首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The import of the precursor of mitochondrial aspartate aminotransferase was reconstituted in vitro with isolated mitochondria thus corroborating the earlier conclusion of a post-translational uptake. The higher Mr precursor was synthesized in a reticulocyte lysate programmed with free polysomes from chicken liver. After incubation with intact mitochondria from chicken heart about 50% of the precursor was converted to the mature form in a time-dependent process, its rate being a function of the amount of mitochondria added. The same amount of precursor was processed to the mature form on addition of a mitochondrial extract. No conversion to the mature enzyme took place when the precursor was incubated with intact mitochondria in the presence of the uncoupling agent carbonyl cyanide m-chlorophenylhydrazone or of the chelator o-phenanthroline which penetrates the mitochondrial inner membrane. In contrast, the chelator bathophenanthroline disulfonate which does not diffuse into the mitochondrial matrix did not inhibit the appearance of the mature form. The results indicate that that precursor must pass through an energized inner mitochondrial membrane before it is processed by a chelator-sensitive protease in the mitochondrial matrix. Excess mature mitochondrial aspartate aminotransferase did not compete with the precursor for its uptake into mitochondria. Mature mitochondrial aspartate aminotransferase is an alpha 2-dimer with Mr = 2 X 45,000. Both the precursor synthesized in a rabbit reticulocyte lysate and the precursor accumulated in the cytosol of carbonyl cyanide m-chlorophenylhydrazone-treated chicken embryo fibroblasts were found to exist as homodimer or hetero-oligomer and high Mr complexes (Mr greater than 300,000).  相似文献   

2.
Biosynthesis of isocitrate lyase, a tetrameric enzyme of the glyoxysomal matrix, was studied in Neurospora crassa, in which the formation of glyoxysomes was induced by a substitution of sucrose medium by acetate medium. 1. Translation of Neurospora mRNA in reticulocyte lysates yields a product which has the same apparent molecular weight as the subunit of the functional enzyme. Using N-formyl[35S]methionyl-tRNAfMet as a label, the translation product shows the same apparent size which indicates that the amino terminus has no additional "signal'-type sequence. 2. Read-out systems employing free and membrane-bound polysomes show that only free ribosomes are active in the synthesis of isocitrate lyase. 3. Isocitrate lyase synthesized in reticulocyte lysate is released into the supernatant and is soluble in a monomeric form. It interacts with Triton X-100 to form mixed micells in contrast to the functional tetrameric form. 4. Transfer of isocitrate lyase synthesized in vitro into isolated glyoxysomes is suggested by results of experiments in which supernatants from reticulocyte lysates are incubated with a particle fraction isolated from acetate-grown cells. No transfer occurs when particles from non-induced cells are employed. Resistance to added proteinase is used as a criterion for transmembrane transfer. The data support a post-translational transfer mechanism for isocitrate lyase. They suggest that isocitrate lyase passes through a cytosolic precursor pool as a monomer and is transferred into glyoxysomes.  相似文献   

3.
Mitochondrial porin, the major protein of the outer mitochondrial membrane is synthesized by free cytoplasmic polysomes. The apparent molecular weight of the porin synthesized in homologous or heterologous cell-free systems is the same as that of the mature porin. Transfer in vitro of mitochondrial porin from the cytosolic fraction into the outer membrane of mitochondria could be demonstrated. Before membrane insertion, mitochondrial porin is highly sensitive to added proteinase; afterwards it is strongly protected. Binding of the precursor form to mitochondria occurs at 4 degrees C and appears to precede insertion into the membrane. Unlike transfer of many precursor proteins into or across the inner mitochondrial membrane, assembly of the porin is not dependent on an electrical potential across the inner membrane.  相似文献   

4.
Cytochrome c peroxidase (CCP) is a nuclearly encoded hemoprotein located in the intermembrane space (IMS) of Saccharomyces cerevisiae mitochondria. Wild-type preCCP synthesized in rabbit reticulocyte lysates, however, was inefficiently translocated into isolated mitochondria and was inherently resistant to externally added proteases. To test whether premature heme addition to the apoprecursor was responsible for the protease resistance and the inability to import preCCP, site-directed mutagenesis was used to replace the axial heme ligand (His175) involved in forming a pseudo-covalent link between the heme iron and CCP. Mutant proteins containing Leu, Arg, Met, or Pro at residue 175 of mature CCP were sensitive to proteolysis and were imported into isolated mitochondria as judged by proteolytic processing of the precursor. The inhibition of wild-type CCP translocation across the outer membrane may result from the inability of the heme-containing protein to unfold during the translocation process. Although the protease responsible for cleaving preCCP to its mature form is believed to be located in the IMS, most of the processed CCP was located in the supernatant rather than the mitochondrial pellet. Since the outer membranes were shown to be intact, the anomalous localization indicated that preCCP may not have been completely translocated into the IMS before proteolytic processing or that conformationally labile proteins may not be retained by the outer membrane. Proteolytic maturation of preCCP also occurred in the presence of valinomycin, suggesting that the precursor may be completely or partially translocated across the outer mitochondrial membrane independent of a potential across the inner mitochondrial membrane.  相似文献   

5.
The precursor proteins to the subunits of ubiquinol:cytochrome c reductase (cytochrome bc1 complex) of Neurospora crassa were synthesized in a reticulocyte lysate. These precursors were immunoprecipitated with antibodies prepared against the individual subunits and compared to the mature subunits immunoprecipitated or isolated from mitochondria. Most subunits were synthesized as precursors with larger apparent molecular weights (subunits I, 51,500 versus 50,000; subunit II, 47,500 versus 45,000; subunit IV (cytochrome c1), 38,000 versus 31,000; subunit V (Fe-S protein), 28,000 versus 25,000; subunit VII, 12,000 versus 11,500; subunit VIII, 11,600 versus 11,200). Subunit VI (14,000) was synthesized with the same apparent molecular weight. The post-translational transfer of subunits I, IV, V, and VII was studied in an in vitro system employing reticulocyte lysate and isolated mitochondria. The transfer and proteolytic processing of these precursors was found to be dependent on the mitochondrial membrane potential. In the transfer of cytochrome c1, the proteolytic processing appears to take place in two separate steps via an intermediate both in vivo and in vitro. In vivo, the intermediate form accumulated when cells were kept at 8 degrees C and was chased into mature cytochrome c1 at 25 degrees C. Both processing steps were energy-dependent.  相似文献   

6.
beta-hydroxybutyrate dehydrogenase (BDH), a major protein located in the inner mitochondrial membrane is encoded, as most of mitochondrial proteins, in the nuclear genome. It is synthetized on the free polysomes and post-translationally imported into the mitochondria. The neosynthesized protein is a higher molecular weight precursor. The presequence is cleaved by the matrix protease to give the mature protein. The translocation across the mitochondrial membranes needs energy. The results also indicate that cytosolic factors with low molecular weight are essential in the recognition of precursor by mitochondria and to sort out newly synthetized nuclear encoded mitochondrial proteins from others nuclear encoded proteins.  相似文献   

7.
Several inner membrane proteins from rat liver mitochondria have been translated for the first time in rabbit reticulocyte lysates. These include the Rieske iron-sulfur protein, cytochrome c1 and core protein I of the cytochrome bc1 complex, the alpha and beta subunits of F1 ATPase, and subunit IV of cytochrome oxidase. All were translated from free polysomes as larger-molecular-mass precursors, and were processed to their mature forms by isolated liver mitochondria or by the isolated mitochondrial matrix fraction. In vitro processing, catalyzed by the isolated matrix fraction, is inhibited by rhodamine 6G. The latter is a fluorescent probe, which accumulates specifically in mitochondria of whole cells and which is used extensively to visualize mitochondrial morphology. The concentration of rhodamine 6G required for inhibition in vitro is similar to that of o-phenanthroline. Rhodamine 6G inhibits matrix-catalyzed processing of all precursors tested, indicating that the mechanism of inhibition is common for a variety of functionally unrelated precursors. The novel action of rhodamine 6G reported here can form the basis for its inhibition of precursor processing in intact hepatoma cells [Kolarov, J. & Nelson, B.D. (1984) Eur. J. Biochem. 144, 387-392].  相似文献   

8.
Cytochrome c peroxidase, a cytoplasmically made enzyme located between the inner and outer membrane of yeast mitochondria, is synthesized as larger precursor in a reticulocyte cell-free lysate as well as in pulsed yeast spheroplasts. When the pulsed spheroplasts are chased, the precursor is converted to the mature apoprotein. When the in vitro synthesized precursor is incubated with isolated yeast mitochondria in the absence of protein synthesis, it is cleaved to the mature form; the mature form co-sediments with the mitochondria and is resistant to externally added proteases. These results, in conjunction with those reported earlier (Maccecchini, M.-L., Rudin, Y., Blobel, G., and Schatz, G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 343-347) suggest that the mechanism of protein transport into the mitochondrial intermembrane space is quite similar to that of protein transport into the matrix or the inner membrane.  相似文献   

9.
Distinct steps in the import of ADP/ATP carrier into mitochondria   总被引:42,自引:0,他引:42  
Transport of the precursor to the ADP/ATP carrier from the cytosol into the mitochondrial inner membrane was resolved into several consecutive steps. The precursor protein was trapped at distinct stages of the import pathway and subsequently chased to the mature form. In a first reaction, the precursor interacts with a protease-sensitive component on the mitochondrial surface. It then reaches intermediate sites in the outer membrane which are saturable and where it is protected against proteases. This translocation intermediate can be extracted at alkaline pH. We suggest that it is anchored to the membrane by a so far unknown proteinaceous component. The membrane potential delta psi-dependent entrance of the ADP/ATP carrier into the inner membrane takes place at contact sites between outer and inner membranes. Completion of translocation into the inner membrane can occur in the absence of delta psi. A cytosolic component which is present in reticulocyte lysate and which interacts with isolated mitochondria is required for the specific binding of the precursor to mitochondria.  相似文献   

10.
Rat liver total RNA was translated in a reticulocyte lysate, and the precursor of rat liver mitochondrial malate dehydrogenase was identified by a monospecific antibody against the denatured mature enzyme. The precursor is about Mr = 1500 to 2000 larger than the monomeric form of the mature protein. The major spots of the two-dimensional peptide map of the two proteins were identical. The precursor was synthesized on free polysomes, but not membrane-bound polysomes. Upon fractionation by molecular sieve chromatography on Sephadex G-100, the size of the precursor was slightly larger than the dimeric form of the mature protein. Incubation of the precursor with isolated mitochondria from Chinese hamster ovary cells resulted in uptake and processing of the precursor to the mature size. The processed form was resistant to trypsin indicating that it was translocated into mitochondria. Processing was complete in 10 to 30 min at 30 degrees C. Rapid binding of the precursor to mitochondria was also observed at 0 or 30 degrees C. Processing but not binding was inhibited by an uncoupler.  相似文献   

11.
Acute regulation of steroidogenesis in steroidogenic tissue is controlled by the transfer of cholesterol from the outer to the inner mitochondrial membrane where cleavage to produce pregnenolone occurs. Hormonal stimulation of MA-10 mouse Leydig tumor cells results in a large increase in steroidogenesis and the concomitant appearance of a series of 30-kDa proteins which have been localized to the mitochondria. In the present study we have shown that the appearance of these proteins occurs in a dose-responsive manner with both human chorionic gonadotropin and cyclic AMP analog. We have also shown that while steroidogenesis is inhibited rapidly in response to a cessation of protein synthesis, the 30-kDa mitochondrial proteins remain in the mitochondria, posing a potential dilemma for arguments favoring their role in the acute regulation of steroidogenesis. We report that the 30-kDa mitochondrial proteins arise from two precursor proteins with molecular masses of 37 and 32 kDa which are also found to be associated with the mitochondria. The use of pulse-chase experiments and the inhibitors ortho-phenanthroline and carbonyl cyanide m-chlorophenylhydrazone demonstrated the precursor-product relationship between the 37-, 32-, and 30-kDa proteins. We have also demonstrated that, as shown for a number of other mitochondrial proteins, the 30-kDa proteins are transferred to the inner mitochondrial membrane by a process requiring both proteolytic removal of the targeting sequences and an electrical potential across the inner mitochondrial membrane. We propose that during this transfer contact sites form between the two mitochondrial membranes and may offer an ideal situation for the transfer of cholesterol from the outer membrane to the inner membrane by an as yet unknown mechanism. Following transfer, the 30-kDa proteins remain in the inner membrane no longer able to function in the further transfer of cholesterol, and it is the continuing synthesis and processing of more precursor proteins which provides additional substrate for steroidogenesis.  相似文献   

12.
The mitochondrial ADP/ATP carrier is an integral transmembrane protein of the inner membrane. It is synthesized on cytoplasmic ribosomes. Kinetic data suggested that this protein is transferred into mitochondria in a posttranslational manner. The following results provide further evidence for such a mechanism and provide information on its details. 1. In homologous and heterologous translation systems th newly synthesized ADP/ATP carrier protein is present in the postribosomal supernatant. 2. Analysis by density gradient centrifugation and gel filtration shows, that the ADP/ATP carrier molecules in the postribosomal fraction are present as soluble complexes with apparent molecular weights of about 120 000 and 500 000 or larger. The carrier binds detergents such as Triton X-100 and deoxycholate forming mixed micelles with molecular weights of about 200 000-400 000. 3. Incubation of a postribosomal supernatant of a reticulocyte lysate containing newly synthesized ADP/ATP carrier with mitochondria isolated from Neurospora spheroplasts results in efficient transfer of the carrier into mitochondria. About 20-30% of the transferred carrier are resistant to proteinase in whole mitochondria. The authentic mature protein is also largley resistant to proteinase in whole mitochondria and sensitive after lysis of mitochondria with detergent. Integrity of mitochondria is a preprequisite for translocation into proteinase resistant position. 4. The transfer in vitro into a proteinase-resistant form is inhibited by the uncoupler carbonyl-cyanide m-chlorophenylhydrazone but not the proteinase-sensitive binding. These observations suggest that the posttranslational transfer of ADP/ATP carrier occurs via the cytosolic space through a soluble oligomeric precursor form. This precursor is taken up by intact mitochondria into an integral position in the membrane. These findings are considered to be of general importance for the intracellular transfer of insoluble membrane proteins. They support the view that such proteins can exist in a water-soluble form as precursors and upon integration into the membrane undergo a conformational change. Uptake into the membrane may involve the cleavage of an additional sequence in some proteins, but this appears not to be a prerequisite as demonstrated by the ADP/ATP carrier protein.  相似文献   

13.
Topogenesis of cytochrome p450scc, a resident protein of the inner membrane of adrenocortical mitochondria, is still obscure. In particular, little is known about the cause of its tissue specificity. In an attempt to clarify this point, we examined the process in Saccharomyces cerevisiae cells synthesizing cytochrome p450scc as its native precursor (pCYP11A1) or versions in which its N-terminal addressing presequence had been replaced with those of yeast mitochondrial proteins: CoxIV(1-25) and Su9(1-112). We found the pCYP11A1 and CoxIV(1-25)-mCYP11A1 versions to be effectively imported into yeast mitochondria and subjected to proteolytic processing. However, only minor portions of the imported proteins were incorporated into mitochondrial membranes, whereas their bulk accumulated as aggregates insoluble in 1% Triton X-100. Along with previously published data, this suggests that a distinguishing feature of the import of the CYP11A1 precursors into yeast mitochondria is their easy translocation into the matrix where the foreign proteins mainly undergo proteolysis or aggregation. The fraction of CYP11A1 that happens to be inserted into the inner mitochondrial membrane is effectively converted into the catalytically active holoenzyme. Experiments with the Su9(1-112)-mCYP11A1 construct bearing a re-export signal revealed that, after translocation of the fused protein into the matrix and its processing, the Su9(67-112) segment ensures association of the mCYP11A1 body with the inner membrane, but proper folding of the latter does not take place. Thus it can be said that the most specific stage of CYP11A1 topogenesis in adrenocortical mitochondria is its confinement and folding in the inner mitochondrial membrane. In yeast mitochondria, only an insignificant portion of the imported CYP11A1 follows this mechanism.  相似文献   

14.
Different transport pathways of individual precursor proteins in mitochondria   总被引:20,自引:0,他引:20  
Transport of mitochondrial precursor proteins into mitochondria of Neurospora crassa was studied in a cell-free reconstituted system. Precursors were synthesized in a reticulocyte lysate programmed with Neurospora mRNA and transported into isolated mitochondria in the absence of protein synthesis. Uptake of the following precursors was investigated: apocytochrome c, ADP/ATP carrier and subunit 9 of the oligomycin-sensitive ATPase. Addition of high concentrations of unlabelled chemically prepared apocytochrome c (1-10 microM) inhibited the appearance in the mitochondrial of labelled cytochrome c synthesized in vitro because the unlabelled protein dilutes the labelled one and because the translocation system has a limited capacity [apparent V is 1-3 pmol X min-1 X (mg mitochondrial protein)-1]. Concentrations of added apocytochrome c exceeding the concentrations of precursor proteins synthesized in vitro by a factor of about 10(4) did not inhibit the transfer of ADP/ATP carrier or ATPase subunit 9 into mitochondria. Carbonylcyanide m-chlorophenylhydrazone, an uncoupler of oxidate phosphorylation, inhibited transfer in vitro of ADP/ATP carrier and of ATPase subunit 9, but not of cytochrome c. These findings suggest that cytochrome c and the other two proteins have different import pathways into mitochondria. It can be inferred from the data presented that different 'receptors' on the mitochondria. It can be inferred from the data presented that different 'receptors' on the mitochondrial surface mediate the specific recognition of precursor proteins by mitochondria by mitochondria as a first step in the transport process.  相似文献   

15.
Reticulocyte lysates contain ribosome-bound and free populations of 5S RNA. The free population is sensitive to nuclease cleavage in the internal loop B, at the phosphodiester bond connecting nucleotides A54 and A55. Similar cleavage sites were detected in 5S rRNA in 60S subunits and 80S ribosomes. However, 5S rRNA in reticulocyte polysomes is insensitive to cleavage unless ribosomes are salt-washed. This suggests that a translational factor protects the backbone surrounding A54 from cleavage in polysomes. Upon nuclease treatment of mouse 60S subunits or reticulocyte lysates a small population of ribosomes released its 5S rRNA together with ribosomal protein L5. Furthermore, rRNA sequences from 5.8S, 28S and 18S rRNA were released. In 18S rRNA the sequences mainly originate from the 630 loop and stem (helix 18) in the 5' domain, whereas in 28S rRNA a majority of fragments is derived from helices 47 and 81 in domains III and V, respectively. We speculate that this type of rRNA-fragmentation may mimic a ribosome degradation pathway.  相似文献   

16.
E E Rojo  R A Stuart    W Neupert 《The EMBO journal》1995,14(14):3445-3451
In an attempt to understand the mechanisms of sorting of mitochondrial inner membrane proteins, we have analyzed the import of subunit 9 of the mitochondrial F1F0-ATPase (Su9) from Neurospora crassa, an integral inner membrane protein. A chimeric protein was used consisting of the presequence and the first transmembrane domain of Su9 fused to mouse dihydrofolate reductase (preSu9(1-112)-DHFR). This protein attains the correct topology across the inner membrane (Nout-Cin) following import. The transmembrane domain becomes first completely imported into the matrix, where after processing of the presequence, it mediates membrane insertion and export of the N-terminal tail. Import and export steps can be experimentally dissected into two distinct events. Translocation of the N-terminal hydrophilic tail out of the matrix was blocked when the presequence was not processed, indicating an important role of the sequences and charges flanking the hydrophobic domain. Furthermore, export was supported by a delta pH and required matrix ATP hydrolysis. Thus the hydrophobic transmembrane domain operates as a membrane insertion signal and not as a stop-transfer signal. Our findings suggest that several aspects of this sorting process have been conserved from their prokaryotic ancestors.  相似文献   

17.
The mitochondrial matrix protein glutamate dehydrogenase of rat liver was synthesized in a cell-free reticulocyte lysate using mRNA from free or membrane-bound polysomes from rat liver. Immunoprecipitation of the (35S)methionine labeled translation mixture was performed using rabbit anti-glutamate dehydrogenase serum. Analysis after electrophoresis of the immunoprecipitate by fluorography of a dried sodium dodecyl sulfate/polyacrylamide gel showed that the glutamate dehydrogenase is synthesized ‘in vitro’ as a large precursor. A mitochondrial extract from rat liver processed the precursor synthesized “in vitro” to the mature form.  相似文献   

18.
Subunit 8 of yeast mitochondrial F1F0-ATPase is a proteolipid made on mitochondrial ribosomes and inserted directly into the inner membrane for assembly with the other F0 membrane-sector components. We have investigated the possibility of expressing this extremely hydrophobic, mitochondrially encoded protein outside the organelle and directing its import back into mitochondria using a suitable N-terminal targeting presequence. This report describes the successful import in vitro of ATPase subunit 8 proteolipid into yeast mitochondria when fused to the targeting sequence derived from the precursor of Neurospora crassa ATPase subunit 9. The predicted cleavage site of matrix protease was correctly recognized in the fusion protein. A targeting sequence from the precursor of yeast cytochrome oxidase subunit VI was unable to direct the subunit 8 proteolipid into mitochondria. The proteolipid subunit 8 exhibited a strong tendency to embed itself in mitochondrial membranes, which interfered with its ability to be properly imported when part of a synthetic precursor.  相似文献   

19.
Matrix processing peptidase of mitochondria. Structure-function relationships   总被引:12,自引:0,他引:12  
The mitochondrial processing peptidase (MPP) and the processing enhancing protein (PEP) cooperate in the proteolytic cleavage of matrix targeting sequences from nuclear-encoded mitochondrial precursor proteins. We have determined the cDNA sequence of Neurospora MPP after expression cloning. MPP appears to contain two domains of approximately equal size which are separated by a loop-like sequence. Considerable structural similarity exists to the recently sequenced yeast MPP as well as to Neurospora and yeast PEP. Four cysteine residues are conserved in Neurospora and yeast MPP. Inactivation of MPP can be achieved by using sulfhydryl reagents. MPP (but not PEP) depends on the presence of divalent metal ions for activity. Both MPP and PEP are synthesized as precursors containing matrix targeting signals which are processed during import into mitochondria by the mature forms of MPP and PEP.  相似文献   

20.
Heterologous expression in yeast of mCYP11A1 fusions with different topogenic signals of yeast mitochondrial proteins for artificial channeling to different translocases of the inner membrane was used to gain insight in the mechanism of its topogenesis in mitochondria. To ensure insertion of the CYP11A1 domain into the inner mitochondrial membrane during the process of translocation, topogenic sequences containing transmembrane segments of Bcs1p(1-83), DLD(1-72), and full-sized AAC protein were used when constructing modified forms of CYP11A1, and the Su9(1-112) addressing signal was included to stimulate membrane insertion of CYP11A1 after its translocation to the matrix. Alternatively, to promote slippage of the hybrid molecules into the matrix, the hybrid of mCYP11A1 with the precursor of steroidogenic mitochondria matrix protein adrenodoxin (preAd) was designed. The extra sequences used for intramitochondrial sorting of CYP11A1 apparently ensured predicted topology of hybrid molecules in yeast mitochondria. All of the addressing sequences, containing transmembrane domains, provided effective insertion of the hybrid proteins AAC-mCYP11A1, Bcs1p(1-83)-mCYP11A1, DLD(1-72)-mCYP11A1 and Su9(1-116)-mCYP11A1 into the inner membrane. preAd-mCYP11A1 hybrid molecules were shown to be translocated across the inner membrane and tightly associated with the membrane on its matrix side but not membrane inserted. Measuring specific activities of hybrid proteins in the mitochondrial fractions upon addition of Ad and AdR showed that the hybrids predetermined for cotranslocational insertion of CYP11A1 into the inner membrane were more active in the reaction of cholesterol side-chain cleavage than those destined for insertion on the matrix side of the IM, the Ad-mCYP11A1 hybrid demonstrating only residual enzyme activity. The data obtained reinforce the proposal that complete transfer of the polypeptide chain into the matrix is not a necessary stage in its topogenesis, but rather persistent interaction of the polypeptide chain with the membrane during the process of translocation is of importance for heme binding, folding and membrane insertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号