 degrees C), pHi increased due to the pHi-regulating mechanism. At a fixed [Na+]o of 425 mM and [HCO3-]o of 12 mM, DNDS reversibly reduced the equivalent acid-extrusion rate (JH) calculated from the rate of pHi recovery. The best-fit value for maximal inhibition was 104%, and for the [DNDS]o at half-maximal inhibition, 0.3 mM. At a [Na+]o of 425 mM, the [HCO3-]o dependence of JH was examined at 0, 0.1, and 0.25 mM DNDS. Although Jmax was always approximately 20 pmol cm-2 s-1, Km(HCO3-) was 2.6, 5.7, and 12.7 mM, respectively. Thus, DNDS is competitive with HCO3-. At a [HCO3-]o of 12 mM, the [Na+]o dependence of JH was examined at 0 and 0.1 mM DNDS. Although Jmax was approximately 20 pmol cm-2 s-1 in both cases, Km(Na+) was 71 and 179 mM, respectively. At a [HCO3-]o of 48 mM, Jmax was approximately 20 pmol cm-2 s-1 at [DNDS]o levels of 0, 0.1, and 0.25 mM. However, Km(Na+) was 22, 45, and 90 mM, respectively. Thus, DNDS (an anion) is also competitive with Na+. The results are consistent with simple competition between DNDS and NaCO3-, and place severe restrictions on other kinetic models.  相似文献   

11.
The anion exchange system of human red blood cells is highly inhibited and specifically labeled by isothiocyano derivatives of benzene sulfonate (BS) or stilbene disulfonate (DS). To learn about the site of action of these irreversibly binding probes we studied the mechanism of inhibition of anion exchange by the reversibly binding analogs p-nitrobenzene sulfonic acid (pNBS) and 4,4′-dinitrostilbene-disulfonic acid (DNDS). In the absence of inhibitor, the self-exchange flux of sulfate (pH 7.4, 25°C) at high substrate concentration displayed self-inhibitory properties, indicating the existence of two anion binding sites: one a high-affinity transport site and the other a low-affinity modifier site whose occupancy by anions results in a noncompetitive inhibition of transport. The maximal sulfate exchange flux per unit area was JA = (0.69 ± 0.11) × 10-10 moles · min-1 · cm-2 and the Michaelis-Menten constants were for the transport site KS = 41 ± 14 mM and for the modifier site KS' = 653 ± 242 mM. The addition to cells of either pNBS at millimolar concentrations or DNDS at micromolar concentrations led to reversible inhibition of sulfate exchange (pH 7.4, 25°C). The relationship between inhibitor concentration and fractional inhibition was linear over the full range of pNBS or DNDS concentrations (Hill coefficient n ? 1), indicating a single site of inhibition for the two probes. The kinetics of sul- fate exchange in the presence of either inhibitor was compatible with that of competitive inhibition. Using various analytical techniques it was possible to determine that the sulfate trans- port site was the target for the action of the inhibitors. The in- hibitory constants (Ki j for the transport sites were 0.45 ± 0.10 PM for DNDS and 0.21 ± 0.07 mM for pNBS. From the similarities between reversibly and irreversibly binding BS and DS inhibitors in structures, chemical properties, modus oper- andi, stoichiometry of interaction with inhibitory sites, and relative inhibitory potencies, we concluded that the anion trans- port sites are also the sites of inhibition and of labeling of co- valent binding analogs of BS and DS.  相似文献   

12.
To test the hypothesis that amino acid residues in band 3 with titratable positive charges play a role in the binding of anions to the outside-facing transport site, we measured the effects of changing external pH (pH(O)) on the dissociation constant for binding of external iodide to the transport site, K(O)(I). K(O)(I) increased with increasing pH(O), and a significant increase was seen even at pH(O) values as low as 9.9. The dependence of K(O)(I) on pH(O) can be explained by a model with one titratable site with pK 9.5 +/- 0.2 (probably lysine), which increases anion affinity for the external transport site when it is in the positively charged form. A more complex model, analogous to one recently proposed by Bjerrum (1992), with two titratable sites, one with pK 9.3 +/- 0.3 (probably lysine) and another with pK > 11 (probably arginine), gives a slightly better fit to the data. Thus, titratable positively charged residues seem to be functionally important for the binding of substrate anions to the outward-facing anion transport site. In addition, analysis of Dixon plot slopes for L inhibition of Cl- exchange at different pH 0 values, coupled with the assumption that pH(O) has parallel effects on external I- and Cl- binding, indicates that k', the rate-constant for inward translocation of the complex of Cl- with the extracellular transport site, decreases with increasing pH(O). The data are compatible with a model in which titration of the pK 9.3 residue decreases k to 14 +/- 10% of its value at neutral pH(O). This result, however, together with Bjerrum's (1992) observation that the maximum flux J(M)) increases 1.6- fold when this residue is deprotonated, makes quantitative predictions that raise significant questions about the adequacy of the two titratable site ping-pong model or the assumptions used in analyzing the data.  相似文献   

13.
The band 3 protein of the human red blood cell membrane contains a glutamate residue that must be protonated in order for divalent (SO4=) anion transport to take place at an appreciable rate. The carboxyl side chain on this glutamate residue can be converted to the primary alcohol by treatment of intact cells with Woodward's reagent K (N-ethyl-5-phenylisoxazolium 3'-sulfonate) followed by reductive cleavage with BH4-. Edman degradation of CNBr fragments from band 3 labeled in intact cells with Woodward's reagent K and [3H]BH4- showed that Glu681 is heavily labeled under conditions in which Cl- exchange is inhibited, SO4= exchange is accelerated, and Cl- conductance is accelerated. No other glutamate residue in band 3 is detectably labeled under the conditions of these experiments, as demonstrated either by Edman degradation or by the lack of label in major known proteolytic fragments. It is concluded that Glu681 is the binding site for the H+ that is transported with SO4= during band 3-catalyzed H+/SO4= cotransport. This residue is conserved among all species of red cell band 3 (AE1) as well as the related proteins AE2 and AE3. Glu681 is the first amino acid residue in band 3 which has been identified as a binding site for a transported substrate (H+). The functional characteristics of this residue suggest that it lies within the transport pathway and can be alternately exposed to the intracellular and extracellular media.  相似文献   

14.
Summary The interaction between chloride and the anion transport inhibitor DNDS (4,4-dinitro stilbene-2,2-disulfonate) at the external anion binding site of the human erythrocyte anion transporter was examined by two techniques: a) chloride tracer flux experiments in the presence of varying concentrations of DNDS, and b) DNDS equilibrium binding experiments in the presence of varying concentrations of intracellular and extracellular chloride, Cl i and Cl o . DNDS inhibited competitively the Cl o -stimulated chloride efflux from intact red cells at 0°C and pH 7.8 with an inhibitor constant of 90nm. Under the same conditions DNDS bound reversibly to one class of binding sites on intact cells with a capacity of 8.5×105 molecules/cell. Cl o competitively inhibited DNDS binding with an inhibitor constant of 6mm. In the absence of Cl o the DNDS binding constant was 84mm. The competition between chloride and DNDS was also tested in nystatintreated cells in which Cl o always equaled Cl i . Under these conditions the values of the DNDS binding constant and the chloride inhibitor constant were significantly larger. All these data were in quantitative agreement with a single-site, alternating access kinetic scheme with ping-pong-type kinetics that we have previously developed for modeling chloride exchange transport. The data also served to rule out special cases of an alternative two-sited sequential-type kinetic scheme. DNDS binding experiments were also performed at 10 and 20°C. We found that neither the DNDS binding constant nor the Cl o inhibitor constant were significantly changed compared to 0°C.  相似文献   

15.
Band 3 catalyzes the one-for-one exchange of monovalent anions across the red cell membrane. At least two anion binding sites have been postulated to exist on the transport unit: 1) a transport site that has been observed by saturation kinetics and by 35 Cl NMR studies of chloride binding, and 2) a 35Cl NMR-invisible inhibitory site that has been proposed to explain the inhibition of anion exchange at large anion concentrations. A number of independent studies have indicated that the transport site is alternately exposed to different sides of the membrane during the transport cycle. Yet the role, if any, of the postulated inhibitory site in the transport cycle is not known. Here it is shown that: 1) when the [Cl-], [Br-], or pH is varied, the band 3 transport sites on both sides of the membrane behave like a homogeneous population of simple anion binding sites in 35Cl NMR experiments, and 2) when the [Cl-] is varied, the outward-facing transport site behaves like a simple anion binding site. These results indicate that the postulated inhibitory site has no effect on chloride binding to the transport site. Instead, the results are quantitatively consistent with the ping-pong model (Gunn, R. B., and Fr?lich, O. (1979) J. Gen. Physiol. 74, 351-374), which states that the transport site is the only site involved in the transport cycle. Expressions are derived for the macroscopically observed characteristics of a ping-pong transporter: these characteristics are shown to be weighted averages of the microscopic properties of the inward- and outward-facing conformations of the transport site. In addition to supporting the simplicity of the transport mechanism, the high pH titration curve for chloride binding to the transport site provides insight into the structure of the site. The macroscopically observed pKA = 11.1 +/- 0.1 in the leaky ghost system indicates that an arginine must provide the essential positive charge in the inward- or outward-facing conformation of the transport site, or in both conformations.  相似文献   

16.
X B Tang  J R Casey 《Biochemistry》1999,38(44):14565-14572
AE1, the chloride/bicarbonate anion exchanger of the erythrocyte plasma membrane, is highly sensitive to inhibition by stilbene disulfonate compounds such as DIDS (4,4'-diisothiocyanostilbene-2, 2'-disulfonate) and DNDS (4,4'-dinitrostilbene-2,2'-disulfonate). Stilbene disulfonates recruit the anion binding site to an outward-facing conformation. We sought to identify the regions of AE1 that undergo conformational changes upon noncovalent binding of DNDS. Since conformational changes induced by stilbene disulfonate binding cause anion transport inhibition, identification of the DNDS binding regions may localize the substrate binding region of the protein. Cysteine residues were introduced into 27 sites in the extracellular loop regions of an otherwise cysteineless form of AE1, called AE1C(-). The ability to label these residues with biotin maleimide [3-(N-maleimidylpropionyl)biocytin] was then measured in the absence and presence of DNDS. DNDS reduced the ability to label residues in the regions around G565, S643-M663, and S731-S742. We interpret these regions either as (i) part of the DNDS binding site or (ii) distal to the binding site but undergoing a conformational change that sequesters the region from accessibility to biotin maleimide. DNDS alters the conformation of residues outside the plane of the bilayer since the S643-M663 region was previously shown to be extramembranous. Upon binding DNDS, AE1 undergoes conformational changes that can be detected in extracellular loops at least 20 residues away from the hydrophobic core of the lipid bilayer. We conclude that the TM7-10 region of AE1 is central to the stilbene disulfonate and substrate binding region of AE1.  相似文献   

17.
The inhibition of inorganic anion transport by dipyridamole (2,6-bis(diethanolamino)-4,8-dipiperidinopyrimido[5,4-d] pyrimidine) takes place only in the presence of Cl-, other halides, nitrate or bicarbonate. At any given dipyridamole concentration, the anion flux relative to the flux in the absence of dipyridamole follows the equation: Jrel = (1 + alpha 2[Cl-])/(1 + alpha 4[Cl-]) where alpha 2 and alpha 4 are independent of [Cl-] but dependent on dipyridamole concentration. At high [Cl-] the flux approaches alpha 2/alpha 4, which decreases with increasing dipyridamole concentration. Even when both [Cl-] and dipyridamole concentration assume large values, a small residual flux remains. The equation can be deduced on the assumption that Cl- binding allosterically increases the affinity for dipyridamole binding to band 3 and that the bound dipyridamole produces a non-competitive inhibition of sulfate transport. The mass-law constants for the binding of Cl- and dipyridamole to their respective-binding sites are about 24 mM and 1.5 microM, respectively (pH 6.9, 26 degrees C). Dipyridamole binding leads to a displacement of 4,4'-dibenzoylstilbene-2,2'-disulfonate (DBDS) from the stilbenedisulfonate binding site of band 3. The effect can be predicted quantitatively on the assumption that the Cl- -promoted dipyridamole binding leads to a competitive replacement of the stilbenedisulfonates. For the calculations, the same mass-law constants for binding of Cl- and dipyridamole can be used that were derived from the kinetic studies on Cl- -promoted anion transport inhibition. The newly described Cl- binding site is highly selective with respect to Cl- and other monovalent anion species. There is little competition with SO4(2-), indicating that Cl- binding involves other than purely electrostative forces. The affinity of the binding site to Cl- does not change over the pH range 6.0-7.5. Dipyridamole binds only in its deprotonated state. Binding of the deprotonated dipyridamole is pH-independent over the same range as Cl- binding.  相似文献   

18.
A model in which two positively-charged titratable sites enhance the affinity for anionic substrates can explain the increase in external iodide dissociation constant (K(O)(I)) with increasing pH(O) (Liu, S. J., F.-Y. Law, and P.A. Knauf. 1996.f Gen.Physiol. 107:271-291). If sulfate binds to the same external site as I-, this model predicts that the SO(4)= dissociation constant (K(O)(S)) should also increase. The data at pH 0 8.5 to 10 fit this prediction, and the pK for the titration is not significantly different from that (pKc) for the low-pK group that affects K(O)(1). The dissociation constant for the apparently competitive inhibitor, DNDS (4,4-dinitrostilbene-2,2'- disulfonate), also increases greatly as pH(O) increases. Particularly at high pH(O), a noncompetitive inhibition by DNDS is also evident. Increasing pH(O) from 7.2 to 11.2 increases the competitive dissociation constant by 700-fold, but the noncompetitive is only increased 20-fold. The pK values for these effects are similar to pKc for K(O)(1), as expected if DNDS binds near the external transport site, but it seems likely that additional titratable groups also affect DNDS binding. The apparent affinity for external Cl- is also affected by pH(O), in a manner similar to that observed for I-. Pretreatment with the amino-selective reagent, bis-sulfosuccinimidyl suberate (BSSS), decreases the apparent Cl- affinity at pH 8.5, but two titrations are still evident, the first (lower) of which decreases the apparent C- affinity, and the second of which surprisingly increases it. Thus, the BSSS-reactive amino groups (probably Lys-539 and Lys-851) do not seem to be involved in the titrations that affect Cl- affinity. In general, the data support the concept that a positively charged amino group (or groups), together with a guanidino group, plays an important role in the binding of substrates and inhibitors at or near the external transport site.  相似文献   

19.
Mechanism of anion transport in red blood cells: role of membrane proteins.   总被引:7,自引:0,他引:7  
A number of anionic chemical probes that inhibit anion permeability of red blood cells are localized in a membrane protein of about 100,000 daltons, known as band 3. The inhibitory site has been explored using a series of disulfonic stilbene compounds. It apparently contains three positive charges, probably amino groups. Two probes, pyridoxal phosphate and N-(4-azido-2-nitropheyny)-2-amino ethyl sulfonate, are transported by the anion system but can be fixed in an irreversible bond under specified conditions (reduction with NaBH4 or exposure to light, respectively). Data obtained with these compounds indicate that the inhibitory site in band 3 is the transport site itself. Band 3 protein is exposed in part on the outside of the cell but it is also hydrophobically associated with membrane lipid. A model is proposed in which the band 3 protein acts as an anion permeation channel through the lipid bilayer. Near the outer aspect of the channel an anion binding site can undergo a local conformational change allowing a one-for-one anion exchange across a diffusion barrier.  相似文献   

20.
Cl-/HCO3- exchange activity mediated by the AE1 anion exchanger is reduced by carbonic anhydrase II (CA2) inhibition or by prevention of CA2 binding to the AE1 C-terminal cytoplasmic tail. This type of AE1 inhibition is thought to represent reduced metabolic channeling of HCO3- to the intracellular HCO3- binding site of AE1. To test the hypothesis that CA2 binding might itself allosterically activate AE1 in Xenopus oocytes, we compared Cl-/Cl- and Cl-/HCO3- exchange activities of AE1 polypeptides with truncation and missense mutations in the C-terminal tail. The distal renal tubular acidosis-associated AE1 901X mutant exhibited both Cl-/Cl- and Cl-/HCO3- exchange activities. In contrast, AE1 896X, 891X, and AE1 missense mutants in the CA2 binding site were inactive as Cl-/HCO3- exchangers despite exhibiting normal Cl-/Cl- exchange activities. Co-expression of CA2 enhanced wild-type AE1-mediated Cl-/HCO3- exchange, but not Cl-/Cl- exchange. CA2 co-expression could not rescue Cl-/HCO3- exchange activity in AE1 mutants selectively impaired in Cl-/HCO3- exchange. However, co-expression of transport-incompetent AE1 mutants with intact CA2 binding sites completely rescued Cl-/HCO3- exchange by an AE1 missense mutant devoid of CA2 binding, with activity further enhanced by CA2 co-expression. The same transport-incompetent AE1 mutants failed to rescue Cl-/HCO3- exchange by the AE1 truncation mutant 896X, despite preservation of the latter's core CA2 binding site. These data increase the minimal extent of a functionally defined CA2 binding site in AE1. The inter-protomeric rescue of HCO3- transport within the AE1 dimer shows functional proximity of the C-terminal cytoplasmic tail of one protomer to the anion translocation pathway in the adjacent protomer within the AE1 heterodimer. The data strongly support the hypothesis that an intact transbilayer anion translocation pathway is completely contained within an AE1 monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号